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Mechanoregulation and pathology of YAP/
TAZ via Hippo and non‑Hippo mechanisms
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Abstract 

Yes-associated protein (YAP) and its paralog WW domain containing transcription regulator 1 (TAZ) are important 
regulators of multiple cellular functions such as proliferation, differentiation, and survival. On the tissue level, YAP/
TAZ are essential for embryonic development, organ size control and regeneration, while their deregulation leads 
to carcinogenesis or other diseases. As an underlying principle for YAP/TAZ-mediated regulation of biological func-
tions, a growing body of research reveals that YAP/TAZ play a central role in delivering information of mechanical 
environments surrounding cells to the nucleus transcriptional machinery. In this review, we discuss mechanical cue-
dependent regulatory mechanisms for YAP/TAZ functions, as well as their clinical significance in cancer progression 
and treatment.
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Introduction
The transcriptional coactivators YAP and TAZ (Fig.  1) 
have compelled researchers’ attention over the past dec-
ades as important mediators of multiple biological func-
tions. YAP/TAZ play essential roles in development, 
homeostasis and regeneration of tissues and organs [1–
6], and their dysfunctions cause several diseases [1, 4, 5, 
7]. Both YAP and TAZ are expressed in most of human 
tissues with some exceptions, for instance TAZ is not 
expressed in thymus and peripheral blood leukocytes, 
while YAP is not expressed in hippocampus and parathy-
roid gland [8–10].

As a canonical mechanism for YAP/TAZ regulation, 
a phosphorylation cascade of the Hippo pathway has 
been identified [11]. There are two major steps in Hippo 
pathway-mediated regulation of YAP/TAZ: YAP/TAZ 
phosphorylation and nuclear translocation of YAP/TAZ. 
Nuclear YAP/TAZ mainly interact with transcription 
factors of the TEA domain (TEAD) family members, as 
well as several other transcriptional factors to regulate 

gene expression (reviewed in [12]; and [13–16]). While 
the Hippo pathway is the most widely known regulator 
of YAP/TAZ activity, it is not the sole one. Since the first 
identification of YAP/TAZ as a mechanotransducer [17], 
many groups have shown that YAP/TAZ are regulated 
in response to a number of different types of mechanical 
stimuli through Hippo-independent mechanisms.

In this review, we first discuss regulatory mechanisms 
of YAP/TAZ focusing on their regulation by mechanical 
cues from cell microenvironments such as adjacent cells 
and the extracellular matrix (ECM). We further discuss 
the roles of YAP/TAZ in tissue homeostasis and pathol-
ogy with particular interest in their roles in cancer pro-
gression and resistance against therapeutic treatments.

Importantly, while YAP and TAZ have a lot of similari-
ties in their structures, regulations and functions, they 
are not identical (Fig.  1; [8, 18, 19]). Therefore, in this 
review we use the term “YAP/TAZ” when there is evi-
dence that YAP and TAZ share the described functions 
or regulations, whilst we specify the single protein name 
when evidence is available only for either YAP or TAZ.
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Canonical YAP/TAZ regulation via Hippo pathway
The core Hippo pathway starts with MST1/2—STE20 
family protein kinases, which phosphorylate hydrophobic 
motifs of LATS1/2 [20]. Phosphorylated, i.e. activated, 
LATS1/2 then phosphorylate serine residues in YAP/
TAZ [11, 21], leading to cytoplasmic retention of YAP/
TAZ [21] (Fig. 2). In addition to direct phosphorylation 
of LATS1/2 by MST1/2, MTS1/2-phosphorylated SAV1 
and MOB1A/B facilitate phosphorylation of LATS1/2 
[22–24]. While the role of MOB1A/B is not fully under-
stood (Meng et al. proposed a model in which MOB1A/B 
act as scaffold proteins, but it has not been experimen-
tally justified yet [25]), SAV1 binds to MST1/2, targeting 
the whole complex to the plasma membrane [26]. For 
quite a long time, MST1/2 have been deemed to be the 
primary kinases that phosphorylate LATS1/2. However, 
it has been shown that double-depletion of MST1/2 does 
not alter YAP phosphorylation [27, 28]. Indeed, a recent 
study has shown that MAP4K family kinases act in paral-
lel to MST1/2 to activate LATS1/2 [29].

Upon phosphorylation by LATS1/2, YAP/TAZ inter-
act with 14-3-3, which sequesters YAP/TAZ from trans-
location into the nucleus [21]. α-Catenin, a well-known 
adaptor protein localizing at cadherin-mediated cell–
cell junctions, stabilizes the YAP complex with 14-3-3, 
thereby inhibiting YAP dephosphorylation by protein 
phosphatase 2A (PP2A) [27, 30]. It has been suggested 
that α-catenin acts at adherens junctions (AJ) to sta-
bilize the YAP complex [27]. However, in our opinion, 
α-catenin may interact with the YAP-14-3-3 complex 
both at and outside AJs. While this idea requires further 
justification, there are several observations supporting 
this idea. First, exclusion of YAP from the nucleus usu-
ally does not lead to its plasma membrane recruitment, 
rather it more or less evenly distributes throughout the 

cytoplasm [28, 31, 32]. Second, α-catenin does not always 
solely localize at AJs but shows significant cytoplasmic 
attendance [27, 33]. Last, α-catenin shows a protec-
tive effect against PP2A-mediated dephosphorylation 
of YAP in an in  vitro dephosphorylation assay without 
membrane supports [27], indicating its ability to act as a 
soluble form. As such, the cytoplasmic complex forma-
tion with α-catenin would ensure retention of YAP in the 
cytoplasm.

Another mechanism for inhibiting nuclear localization 
of YAP/TAZ is phosphorylation of YAP/TAZ by casein 
K1δ/ε following the LATS-dependent phosphorylation. 
Such polyphosphorylation induces YAP/TAZ ubiquitina-
tion by the SCF E3 ubiquitin ligase and subsequent deg-
radation [25].

To date, several upstream regulators of the Hippo path-
way have been identified: TAO1/2/3 kinases that phos-
phorylate the activation loop of MST1/2 [25, 34, 35], 
G-protein coupled receptors [36], Kibra [37], PTPN14 
[37], AMPK in response to energy stress [38–40], and 
Ras-mitogen activated protein kinase (MAPK) signalling 
[36, 41]. Moreover, while cells suffer various mechani-
cal stimuli of different origins, including cell–ECM and 
cell–cell contacts, ECM stiffness, fluid shear, cell geom-
etry, internal actomyosin tension and so on [1, 25, 42], 
these mechanical stimuli also strongly affect YAP/TAZ 
regulation.

Impact of cell–ECM interaction on YAP/TAZ 
regulation
Cells adhere to ECM through the macromolecular adhe-
sion complex called focal adhesion (FA) that links the 
actin cytoskeleton to ECM [43–45]. While cells sense 
stiffness of ECM and change their spreading and migra-
tion in response to ECM stiffness [17, 31, 46–52], YAP/
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Fig. 1  Domain structures of YAP and TAZ. YAP is a 65-kDa protein containing a proline-rich region (P-rich) in the N-terminal region and a 
PDZ-binding motif (PDZ-BM) in the C-terminal region that are separated by two WW domains, a TEAD binding domain, a Src homology domain 3 
binding motif (SH3-BM), and a coiled–coil domain (CC) within the transactivation domain (TAD). There are 8 isoforms of YAP exist which differ by 
loss of one WW domain and alterations in TAD. TAZ, a 43-kDa paralog of YAP, has similar domain organization but lacks the proline-rich region, the 
SH3-BM and one WW domain. YAP S127 and TAZ S89 are the main phosphorylation targets of LATS1/2. Upon phosphorylation YAP/TAZ binds with 
14-3-3 and thus are sequestered in the cytoplasm
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TAZ activity is regulated by ECM stiffness and cell 
spreading. Spread cells and cells grown on stiff ECM 
show elevated YAP/TAZ activity which correlates with 
their nuclear localization [17, 31, 48, 53].

Mechanical environments characterized by cell mor-
phology and the cell–ECM contact area regulate YAP 
nuclear localization via affecting LATS1/2-dependent 
YAP phosphorylation [53]. As an underlying molecu-
lar mechanism, involvement of integrin signalling has 
been revealed (Figs.  2 and 3). Stiff or fibronectin-rich 
ECM activates the β1-integrin–FAK–Src–PI3K–PDK1 
pathway, which inhibits the LATS1/2 activity and thus 
facilitates YAP nuclear translocation and transcrip-
tional activation [54–56]. The Src–Rac1–PAK path-
way also inhibits the YAP phosphorylation by LATS1/2 
downstream of β1-integrin [57]. PAK activation induces 
phosphorylation of Merlin, which abrogates its scaf-
fold function for YAP and LATS1/2, and thereby atten-
uates YAP phosphorylation by LATS1/2 [57] (Fig.  2). It 
is currently unknown whether FAK–Src–PI3K–PDK1 

and Src–Rac1–PAK axes form a single cascade or act in 
parallel.

On the other hand, Dupont et  al. reported that 
mechanical cue-induced regulation of YAP in human 
mammary epithelial cells and human mesenchymal stem 
cells is independent of the Hippo pathway [17], which 
was later confirmed by other groups [31, 48, 58]. How-
ever, for a long time, the mechanism that provides con-
sistent explanation for the mechanical regulation of YAP/
TAZ has been unsolved.

It took some time to find it, but recently Elosegui-
Artola et  al. have reported that the nucleus itself plays 
a role as a mechanotransducer for YAP regulation [59]. 
They have shown that the actin cytoskeleton, in particu-
lar actomyosin fibers running from FAs to the apical sur-
face of the nucleus [60], affords mechanical connection 
between FAs and the Linker of the Nucleoskeleton and 
Cytoskeleton (LINC) complex of the nuclear envelope 
on stiff substrates, but not on soft ones. Contractile force 
generated by actomyosin activity flattens the nucleus and 

Stiff and
Fibronectin-rich ECM

Fig. 2  Overview of signaling cascades for YAP/TAZ regulation. Hippo pathway- (blue), FA- (pink) and AJ-mediated (yellow) regulations of YAP/TAZ 
are shown. See the main text for details
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opens up nuclear pores. Such opening increases the rate 
of YAP/TAZ import but not affecting the export rate 
(Fig.  4a). This mechanism might also explain cell area- 
and cell shape-dependent regulation of YAP/TAZ locali-
zation [59].

As an attempt to explain the different influences of 
mechanical tension on import/export rates, the following 
model was proposed. The inner lumen of nuclear pores 
comprises a disorganized meshwork of flexible FG-nups 
that contain phenylalanine–glycine (FG) repeats [61, 
62]. Repulsive interaction of proteins with FG repeats 
leads to protein unfolding and thus facilitates protein 
passage through the nuclear pore. Furthermore, tension 
in the cytoskeleton-nucleus system not only increases 
the nuclear pore size but also increases the curvature of 
the lateral part of the nuclear membrane. This leads to 
showing up the inner surface of the nuclear pore to the 
cytoplasm, thus promoting FG-nups-mediated translo-
cation of cytoplasmic proteins into the nucleus (Fig. 4a). 
While their model could explain how nuclear import of 

YAP is facilitated, it does not fully explain why signifi-
cant changes in the pore shape and size do not affect the 
export rate. Although we do not have a reasonable model 
that might explain all observations, it is necessary to take 
notice that the mechanism of nuclear transport is rather 
complex. In the case of YAP, its export from the nucleus 
would likely depend on the concentration of free nuclear 
YAP (i.e., YAP that is not trapped by TEAD [63] or other 
transcription factors in the nucleus), as well as availability 
of Merlin in the nucleus, wherein nuclear export signals 
of Merlin are suggested to mediate YAP nuclear export 
[64].

Nuclear localization of proteins is mediated by two 
distinct mechanisms: passive and active. Passive diffu-
sion through nuclear pores is suitable for proteins smaller 
than ~ 40 to 50 kDa (note, theoretical MWs of YAP and 
TAZ are ~ 65 and ~ 43  kDa, respectively [18]). The sec-
ond mechanism is the energy-dependent process that 
involves transporting proteins (importins and exportins). 
It is known that YAP/TAZ nuclear shuttling follows 
the active mechanism [17, 59, 64, 65]. Importantly, an 
increase in nuclear pore diameter under high tension in 
the actin cytoskeleton does not switch the mechanism 
of YAP/TAZ nuclear transport from active to passive; 
nucleus–cytoplasm translocation of YAP/TAZ under 
high tensile conditions (e.g., on stiff ECM) still depends 
on importin and exportin activities [59].

Thus at least two distinct mechanisms underlie cell–
ECM interaction-mediated activation of YAP/TAZ: inhi-
bition of LATS1/2-mediated phosphorylation of YAP/
TAZ, and an increase in YAP/TAZ import through open-
ing of the nuclear pores, which might synergistically reg-
ulate YAP/TAZ transcriptional activity (Figs. 3 and 4a).

Cell–cell contact‑mediated regulation of YAP/TAZ
Sensing neighboring cells is essential for tissue integrity. 
Cell–cell contact-induced arrest of cell growth, termed 
contact inhibition of proliferation (hereafter contact inhi-
bition, CIP), underlies homeostatic control of cell den-
sity and organ size [30, 66]. Involvement of YAP/TAZ 
in cell contact inhibition and tissue growth control has 
been revealed over the decade [21, 30, 67]. However, the 
detailed mechanism underlying YAP/TAZ-mediated CIP 
is still poorly understood.

At a low cell density condition the phosphorylation 
level of YAP is low and it predominantly localizes in 
the nucleus, while at a dense condition YAP is highly 
phosphorylated and sequestered in the cytoplasm [17, 
21, 64]. Under a high cell density condition, LATS1/2 
are phosphorylated and activated by MST1/2 and 
MAP4K1/2/3/4/6/7 [17, 21, 28, 29], and double-deple-
tion of LATS1/2 abrogates cell density-dependent phos-
phorylation of YAP [29], indicating that LATS1/2 are 

Fig. 3  A hypothetical model for YAP/TAZ regulation by tension at 
FAs. a Low tension FA with small actomyosin force and/or soft ECM. b 
High tension FA with large actomyosin force and stiff ECM. FA tension 
induces sequential phosphorylation (P) of FAK, Src and p130Cas (Cas). 
Phosphorylated Src activates the PI3K–PDK2 pathway, whilst the 
phosphorylated p130Cas activates the Rac1–PAK pathway. Activation 
of these pathways inhibits LATS-mediated phosphorylation of YAP, 
facilitating nuclear translocation of YAP
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responsible for phosphorylation of YAP/TAZ in response 
to cell density.

Several studies have revealed important roles of AJ 
components in YAP regulation [27, 30, 32, 68, 69]. AJ 
is a macromolecular complex that mediates adhesion 
between cells and is composed of transmembrane cad-
herin family proteins (E-cadherin in the case of epithelia) 
and their associated catenins [70, 71]. The extracellular 
domain of cadherin is responsible for homophilic inter-
actions of cadherin between neighboring cells. On the 

cytoplasmic side, β-catenin binds to the cytoplasmic 
domain of cadherin, as well as interacts with the actin 
binding protein α-catenin. It is well established that 
E-cadherin–β-catenin–α-catenin-actin linkage provides a 
major mechanical connection of the actin cytoskeleton to 
E-cadherin, which transmits actomyosin-generated ten-
sile force to E-cadherin at AJs [72]. Stability and function 
of AJs depend on trans interaction of the cadherin extra-
cellular domains and actomyosin-generated mechani-
cal tension [71]. A number of other proteins have been 
shown to localize at AJs.

E-cadherin reportedly mediates CIP in a Hippo path-
way-dependent manner [28]. While E-cadherin homo-
philic ligation in MCF-7 and MCF-10 cells leads to 
inhibition of cell proliferation, this process depends on 
other AJs components, including α-catenin, β-catenin, 
NHERF (Na+/H+ exchanger regulatory factor) and Mer-
lin, as well as the Hippo pathway components Kibra and 
LATS1/2. Interestingly, MST1/2 are not required for this 
process.

Involvement of E-cadherin in the cell density-depend-
ent regulation of YAP has been further supported by the 
findings that MDA-MB-231 cells, which do not express 
E-cadherin, show nuclear localization of YAP even 
under the high cell density condition, and that exoge-
nous expression of E-cadherin in these cells redistributes 
YAP from the nucleus to the cytoplasm [28]. It is note-
worthy that expression of the E-cadherin mutant, which 
cannot bind to the catenin complex but is still able to 
mediate cell–cell adhesions, does not cause relocaliza-
tion of YAP into the cytoplasm. By contrast, expression 
of an E-cadherin/α-catenin chimeric protein that can 
directly bind to the actin cytoskeleton induces cytoplas-
mic sequestration of YAP, even more efficiently than 
that of wild-type E-cadherin. These results suggest that 
connection of E-cadherin to the actin cytoskeleton con-
tributes to sequestering YAP in the cytoplasm at a dense 
condition. Consistently, depletion of either β-catenin or 
α-catenin induces nuclear localization of YAP in dense 
cell cultures, as well as in mouse skin [28, 30]. Anyway, 
there is no doubt that E-cadherin is essential for cell den-
sity-dependent subcellular localization of YAP in epithe-
lial cells.

Recently, two independent groups have revealed that 
actomyosin-based tension at AJs suppresses nuclear 
localization of YAP/TAZ in high density epithelial cells, 
thereby arresting cell growth [32, 64] (Figs.  4b and 5). 
Thus inhibition of actomyosin or disconnection of the 
actin cytoskeleton to AJs (by depletion of α-catenin or 
β-catenin) causes nuclear localization of YAP in high 
density cells as well as in the mouse skin [28, 30, 32, 
64]. Application of external tensile force to E-cadherin 
using E-cadherin-coated magnetic beads, in turn, arrests 

Fig. 4  Hypothetical models for actomyosin-dependent regulation of 
YAP nuclear localization in sparse and confluent cells. a Sparse cells 
develop FAs that are connected to actomyosin stress fibers. Tensile 
force exertion from stress fibers to FAs activates the FAK–Src signal, 
which inhibits LATS1/2-mediated phosphorylation of YAP, thereby 
facilitating nuclear translocation of YAP. In addition, contraction of 
stress fibers connecting FAs and the apical surface of the nucleus 
(sometimes called ‘actin cap’) flattens the nucleus, increases the 
curvature of the lateral part of the nuclear membrane, and thereby 
enlarges the diameter of the cytoplasmic side of the nuclear pore in 
this nuclear membrane part. Such ‘asymmetric opening’ of nuclear 
pores may preferentially promote nuclear import, rather than 
export, of YAP. b Confluent cells are poor in FAs and stress fibers, 
but instead develop AJs and actomyosin fibers associated with 
AJs. Actomyosin-based tensile force at AJs induces translocation of 
Merlin from AJs to the nucleus, wherein Merlin forms a complex with 
YAP. With the aid of nuclear export signals of Merlin, the Merlin-YAP 
complex is then exported from the nucleus. Thus the actomyosin 
activity has opposing effects on the YAP distribution between 
sparse and confluent cells; the actomyosin activity promotes nuclear 
localization of YAP in sparse cells, but attenuates it in confluent cells. 
See detailed discussion in the main text
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YAP-driven proliferation of actomyosin-inhibited cells, 
while E-cadherin homophilic ligation per se promotes 
cell proliferation under actomyosin inhibition [32]. Thus, 
considering importance of tension at AJs, we suggest that 
not E-cadherin by itself but mature AJs connected to 
actomyosin network would be required for cell density-
dependent YAP regulation and CIP.

As a molecular mechanism for the AJ-tension-depend-
ent regulation of YAP/TAZ localization, Furukawa et al. 
have shown that YAP/TAZ are excluded from the nucleus 
dependently on Merlin and its nuclear export signals 
(NESs) [64]. While Merlin associates with AJs, actomy-
osin-based tension at AJs releases Merlin from AJs and 
allows it to enter the nucleus. Nuclear Merlin binds YAP/
TAZ and facilitates cytoplasmic translocation of YAP/
TAZ with the aid of Merlin NESs (Fig.  4b). Of note, 
Merlin acts in a Hippo-independent manner;  silencing 
of Merlin expression does not affect phosphorylation of 
LATS and YAP.

Detailed mechanism for tension-dependent release 
of Merlin from AJs remains to be revealed. However, it 
is known that Merlin localizes at AJs through the bind-
ing with α-catenin [73]. α-Catenin is currently the solely 
revealed mechanosensor at AJs that alters its molecular 
interaction through the force-induced conformational 
change [74, 75]. This leads to an intriguing possibility that 
tension-induced conformational changes of α-catenin 
may be involved in dissociation of Merlin from α-catenin 
at AJs, which needs to be tested in future studies (Fig. 5).

Even though Furukawa et al. have revealed that Mer-
lin deactivates YAP/TAZ by the Hippo-independ-
ent mechanism, Merlin can regulate YAP/TAZ also 
through the Hippo pathway. Thus Merlin functions as a 
scaffold protein that binds to LATS1/2 and targets them 
to the plasma membrane in Drosophila and mammalian 
HEK293 cells [26]. Merlin-dependent LATS recruit-
ment to the membrane facilitates LATS1/2 phospho-
rylation by MST1/2 and MAP4Ks, followed by YAP/
TAZ phosphorylation by LATS1/2 [26, 29], which sup-
ports the Hippo-dependent regulation model. Hence, 
we could speculate that Merlin regulates YAP/TAZ by 
multiple ways and different mechanisms may prevail in 
different cells and under different conditions (Fig. 2).

Merlin-dependent regulation of intracellular localiza-
tion of YAP/TAZ has been confirmed also in vivo. Con-
ditional knockout of Merlin in mouse liver results in 
significant liver expansion which coincides with decreased 
phosphorylation and increased nuclear accumulation 
of YAP [76]. Both, impairment of Merlin-driven nuclear 
export of YAP/TAZ and increased YAP/TAZ nuclear 
import due to a decrease in YAP/TAZ phosphorylation 
would contribute to enhanced nuclear accumulation of 
YAP/TAZ under Merlin knockout. Notably, overgrowth 

of Merlin-deficient liver progenitor cells was shown to be 
independent of YAP [77]. Thus the overall mechanism of 
Merlin-dependent regulation of cell growth is still unclear, 
and further studies are needed to unveil it.

It is known that Merlin localizes to AJs through its 
binding to α-catenin, and silencing α-catenin expres-
sion leads to delocalization of Merlin from AJs [73]. Even 
though an increase in non-AJ Merlin would accelerate 
export of YAP from the nucleus [64], α-catenin deple-
tion, instead, leads to an increase in nuclear YAP [32, 64]. 
This suggests that α-catenin regulates YAP localization 
not only through Merlin but also via other mechanism(s). 
As discussed in the former section (“Canonical YAP/TAZ 
regulation via Hippo pathway”), cytosolic α-catenin may 
prohibit nuclear translocation of YAP by forming a com-
plex with YAP. Similarly, β-catenin also forms a cytosolic 
complex with YAP as the β-catenin destruction complex, 
which contributes to sequestering YAP in the cytoplasm 
[78]. These results suggest that AJ components act not 
only as AJ-associated forms but also as soluble forms in 
the regulation of YAP/TAZ localization.

Fig. 5  A hypothetical model for YAP/TAZ regulation by tension at AJs. 
a Low tension AJ with small actomyosin force. Under this condition, 
Merlin localizes to AJs through its binding with α-catenin. b High 
tension AJ with large actomyosin force. AJ tension causes dissociation 
of Merlin from AJs, which may be associated with a force-induced 
conformational change of α-catenin. Released Merlin enters the 
nucleus, binds nuclear YAP, and then exports it from the nucleus with 
the aid of NESs in Merlin
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As described above, tension at AJs leads to sequestra-
tion of YAP/TAZ from the nucleus in high density cells 
[32, 64]. On the other hand, AJ tension under a lower cell 
density condition, in which cells form AJs but still pro-
liferate, may have opposing effects on YAP localization. 
Under such condition, tension at AJs activates vinculin to 
recruit the LIM protein TRIP6 to AJs, which sequesters 
LATS1/2 at AJs and thereby inhibits LATS1/2 activation 
by MST1/2 and MAP4Ks, resulting in a decrease in YAP 
phosphorylation [79]. Thus AJ tension potentially regu-
lates YAP/TAZ both positively and negatively depending 
on circumstances, even though the mechanism by which 
it takes opposing tasks is currently unknown and needs 
to be revealed in future studies.

Differential regulations of YAP/TAZ by cell–cell 
and cell–ECM interactions
The finding that actomyosin-based tension at AJs causes 
cytoplasmic sequestration of YAP/TAZ in high den-
sity epithelial cells may sound contradictory to previous 
studies showing that actomyosin contractility facilitates 
YAP/TAZ nuclear translocation in many types of cells 
[17, 31, 59]. However dominant types of the actomyo-
sin cytoskeleton are different between confluent epithe-
lial cells and the sub-confluent cells used in the previous 
studies; while sub-confluent cells show prominent stress 
fibers connecting to FAs, confluent epithelial cells are 
poor in stress fibers but develop actomyosin cables that 
associate with AJs [32]. We speculate that actomyosin-
based tension might have opposite effects on YAP/TAZ 
localization depending on the cellular context. Thus ten-
sion at FAs induces FAK phosphorylation [80], which 
causes YAP/TAZ activation [54, 55], as well as “opens” 
nuclear pores for YAP/TAZ nuclear import [59] (Figs. 3 
and 4a). On the other hand, actomyosin tension at AJs 
deactivates YAP/TAZ (Figs. 4b and 5). Even though acto-
myosin inhibition potentially eliminates both effects, it 
may cause YAP deactivation in sub-confluent cells that 
have developed FAs but not AJs. By contrast, actomyosin 
inhibition in confluent epithelial cells would mainly abro-
gate the AJ-dependent suppressive effect on YAP, leading 
to activation of YAP.

Detailed mechanisms of such differential regula-
tion is currently unknown. However, based on several 
recent reports, we could suggest that differential roles of 
α-catenin in YAP/TAZ regulation might be involved. On 
one hand, phosphorylation of the Ajuba family protein 
LIMD1 by JNK induces the complex formation of LIMD1 
with LATS1/2 [81–84], and switch of α-catenin to open 
conformation under actomyosin-generated tension at 
AJs leads to recruitment of LIMD1–LATS1/2 complex to 
AJs and thereby inhibits the kinase activity of LATS1/2, 
resulting in activation on YAP/TAZ [85]. On the other 

hand, while Src directly phosphorylates three tyrosine 
residues in the transcription activation domain of YAP, 
α-catenin antagonizes ECM-induced activation of the β4 
integrin–Src pathway, leading to inactivation of YAP [86] 
(Fig. 2).

YAP regulates mechanical properties of tissues
In the above sections, we have discussed how mechanical 
cues from ECM and actomyosin tension regulate YAP/
TAZ transcriptional activity. Interestingly, reverse regu-
lations also exist. It has been recently revealed that YAP 
increases actomyosin-based tension in tissues (mouse 
lung and fish embryo) by upregulating the RhoA-acto-
myosin axis [87, 88]. YAP promotes expression of the 
Rho guanine exchange factor (RhoGEF) ARHGEF17 that 
activates RhoA [87]. Expression of several regulators and 
components of the actomyosin cytoskeleton, including 
myosin IIB, myosin regulatory light chain 2 and filamin 
A, is also enhanced by YAP either transcriptionally or 
non-transcriptionally [87, 89, 90]. Given that actomyo-
sin tension induces YAP activation in many types of cells 
(see previous sections), YAP and RhoA signals are likely 
to be mutually regulated via a feedback loop.

On the other hand, YAP reportedly upregulates expres-
sion of the Rho GTPase activating proteins (RhoGAP) 
ARHGAP18/29 which deactivates RhoA [88, 91]. Thus 
expression of both a RhoA activator (ARHGEF17) and 
RhoA inhibitors (ARHGAP18/29) is promoted by YAP. It 
is currently unclear how opposing RhoA regulations by 
YAP through different RhoA regulators are spatiotempo-
rally coordinated to fine-tune actomyosin systems.

The mechanical property of ECM is also regulated by 
YAP/TAZ. In cancer tissues, activation of YAP/TAZ in 
cancer-associated fibroblasts (CAFs) promotes expres-
sion of the ECM proteins such as laminin and fibronec-
tin, and induces stiffening of ECM, which contributes 
to maintenance of cancer stem cells and CAFs in cancer 
environments [89, 92–94]. This YAP/TAZ-mediated reg-
ulation of ECM would contribute to cancer progression 
and therapy resistance, as discussed below.

YAP/TAZ in tissue homeostasis
The Hippo pathway was originally discovered in Dros-
ophila. The effect of the YAP/TAZ on the organ size con-
trol is preserved among species from flies to mammals 
[5]. However, sensitivity to YAP/TAZ dysregulation var-
ies among different organs/tissues. Tissue specific knock-
out of YAP in virgin mammary gland and intestine does 
not result in any disorders in tissue size and structure 
[95, 96], while double conditional skin-specific knock-
out of YAP and TAZ results in dramatic loss of hair [56]. 
TAZ deletion causes the polycystic kidney disease [97], 
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whereas YAP deletion leads to hypoplastic kidneys [98] 
and a bile duct defect in liver, without general reduction 
in organ size [5]. It is noteworthy that in most studies, 
in  vivo functions of YAP/TAZ have been examined by 
knocking-out either YAP or TAZ. Since their functions 
are largely overlapping each other, it is possible that the 
effect of TAZ knockout may be compensated by YAP and 
vice versa.

While knockout of YAP/TAZ does not give rise to 
apparent phenotypes in some organs in a steady state, 
they appear to play significant roles during growth phases 
of tissues. For example, hyperactivation of YAP leads 
to a failure in terminal differentiation of the mammary 
gland during pregnancy [95]. YAP activity is induced 
upon hepatectomy, which is most likely critical for liver 
regeneration [99, 100]. Furthermore, loss of YAP causes a 
reduction of the regenerative ability of intestine [96].

YAP/TAZ are highly active in progenitor and stem 
cells in multiple tissues and influence cell fate. Active 
nuclear YAP/TAZ promote proliferation and self-renewal 
of embryonic stem cells (ESC) [101–103] and basal 
keratinocytes [27, 48, 103], as well as osteocyte differ-
entiation of mesenchymal stem cells (MSC) [104, 105]. 
On the other hand, cytoplasmic retention of YAP/TAZ 
results in neuronal differentiation of ESC [101, 102], adi-
pocyte differentiation of MSC [104, 106], and terminal 
differentiation of keratinocytes [48, 56].

YAP/TAZ in cancer
Dysregulation of YAP and TAZ could be observed in 
many tumors of different origins, including prostate can-
cer, cervical squamous cell carcinomas, meningioma, 
squamous cell carcinoma of skin, malignant mesothe-
lioma, acute myeloid leukemia, and others (comprehen-
sively reviewed in [107]). Curiously, cancer-associated, 
activating mutations of YAP/TAZ have not been found, 
and YAP1 and TAZ genes are rarely amplified in cancer 
cells [108]. Instead, YAP/TAZ are often overexpressed 
and highly accumulated in the nuclei in cancer cells [107, 
109]. This phenotype is preserved in many cancer tissues 
[110–113]. Apparently, YAP/TAZ overexpression pro-
motes transcription of YAP/TAZ target genes [114, 115]. 
High YAP/TAZ activity drives proliferation, invasion 
and metastases of cancer cells [4, 116–119], and is often 
associated with poor prognosis [120, 121], therapy resist-
ance, including resistance to chemotherapeutic drugs 
[118, 121–125], radiation [124, 126] and molecularly tar-
geted therapies [127, 128], and relapse [107] of cancers. 
In hematological cancers, however, low YAP1 expression 
has been shown to be predictive of a poor outcome of 
treatments [129].

YAP/TAZ activity is usually essential for tumor pro-
gression, even though activation of YAP/TAZ solely 

might not be sufficient for cancer initiation in some tis-
sues [5, 95, 130–132]. Importantly, mutations in Hippo 
pathway components are rare in human tumors [133]. 
Mutations in Merlin and LATS1/2 may occur only in spe-
cific tumor types, such as mesothelioma, schwannomas, 
and meningiomas, but are not observed in most tumor 
types displaying elevated YAP/TAZ activity [107]. Based 
on these results, Zanconato et al. reasonably suggest and 
argue that Hippo signaling is not a sole and dominant 
mechanism for regulating YAP/TAZ activity in human 
tumors [107].

These considerations raise following questions: 
how YAP/TAZ are activated in cancer and what is the 
sequence of events downstream of YAP/TAZ activation? 
To date mechanisms for activation and action of YAP/
TAZ in cancer are poorly understood. However, some 
cues have been revealed in recent studies.

As was mentioned above, YAP and β-catenin syner-
gize in cell cycle progression. Importantly, YAP overex-
pression in combination with β-catenin in mouse liver 
leads to the development of hepatoblastoma [134], and 
YAP is required for cell survival in β-catenin-driven 
colon cancers [119]. In both cases, YAP forms a com-
plex with β-catenin. Rosenbluh et al. have found that the 
β-catenin–YAP–TBX5 complex formation drives expres-
sion of antiapoptotic genes, including BCL2L1 and BIRC5 
[119]. Consistent with this, in BRAF-mutated non-small 
cell lung cancer (NSCLC) and melanoma, YAP-depend-
ent expression of BCL2L1 allows cancer cells to escape 
from apoptosis under BRAF- or MEK-targeting therapy 
[127], even though it has not been examined whether 
β-catenin is involved in this process.

Another role of YAP/TAZ in therapy resistance of can-
cer was found in studies of BRAF V600E gain-of-function 
mutant melanomas. YAP/TAZ-dependent actin cytoskel-
eton remodeling and cell spreading promote an acquisi-
tion of a phenotype resistant against the treatment with 
the BRAF inhibitor PLX4032 (vemurafenib) in melanoma 
cells in vitro [128]. Even though cytoskeleton remodeling 
per se may not be sufficient for therapy resistance, it is 
possible, as discussed in the previous sections, that cell 
spreading would facilitate nuclear entry of YAP (and, 
most likely, other transcription factors and co-activa-
tors), and thus might promote cell cycle progression and 
inhibit apoptosis in cancer cells.

YAP plays a key role also in acquiring EGFR-tyrosine 
kinase inhibitor-resistant as well as cetuximab-resistant 
properties of cancers [135–139]. Although details of the 
underlying mechanism remain unknown, several tran-
scriptional targets of YAP, including AXL [136, 140], 
ERBB3 [141], PD-L1 [139], are involved in acquisition of 
these chemo-resistant phenotypes of cancers.
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Cell invasion and metastasis are typical properties of 
malignant cancers. Notably, these activities of cancer 
cells are also potentially promoted by YAP. Recently, Qiao 
et  al. have proposed a mechanism for YAP-mediated 
cancer metastasis [91]. First, the high expression level of 
YAP in cancer cells promotes epithelial–mesenchymal 
transition (EMT) via reprogramming of gene expression 
to antagonize AJ assembly [90, 94], which leads to loss of 
cell–cell adhesions and apical-basal polarity, along with 
acquisition of mesenchymal motility. Importantly, over-
expressing YAP in normal cells antagonizes maturation of 
AJs, but does not induce EMT [90], suggesting that YAP 
cooperates with some other cancer-associated factors to 
provoke EMT in cancer cells [94]. Next, YAP-driven actin 
cytoskeleton remodeling decreases the rigidity of cancer 
cells [91]. Soft cancer cells are easy to squeeze through 
ECM and extravasate through vasculature to achieve dis-
tal metastasis via the circulation [142]. Furthermore, YAP 
enhances the membrane-cytoskeletal integrity, increas-
ing cell viability when cells travel through narrow spaces 
such as capillary vessels during metastasis [91, 143].

The question regarding the mechanism of YAP/TAZ 
activation in cancer might be even more complex, con-
sidering potential existence of cell–cell and cell–ECM 
crosstalks in cancer environments [144, 145]. Although 
melanoma cells in  vitro undergo cell death upon the 
treatment with the BRAF inhibitor PLX4720, these 
cells are resistant to PLX4720 treatment in  vivo [146]. 
In  vivo treatment of melanoma with PLX4720 acti-
vates melanoma-associated fibroblasts (MAFs), leading 
to ECM remodeling [146]. Changes in ECM composi-
tion and stiffness cooperatively provide “safe havens” for 
melanoma cells, making them insensitive to PLX4720 
treatment [146]. The effect of MAF-dependent ECM 
remodeling can be recapitulated in  vitro. When co-
cultured in collagen gel, MAFs isolated from PLX4720-
resistant cancer tissues make melanoma cells resistant 
to PLX4720 through formation of dense collagen fibers 
[146]. Importantly, melanoma cells re-isolated from the 
co-culture system remains sensitive to PLX4720. Sig-
nificance of the ECM property has been further demon-
strated by the observation that melanoma cells become 
PLX4720-resistant when solely cultured on stiff and 
fibronectin-rich substrates in vitro [146].

Generation of the fibronectin-rich stiff matrix induces 
reorganization of integrin β1 into focal adhesions, ele-
vating FAK phosphorylation [54, 146]. As discussed in 
the previous sections, it is conceivable that stiff ECM 
and phosphorylated FAK activate YAP/TAZ either via 
the Hippo pathway or independently of it. Similar ECM 
remodeling by mammary adenoma- and carcinoma-asso-
ciated fibroblasts has been observed [89, 147], and ECM 
stiffening is a common feature of most solid tumor [148]. 

Thus, in a wide range of cancers, YAP might be regulated 
by the crosstalk between CAFs, ECM and cancer cells, as 
described in “YAP regulated mechanical properties of tis-
sues”; YAP activity in CAFs might induce ECM remode-
ling that in turn would induce YAP nuclear translocation 
and phosphorylation by Src family kinases in cancer cells 
(Fig.  6). Although, the initial trigger that starts up this 
self-inducing program stays unknown, several studies 
support an idea that soluble factors secreted by cancer 
cells might act as such a trigger [36, 89, 147, 149].

Considering involvement of YAP and TAZ in cancer 
development, progression and therapy resistance, these 
molecules and their upstream regulators would serve as 
potent targets for cancer therapy [18, 109, 123]. Kinases 
are usually deemed to be the best targets for small mol-
ecule therapeutics. However, most kinases in the Hippo 
pathway are tumor suppressors, and restoring functions 
of tumor-suppressor kinases in cancers is a challenging 
task [109]. Alternatively, Src, which directly phospho-
rylates the YAP activation domain [86], may provide a 
potential target.

Another approach for YAP/TAZ-targeted cancer 
therapy is modulating the actin cytoskeleton. Recent 
findings that actomyosin contractility in epithelial 
sheets induces nuclear exclusion of YAP and thereby 
inhibits cell proliferation [32, 64] (see “Cell–cell con-
tact-mediated regulation of YAP/TAZ” section) offer 
a potential strategy for suppression of YAP-driven cell 
proliferation by exogenous activation of actomyosin. 
However, it is important to notice that global induc-
tion of the actin cytoskeleton contractility would have 
harmful effects such as hypertension and asthma. 
Therefore, proper drug dosage and targeted drug deliv-
ery would be critical to implement cancer therapy that 
targets actomyosin activity.

Inhibition of YAP/TAZ interaction with its transcrip-
tional partners is the third potential strategy. From 
screening a library of FDA-approved drugs targeting the 
YAP–TEAD complex, Liu-Chittenden et  al. identified 
verteporfin (VP) as one of the top hits [150]. While VP 
is already used clinically for treatment of a non-cancer 
disease (macular degeneration), results in  vitro and in 
mouse cancer models indicate VP as a promising com-
ponent of synthetically lethal strategies in melanoma and 
NSCLC treatments in combination with vemurafenib and 
erlotinib, respectively [141, 151]. A peptide derived from 
vestigial-like protein 4 (VGLL4), a protein that competes 
with YAP in binding to TEAD and as such inhibits YAP 
function, also shows a therapeutic potential for cancers 
[152, 153]. In addition, flufenamic acid was recently iden-
tified as another inhibitor of YAP–TEAD-dependent 
transcription [154]. In contrast to the case of the YAP–
TEAD complex, inhibitors of YAP interaction with other 
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transcriptional factors are not known. However, as was 
mentioned above, YAP/TAZ-mediated transcriptional 
complexes independent of TEAD (such as the β-catenin–
YAP–TBX5 transcriptional complex) might also drive 
the cancer progression and therapy resistance. There-
fore, identification of inhibitors of TEAD-independent 
YAP/TAZ transcriptional complexes would contribute to 
development of novel therapeutic strategies for cancer.

Although pro-oncogenic functions of YAP/TAZ have 
been revealed by numerous researches, it is worth not-
ing that there are several reports suggesting that YAP 
can function as a tumor suppressor and is required for 
p73-mediated and cisplatin-induced cell death [18, 155, 
156]. For development of YAP/TAZ-targeted thera-
peutic strategies, further investigations are needed to 
reveal YAP/TAZ functions in different cancer types.

Conclusion
Obviously, activity of YAP/TAZ is regulated by multi-
ple mechanisms. It is also worthy to note that each cell 
suffers multiple mechanical and chemical stimuli from 
different origins. Therefore, multiple signaling cascades 
initiated by individual inputs may act in parallel, syner-
gize to achieve stronger responses, or antagonize each 
other with prevailing of one of the mechanisms. Such 
pleiotropic regulations would fine-tune the YAP/TAZ 
transcriptional activity, enabling to control diverse bio-
logical functions of YAP/TAZ.

The important roles of YAP/TAZ in cell cycle progres-
sion, tissue growth and homeostasis make these pro-
teins potential targets for clinical application, and one 
of the most straightforward application would be can-
cer treatment. Given that YAP/TAZ are regulated by 
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cancer cells

Therapy-resistant cancer 

cells with active YAP/TAZ

Non-fibronectin ECM fibril Fibronectin fibril

Normal ECM composition

Normal ECM stiffness

YAP/TAZ non-active

Normal ECM composition

Normal stiffness

CAFs with active YAP/TAZ

Fibronectin-rich ECM

Stiff ECM

Therapy-resistant cancer 

Aggressive phenotype

Fig. 6  A hypothetical model of CAF-mediated YAP activation in cancer cells via ECM remodeling. On the first step soluble factors secreted by 
cancer cells activate YAP in CAFs, leading to ECM remodeling and stiffening. Stiff and fibronectin-rich ECM would promote YAP activation in both 
CAFs and cancer cells, which confers therapy resistance of cancer
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multiple ways, better understanding of upstream regula-
tors for YAP/TAZ is essential for developing therapeutic 
approaches that target YAP/TAZ signaling. Furthermore, 
as transcriptional co-activators, YAP/TAZ interact with 
various transcription factors to induce expression of a 
wide range of genes, some of which drive disease pro-
gression, and others of which might have protective 
effects against pathogenesis. Therefore, further studies 
aiming at exhaustive investigations on YAP/TAZ down-
stream effectors would be required for creating therapeu-
tic strategies with high selectivities and efficacies.
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