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Abstract

Titanium (Ti) plays a predominant role as the material of choice in orthopaedic and dental implants. Despite the majority
of Ti implants having long-term success, premature failure due to unsuccessful osseointegration leading to aseptic
loosening is still too common. Recently, surface topography modification and biological/non-biological coatings have
been integrated into orthopaedic/dental implants in order to mimic the surrounding biological environment as well as
reduce the inflammation/infection that may occur. In this review, we summarize the impact of various Ti coatings on cell
behaviour both in vivo and in vitro. First, we focus on the Ti surface properties and their effects on osteogenesis and
then on bacterial adhesion and viability. We conclude from the current literature that surface modification of Ti implants

can be generated that offer both osteoinductive and antimicrobial properties.
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Introduction

Titanium (Ti) and its alloys are commonly used materials
in orthopaedic and dental implants due to their mechanical
and chemical properties; these include high strength to
weight ratio and high yield and fatigue strength along with
a relatively low Young’s modulus counteracting the effects
of stress shielding. An instantancously forming passive
oxide layer leads to corrosion resistance and biocompati-
bility.!> Moreover, Ti is amenable to alterations in physi-
cal and chemical properties, including changing the surface
oxide composition, thickness and topography, together
making Ti a suitable material for enhancement via surface
modification.® The biocompatibility of Ti and its alloys are
related to the capacity of the Ti oxide layer to react with
water ions and serum proteins as well as the resistance to
corrosion that provided by the oxide layer.7-1

Scaffold surface features need to be biocompatible, bio-
active and perhaps biodegradable as they are replaced by
natural tissue during the regenerative process. Replicating
the key structures of the extracellular matrix (ECM) and

providing stem cell environments are powerful bioactive
strategies that material scientists can copy and exploit.!!
Although Ti materials have many favourable properties,
there are known potential shortcomings. For example, alu-
minium in Ti alloys may be associated with neurological
disorders.!? In addition, intra-articular injection of Ti diox-
ide (TiO,) nanoparticles in rats has been noted to cause
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toxicological effects in lungs with follicular lymphoid
hyperplasia and inflammatory cells aggregated around the
bronchia.!> Moreover, ionic Ti may have a mutagenic
effect on cells either directly by damaging DNA via free
radicals or indirectly by inhibiting the DNA repair'4 and
may also induce some allergic reactions.*!> The biological
response to orthopaedic and dental implants is determined
by the physical and chemical features of the implant sur-
face. These include surface topography, surface free
energy, oxide thickness and oxide composition. The inter-
action between cells and the interface will be affected by
one or more of these factors and any change in one will
affect the other parameters.!o1® Surface topography has
the ability to regulate the cell behaviour in a reproducible
manner.?’ Furthermore, advances in topographical fabrica-
tion are making nanoscale topographical features achiev-
able in a large scale on more complex materials
(traditionally only flat surfaces and small surface areas
have been able to be patterned at the nanoscale).?! The use
of topography to guide mesenchymal stem cells (MSCs)
may, in fact, play a key role in bone tissue engineering as,
unlike chemical and mechanical alterations, topographical
modifications do not affect the bulk properties of materials
and orthopaedic materials need to be able to support load.
The stem cells’ ability to adhere and spread into specific
surfaces has shown a dramatic effect in cellular develop-
ment.?> Osseointegration is the direct contact between
bone and the implant, with histological evidence suggest-
ing that new bone is forming around the inert object. The
quality and amount of osseointegrated bone around the
implant, in addition to other factors such as the degree of
inflammation, an excessive force, may affect their stability
and consequently their failure rates.?? Osseointegration
and subsequent mineralization is dependent on the initial
adhesion of fibrin in blood-mediated osseointegration of
osteoblasts or MSCs onto the implant surface.!?:2425
Failure to achieve osscointegration will lead to premature
implant failure and this integration is required to be main-
tained throughout the implant’s lifespan to ensure longev-
ity?¢ although patient and surgical related technical/
environment factors may also contribute to failure.?’” For
instance, among patient factors, male gender, smoking,
autoimmune disease and penicillin allergy showed a trend
towards greater failure rates.?$-30 Late-stage failure tends
to occur as a result of implant overloading, wear and
peri-implantitis.’!

Moreover, implant infection is the most serious issue
after surgery. Biomaterial centred infections (BCI) and
prosthetic implant infections (PIIs) have a significant con-
tribution in prosthetic implant failure and aseptic loosen-
ing3233 with the average rate 2%-5%.3* Host defence
mechanisms and current antibiotic treatments become
ineffective when bacterial biofilms build up.3>-3¢ However,
Ti is generally considered a very safe and highly biocom-
patible material that has had extensive clinical use for
many decades.

Surface properties

Albrektsson and Wennerberg?’ subdivided the implant sur-
face quality into three categories: mechanical properties,
topographical properties and physicochemical properties.
They conclude that these characteristics are related and by
altering any of these groups, the others will also be
affected. With Ti, altering the mechanical properties within
the physiological range is hard to achieve and so chemistry
and topography are the main focus.?’

Biological (in the bone forming sense) materials can be
roughly classified into three categories: (1) biotolerant
materials where a thin fibrous tissue interface is formed,
(2) bioinert materials, like Ti, that can have direct bone
contact under osteopermissive conditions; and (3) bioac-
tive materials like calcium phosphate ceramics which can
have high degree of direct contact bond with the surround-
ing bone which is believed to be due to the presence of free
calcium and phosphate at the implant interface.® More
recently, these have been re-categorized as first generation
(structural, biocompatible), for example, Ti, second gen-
eration (bioactive), for example, hydroxyapatite (HA),
bioglass and third generation (reproducible molecular con-
trol), for example, nanotopography.3”

Biocompatibility is important to prevent an immune
response and foreign body reaction when the material is
introduced into the human body.*° The primary interaction
between material and host starts with a thin interface zone,
which includes rapid protein adsorption and interaction
with the connective tissues. This first interaction is con-
trolled by physical and chemical properties such as rough-
ness, structure, defects and oxide thickness and is critical
for long-term implant success.o*!

In this review, we will discuss the importance of Ti sur-
face properties on the bioactivity of implants.

Surface wettability

Wettability is measured by contact angle measurement,
usually of water, at the solid/liquid interface while sur-
rounded by a gas phase or another liquid phase and pro-
vides gross surface characterization. A low contact angle
of less than 90° indicates a hydrophilic surface; the liquid
will subsequently spread over the surface. A large contact
angle of more than 90° signifies that the surface is hydro-
phobic leading to droplet of liquid forming on the inter-
face. However, this reaction is controlled by the molecular
interaction between the different phases.*2#3 Other factors
such as surface tension and surface energy are also deter-
mined by surface wettability.*

Liquids can interact with two different types of solid
surfaces: high and low energy solid surfaces. Metals, glass
and ceramics are examples of solid surfaces with high
energy (hard solids) where molecular liquids achieve com-
plete wetting on these solids. The weak solids like fluoro-
carbons and hydrocarbons have a low energy, where liquid
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(a) Anisotropic layered structure

(b) Isotropic uniform structure

Figure 1. The difference between anisotropic and isotropic surfaces. (a) Anisotropic surfaces have clear directionality, differ
considerably in roughness and the materials properties are not the same at all points or directions. (b) Isotropic surfaces have the
same topography independent of measuring direction and the physical property is the same at any point/direction through the

material.

molecules would take a very low energy to break them
providing a complete or partial wetting depending on the
liquid chosen.*>43

However, increasing the surface wettability may
enhance the fibrin adhesion and provide contact guidance
for osteoblast migration along the surface.*® Moreover,
any change in surface wettability will affect protein
adsorption which consequently changes cell adhesion
through integrins and non-integrin receptors.*’

Surface chemistry

The surface chemistry is an important factor in improving
the osseointegration. The chemistry of the surface will dic-
tate the interaction of cells with surface proteins in a num-
ber of ways: (1) chemical adsorption including covalent
bonds and ionic bonds, (2) electrostatic forces found in
electrokinetic potential or zeta potential, (3) hydrogen
bonds involved in hydrophilic groups, (4) hydrophobic
interaction and (5) van der Waals forces.*® It is known, for
example, that osteoblasts are sensitive to subtle differences
in surface chemistry.*?

For instance, the fluorine-modified implant surface
accelerated osseointegration in the early stage of healing
which improved the growth of peri-implant tissue,
enhanced the adhesion strength and influenced the osteo-
genesis gene level.3%3! Also, through control of the oxide
chemistry and surface charge, charged antimicrobials may
be applied to help fight potential infections.’?> Shibata
et al.>3 showed that the TiO formed on the Ti—Cl surface
enhanced cell extension and cell growth through a larger
adsorption of fibronectin (FN) compared with control,
while the TiCl, contributed to the antibacterial activity of
Ti—CL

Oxide thickness

Ti, in the presence of air or water, reacts with oxygen to
form a protective, chemically stable oxide layer that has

the capability to reform immediately after any disturbance.
This oxide layer gives the implant increased corrosion
resistance, a low rate of ion release and good biocompati-
bility via plasma protein interactions (e.g. fibrin, fibronec-
tin, vitronectin).®>*35 An interesting characteristic of the
oxide layer is that it can be induced to provide antibacterial
behaviour through light excitation without affecting mam-
malian cell cytocompatibility.’® For example, light irradia-
tion of amoxicillin gold nanoparticle composites (amoxi(@
AuNPs) showed a photo-antimicrobial effect on
Staphylococcus aureus.>” Furthermore, studies have shown
the importance of the oxide layer thickness in bone forma-
tion on implants where bone contact may improve via
increasing the oxide layer thickness.®

Surface roughness and nanostructure

Surface roughness has a vital role in bone healing and
enhancing the biomechanical properties by increasing the
mechanical retention (interdigitation) and providing good
stress distribution. Surface roughness can be divided into
three levels: macro-roughness (Ra scale around 10pm),
micro-roughness (Ra scale around 1 pm) and nano-rough-
ness (Ra scale<200nm). Ra is an arithmetic average of the
absolute values of vertical deviations from a mean
plane.46-%

Implant roughness can also be classified depending on
feature morphology such as concave textures, for example,
HA coating/titanium plasma spraying and convex textures,
for example, etching and blasting treatments.® Another
classification of implant roughness is the orientation of
surface irregularities such as isotropic surfaces where
topographies are independent of direction and anisotropic
surfaces that have a clear direction*¢! (Figure 1).

In cases of poor bone quality and reduced bone vol-
umes, surface roughness is often used in clinical situations
to help accelerate and enhance osseointegration and bone
interlocking.#¢ Previous studies have shown that the opti-
mal Ra needs to be around 1-1.5pum; otherwise, the
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implant fixation would be weakened.® Increasing surface
roughness can, however, via increased surface area,
increase the potential of microbial colonization and pro-
vide a shelter to bacteria, hence avoiding removal by anti-
biotics.26:03 However, previous studies have shown that
surface roughness below 0.2 pm was less likely to promote
bacterial adhesion as most bacteria are larger in size.665
The above studies, however, really only deal with topogra-
phy for mechanical integration rather than cellular integra-
tion (osseoinduction). Surface topography can indeed
influence the rate at which bone is formed next to the sur-
face, and perhaps more so than the surface oxide thickness
or microstructure® as will be further discussed.

There has been some success with improving secondary
cellular fixation, using topographical modifications. Most
techniques that are used to produce nanotopography on Ti
such as sand-blasting,®” acid etching,%%¢ cluster deposi-
tion,”® layer-by-layer assembly’! and anodization” gener-
ate less defined features, lacking precise control and
tunability of the topographies.” While such nanoscale fea-
tures may lead to changes in the cell number, size, focal
adhesion arrangements, cytoskeletal and nucleoskeletal
organization, reproducible changes may be hard to achieve
because of batch to batch variations. More precise control
over nanofeatures traditionally requires lithographical
techniques that are hard to use with materials such as Ti.™
However, techniques such as through mask anodization
have allowed reproducible features to be created.”75:76
Such surfaces can be used to produce highly reproducible
cell effects. These surfaces can reduce’ or increase cell
spreading and MSC differentiation in vivo or in vitro.”’-8!
Such precise nanotopographical tools will help to dissect
the rules of cell-topographical interactions and how they
can be useful for work with Ti more simply than using, for
example, roughness or random patterns.

Types of coating

There are three ways to change the physical, chemical and
mechanical properties of surfaces: (1) by adding a new
layer to the surface, (2) by changing the surface itself by
exposure to physical or chemical agents like plasma or wet
chemicals or (3) by subtraction or attrition process to mod-
ify the mechanical surface. However, to achieve the
nanoscale modifications it should be able to reach all the
topography device surface, change it to reach the commer-
cial scale to be finally industrially integrated.2-82-84

In mechanical modification, the changes are required to
improve the adhesion, bonding and bio-mineralization by
increasing the surface area.®®> Surface mechanical attrition
treatment (SMAT) is a novel technique developed to pro-
vide a surface roughness at the nanoscale. This increase in
the surface roughness leads to increases in the adhesion
energy which have a positive reflection on cellular
response.3¢37 The cons behind this technique is the flexibil-
ity limitation in controlling the intracellular response beyond

local adhesion energy.? There are three ways for chemical
modification for metal surfaces: (1) physiochemical adsorp-
tion, (2) molecule covalent binding and (3) peptide inclu-
sion into a carrier material. However, different methods
including anodization, oxidative, biochemical functionali-
zation, acid/alkaline treatment, chemical vapour and sol-gel
process can affect biologically active moieties onto the sur-
face by controlling the relative densities or arrangement that
in turn may have an effect on cell signalling.28%-%0 Physical
modification mainly involves the physical spraying of coat-
ing or atomic rearrangement with ion implantation.”! The
common techniques used to change the physical compo-
nents of the substrate include plasma and vapour deposition,
ion implantation, thermal oxidation and laser irradiation.
Plasma is the fourth type of matter that highly excites the
atoms, ions or radial species. The vacuum deposition is
using vacuum condensation of a thin material to coat the
substrate, while during the ion implantation, selected ions
can be deposited on the material surface. Moreover, the
involvement of temperature leads to alteration of the crystal
structure of the Ti oxide layer which generates a superficial
stress or changing in the previous surface nanostructure.?
Previous studies showed the effect of various nanosurface
modifications on enhancing osteoblast activity, spreading,
proliferation, differentiation and osteoconduction.?'-%7

There are three ways of coating: organic, inorganic and
combination of both. Organic coating such as polymers,
biomimetic and bioinspired films like a component of nat-
ural cell surroundings and inorganic components such as
calcium phosphate (CaP), HA, titanium oxide (TiO,) and
nitride coating.®? The combination coating is also divided
into many types: by their mode of action, type of biologi-
cal reagent incorporated with (e.g. antibiotics), type of
coating (e.g. biodegradable polymers, hydrogel or biocer-
amic), coating deposit (layer-by-layer, vacuum deposit or
electrophoresis) and the coating function. The antibacterial
combination coating was reported and discussed in detail
in previous study.’® Tobin,” in his review, discussed the
three types of combination device coating: (1) reduced
infection either by controlling the kinetics release or coat-
ing with low potential to induce microbial resistance, (2)
enhanced device integration or (3) reduced infection and
enhanced integration. A number of reviews have been pub-
lished on the combination of different coating on orthopae-
dic implants®$-191 and dental implants.*6-82

Moreover, implant coating must meet a number of sig-
nificant challenging requirements to achieve a successful
clinical implementation: for instance, a sufficient mechan-
ical integrity, minimization of the local/systemic cytotox-
icity and genotoxicity, sufficient amount of the
pharmaceutical or biologic agent in the excipient coating
matrix, optimization of diffusion kinetics that are not
impeded by attachment of proteins to the implant, broad
spectrum of antibiotics against biofilm formation without
indication a bacterial resistance, and for the technical
parts: the coating should be produced with a low coat, easy
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to manufacture, easy handling, long shelf life and ability to
sterilize using conventional sterilization techniques with-
out damaging the incorporated drug or biologic agent.
However, there is no current coating system that fulfils all
of these requirements.!%0

Nevertheless, due to the differences in cell variability
related to the species (rat, mouse or human) and cell type
(stem cell, osteoblast, etc.), the ability to assess a different
kind of coating on the cell structure and function could be
challenging. To address this, in the next section (Table 1),
we provide selected examples of the impact of different
types of coating (organic/non-organic, physical and chem-
ical coating) on Ti surfaces in vivo or in vitro studies.

Surface modification and bacteria

Ti implants are designed to last around 20-25years but
around 10% fail prematurely with the most common cause
being bacterial infection in the first year of implantation.!3!
Bacteria such as Staphylococcus aureus, Staphylococcus
epidermidis, Klebsiella pneumoniae and Pseudomonas
aeruginosa for orthopaedic implants and Prevotella inter-
media, Porphyromonas gingivalis and Fusobacterium
nucleatum for dental implants are understood to play a
major role in tissue inflammation and subsequent bone
recession through peri-implantitis, osteolysis and osteo-
myelitis leading to premature implant failure.!3%133

Many of these bacteria have the capability to form bio-
films which can potentially occur within hours of initial
bacteria attachment to an interface (Figure 2(a)). Primary
colonizers such as Streptococci attach and proliferate to
form microcolonies and secrete self-produced extracellu-
lar polymeric substances (EPS) such as proteins, extracel-
lular DNA and exopolysaccharides to form a protective
film or matrix. Once a surface has been populated, second-
ary colonizers, such as Porphyromonas gingivalis, are able
to adhere to the sessile cells within the biofilm via recep-
tors. Further aggregation, proliferation and EPS produc-
tion result in a mature, multi-species biofilm containing a
range of environments with varying nutrients and oxygen
levels, allowing the bacteria to persist for long periods on
the surface, causing chronic complications and becoming
resistant to antibiotic treatment.!34

One of the superior qualities of Ti is its ability to absorb
calcium, phosphate and serum proteins that are understood
to accelerate and support osseointegration. However, such
beneficial characteristics may also promote unfavourable
processes such as bacterial adhesion.!3?

As implants have no resident microbiota to provide
colonization resistance, they are susceptible to attachment
by incoming microbes. Ideally, a surface should be
designed to have selective activity against different cell
types, mammalian cells or bacterial cells. Antiadhesive
coatings have been created to repel bacteria from the sur-
face and prevent attachment, thus inhibiting biofilms at the

first stage. If this surface was then conversely encouraging
host stem cells to adhere, proliferate, mature and differen-
tiate, producing a continual cell layer before bacteria are
able attach to the surface, implant infection and biofilm
growth will be reduced or inhibited altogether (Figure
2(b)). However, it is important to note that the antiadhesive
coating may reduce the mammalian cell attachment; hence,
surface modifications combining antiadhesive polymers
with cell adhesive motifs (e.g. FN, RGD) would be the
ideal solution.!02.113,126,127

There are two arguments about the effect of surface
roughness on bacterial adhesion. The first scenario is that
more bacteria adhere as surface microscale roughness
increases due to the increased surface area that provides
more binding sites and protection. The other argument is
that increasing the surface roughness on the nanoscale may
provide an unfavourable situation for the bacteria to adhere
since the bacteria size is in microscale.

Regarding topography, however, after seminal reports
showing that high aspect ratio topographies can kill bacte-
ria, surfaces that can promote osteogenesis and prevent
infection are being sought.!36-143 The use of such high
aspect features has been demonstrated in Ti in several new
reports.!42143 In fact, it is becoming clear that both physical
and chemical parameters play a role in potentially control-
ling bacterial adhesion (Table 2).

Anti-bacterial, high aspect ratio topographies, in fact,
exist in nature. For example, cicada and dragonfly wings
have topography that has been shown to be able to disrupt
the bacterial membrane leading to cell lysis.!?¢ Chemical
and physical methods are now being developed to fabri-
cate such topographies on clinically relevant materials like
titanium, making the prospect of limiting implant infec-
tions while inside the body possible and reducing the rates
of revision surgery and antibiotic treatment.

A titanium alloy, Ti-6Al-4V, has been developed using
thermal oxidation to create a range of titanium dioxide
nanostructures and through fluorescence studies, scanning
electron microscope (SEM), transmission electron micro-
scope (TEM) and focused ion beam scanning eclectron
microscopy (FIB-SEM) has been shown to disrupt the bac-
terial membranes, ultimately leading to 40% E. coli cell
death after 2-h incubation on the surface.!¢:162 Furthermore,
previous studies showed that the TiO, nanowires interact
with the lipopolysaccharide and proteins, which are held
together by electrostatic interactions with divalent cations.
These interactions are essential to stabilize the outer mem-
brane helping the TiO, nanowires to form a molecular
linkage at the cell surface allowing it to disturb bacteria
membrane function which lead to the lysis of the bacteria.
However, this is not the case in Gram-positive bacteria,
where no antimicrobial activity has been observed as there
might be no interaction of TiO, nanowires with lipoteichoic
acid that is present in the outer membrane of Gram-positive
bacteria. 63165
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Figure 2. (a) The process of biofilm formation. Initially, cells attach, proliferate and coadhere to form microcolonies. They then
continue to expand in similar fashion, together with production of EPS, to form a mature biofilm community. (b) Two possible
ways to reduce implant infection: (1) provide no place for bacteria due to a continuous cell layer on the substrate and (2) use an

antiadhesive coating that prevent bacterial attachment.

Hydrothermal etching has been used to create topogra-
phy in the micron range to produce a hierarchically ordered
array shown to physically rupture S. aureus and P. aerugi-
nosa cells leading to loss of viability seen in P. aeruginosa;
47.1% death compared to S. aureus with 19.8% death after
18 h of incubation.'%® A chlorine base etching process has
also been reported to form anisotropic nanostructures on
the surface of titanium with a height of approximately
1 um. The morphology of P. aeruginosa and S. aureus was
significantly altered which correlated well with fluores-
cence studies showing high bactericidal activity for the
Gram-negative bacteria with 98%+2% for P. aeruginosa
and 95%+5% for E. coli after 4h. For the Gram-positive
bacteria S. aureus, there was less killing, with 22%+8%
non-viable cells after 4h, but this increased to 76%+4%
after 24 h.13°

Alkaline hydrothermal processes use sodium hydroxide,
high temperatures and pressures to form titanium dioxide
nano- and microscale topography on titanium substrates.
Using electron microscopy, bacterial cell envelopes have
been shown to be pierced by these spikes.!¢! Using fluores-
cence microscopy, loss of viability has been reported when
in contact with this nanotopography.'41-142167 Diu et al.!¢?
reported that motile bacteria (P. aeruginosa, E. coli and B.
subtilis) were more liable to lysis with more than 50% cell
death in the first hour while non-motile bacteria (S. aureus,
E. faecalis and K. pneumoniae) experienced less than 5%.

Not only has membrane disruption been seen but anti-bio-
film activity has also been shown. Different structures of
nanotopography have also been formed using alkaline
hydrothermal method, a ‘spear-type’ topography and
‘pocket-type’ topography. After 6days, there was half as
much growth on the spear-type and five times less on the
pocket-type compared to a control of flat-polished tita-
nium.'"*! Tsimbouri et al.'*? reported ~30% bacterial death
after 1-h incubation of P. aeruginosa, which increased to
58% after 18 h incubation.

Along with having a bactericidal surface, it is important
to ensure mammalian cells are able to attach, proliferate,
mature and differentiate into desired lineages such as osteo-
blasts to promote successful osseointegration. Research sug-
gests that the nanotopography is able to support osteoblast
maturation through expression of osteogenic marker proteins
such as Runt-related transcription factor (RUNX-2), BMP2,
osteocalcin (OCN) and osteopontin (OPN),139:142,143.166.167

To improve osteointegration, various coatings have
been utilized; for example, integrin-binding peptidic
ligands have been functionalized onto nanotopographies
and shown to significantly increase human mesenchymal
stem cells (hMSCs) surface area and decrease the cell’s
circularity evidence of improving surface interaction.'#?

Table 2 highlights various studies where titanium sur-
faces have been modified to reduce bacterial adhesion.
Coatings with metals such as copper, gallium and silver
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with well-documented antimicrobial properties have
shown to reduce biofilm formation of various bacte-
ria.104144.147.149-151 ~ Antibiotics such as gentamicin are
widely used in the treatment of both Gram-positive and
Gram-negative bacteria and have been shown to have
potential to be used as a coating on titanium surfaces.!4!
Antimicrobial peptides (AMPs) are recognized as promis-
ing candidates as alternatives for antibiotics due to the low
chance of resistance being induced. Various AMPs have
been functionalized on titanium such as HHC-36, GL13K
and TBP-1 and have shown potential by reducing biofilm
formation of both Gram-positive and Gram-negative
bacteria.!51-153

Conclusion

The main aim of bone implant industry is to mimic the
normal function of tissue by enhancing the implant bio-
compatibility and reduce the bacterial adhesion while pro-
viding mechanical support. Recently, the coating of Ti
implants has generated much interest in order to improve
osseointegration and prevent unfavourable tissue reactions
such as infection, inflammation and the foreign body
response. Besides that, coated implants must be shown to
be safe, efficient and cost-effective prior to subsequent
adoption and widespread usage. Osseointegration/biofilm
reduction are required goals; coating the implant with
organic/inorganic components, changing the surface
topography, and so on have been shown to be efficacious.
In addition, the coating composition, location, thickness,
uniformity and other physico-chemical variables are
important to determine the efficacy and validity of the dif-
ferent coating.

This article aims to provide an overview of the impact
of different physical and chemical modifications on Ti sur-
face topography. Such alterations can potentially be used
to enhance bone formation, provide bacterial growth inhi-
bition or even perhaps both. That implant surface charac-
teristics including surface roughness, surface chemistry,
nanotopography to list a few, have a significant influence
on osteogenesis and microbiota inhibition is emerging.
Previous studies have implicated high aspect ratio nanofea-
tures with bactericidal potential. While an ideal implant
would be both osseoinductive and antimicrobial, many
aspects of these interactions require more investigation to
resolve areas of uncertainty surrounding the interaction
between these surfaces and MSCs when combined with
bacteria. To conclude, the potential of Ti surface modifica-
tions is largely due to the ageing population placing pres-
sure on orthopaedic treatments and Ti being the gold
standard for fabrication on dental or orthopaedic implants.
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