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Introduction

Titanium (Ti) and its alloys are commonly used materials 
in orthopaedic and dental implants due to their mechanical 
and chemical properties; these include high strength to 
weight ratio and high yield and fatigue strength along with 
a relatively low Young’s modulus counteracting the effects 
of stress shielding. An instantaneously forming passive 
oxide layer leads to corrosion resistance and biocompati-
bility.1–5 Moreover, Ti is amenable to alterations in physi-
cal and chemical properties, including changing the surface 
oxide composition, thickness and topography, together 
making Ti a suitable material for enhancement via surface 
modification.6 The biocompatibility of Ti and its alloys are 
related to the capacity of the Ti oxide layer to react with 
water ions and serum proteins as well as the resistance to 
corrosion that provided by the oxide layer.7–10

Scaffold surface features need to be biocompatible, bio-
active and perhaps biodegradable as they are replaced by 
natural tissue during the regenerative process. Replicating 
the key structures of the extracellular matrix (ECM) and 

providing stem cell environments are powerful bioactive 
strategies that material scientists can copy and exploit.11 
Although Ti materials have many favourable properties, 
there are known potential shortcomings. For example, alu-
minium in Ti alloys may be associated with neurological 
disorders.12 In addition, intra-articular injection of Ti diox-
ide (TiO2) nanoparticles in rats has been noted to cause 
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toxicological effects in lungs with follicular lymphoid 
hyperplasia and inflammatory cells aggregated around the 
bronchia.13 Moreover, ionic Ti may have a mutagenic 
effect on cells either directly by damaging DNA via free 
radicals or indirectly by inhibiting the DNA repair14 and 
may also induce some allergic reactions.4,15 The biological 
response to orthopaedic and dental implants is determined 
by the physical and chemical features of the implant sur-
face. These include surface topography, surface free 
energy, oxide thickness and oxide composition. The inter-
action between cells and the interface will be affected by 
one or more of these factors and any change in one will 
affect the other parameters.16–19 Surface topography has 
the ability to regulate the cell behaviour in a reproducible 
manner.20 Furthermore, advances in topographical fabrica-
tion are making nanoscale topographical features achiev-
able in a large scale on more complex materials 
(traditionally only flat surfaces and small surface areas 
have been able to be patterned at the nanoscale).21 The use 
of topography to guide mesenchymal stem cells (MSCs) 
may, in fact, play a key role in bone tissue engineering as, 
unlike chemical and mechanical alterations, topographical 
modifications do not affect the bulk properties of materials 
and orthopaedic materials need to be able to support load. 
The stem cells’ ability to adhere and spread into specific 
surfaces has shown a dramatic effect in cellular develop-
ment.22 Osseointegration is the direct contact between 
bone and the implant, with histological evidence suggest-
ing that new bone is forming around the inert object. The 
quality and amount of osseointegrated bone around the 
implant, in addition to other factors such as the degree of 
inflammation, an excessive force, may affect their stability 
and consequently their failure rates.23 Osseointegration 
and subsequent mineralization is dependent on the initial 
adhesion of fibrin in blood-mediated osseointegration of 
osteoblasts or MSCs onto the implant surface.12,24,25 
Failure to achieve osseointegration will lead to premature 
implant failure and this integration is required to be main-
tained throughout the implant’s lifespan to ensure longev-
ity26 although patient and surgical related technical/
environment factors may also contribute to failure.27 For 
instance, among patient factors, male gender, smoking, 
autoimmune disease and penicillin allergy showed a trend 
towards greater failure rates.28–30 Late-stage failure tends 
to occur as a result of implant overloading, wear and 
peri-implantitis.31

Moreover, implant infection is the most serious issue 
after surgery. Biomaterial centred infections (BCI) and 
prosthetic implant infections (PIIs) have a significant con-
tribution in prosthetic implant failure and aseptic loosen-
ing32,33 with the average rate 2%–5%.34 Host defence 
mechanisms and current antibiotic treatments become 
ineffective when bacterial biofilms build up.35,36 However, 
Ti is generally considered a very safe and highly biocom-
patible material that has had extensive clinical use for 
many decades.

Surface properties

Albrektsson and Wennerberg37 subdivided the implant sur-
face quality into three categories: mechanical properties, 
topographical properties and physicochemical properties. 
They conclude that these characteristics are related and by 
altering any of these groups, the others will also be 
affected. With Ti, altering the mechanical properties within 
the physiological range is hard to achieve and so chemistry 
and topography are the main focus.37

Biological (in the bone forming sense) materials can be 
roughly classified into three categories: (1) biotolerant 
materials where a thin fibrous tissue interface is formed; 
(2) bioinert materials, like Ti, that can have direct bone 
contact under osteopermissive conditions; and (3) bioac-
tive materials like calcium phosphate ceramics which can 
have high degree of direct contact bond with the surround-
ing bone which is believed to be due to the presence of free 
calcium and phosphate at the implant interface.38 More 
recently, these have been re-categorized as first generation 
(structural, biocompatible), for example, Ti, second gen-
eration (bioactive), for example, hydroxyapatite (HA), 
bioglass and third generation (reproducible molecular con-
trol), for example, nanotopography.39

Biocompatibility is important to prevent an immune 
response and foreign body reaction when the material is 
introduced into the human body.40 The primary interaction 
between material and host starts with a thin interface zone, 
which includes rapid protein adsorption and interaction 
with the connective tissues. This first interaction is con-
trolled by physical and chemical properties such as rough-
ness, structure, defects and oxide thickness and is critical 
for long-term implant success.6,41

In this review, we will discuss the importance of Ti sur-
face properties on the bioactivity of implants.

Surface wettability

Wettability is measured by contact angle measurement, 
usually of water, at the solid/liquid interface while sur-
rounded by a gas phase or another liquid phase and pro-
vides gross surface characterization. A low contact angle 
of less than 90° indicates a hydrophilic surface; the liquid 
will subsequently spread over the surface. A large contact 
angle of more than 90° signifies that the surface is hydro-
phobic leading to droplet of liquid forming on the inter-
face. However, this reaction is controlled by the molecular 
interaction between the different phases.42,43 Other factors 
such as surface tension and surface energy are also deter-
mined by surface wettability.44

Liquids can interact with two different types of solid 
surfaces: high and low energy solid surfaces. Metals, glass 
and ceramics are examples of solid surfaces with high 
energy (hard solids) where molecular liquids achieve com-
plete wetting on these solids. The weak solids like fluoro-
carbons and hydrocarbons have a low energy, where liquid 
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molecules would take a very low energy to break them 
providing a complete or partial wetting depending on the 
liquid chosen.42,45

However, increasing the surface wettability may 
enhance the fibrin adhesion and provide contact guidance 
for osteoblast migration along the surface.46 Moreover, 
any change in surface wettability will affect protein 
adsorption which consequently changes cell adhesion 
through integrins and non-integrin receptors.47

Surface chemistry

The surface chemistry is an important factor in improving 
the osseointegration. The chemistry of the surface will dic-
tate the interaction of cells with surface proteins in a num-
ber of ways: (1) chemical adsorption including covalent 
bonds and ionic bonds, (2) electrostatic forces found in 
electrokinetic potential or zeta potential, (3) hydrogen 
bonds involved in hydrophilic groups, (4) hydrophobic 
interaction and (5) van der Waals forces.48 It is known, for 
example, that osteoblasts are sensitive to subtle differences 
in surface chemistry.49

For instance, the fluorine-modified implant surface 
accelerated osseointegration in the early stage of healing 
which improved the growth of peri-implant tissue, 
enhanced the adhesion strength and influenced the osteo-
genesis gene level.50,51 Also, through control of the oxide 
chemistry and surface charge, charged antimicrobials may 
be applied to help fight potential infections.52 Shibata 
et al.53 showed that the TiO formed on the Ti–Cl surface 
enhanced cell extension and cell growth through a larger 
adsorption of fibronectin (FN) compared with control, 
while the TiCl3 contributed to the antibacterial activity of 
Ti–Cl.

Oxide thickness

Ti, in the presence of air or water, reacts with oxygen to 
form a protective, chemically stable oxide layer that has 

the capability to reform immediately after any disturbance. 
This oxide layer gives the implant increased corrosion 
resistance, a low rate of ion release and good biocompati-
bility via plasma protein interactions (e.g. fibrin, fibronec-
tin, vitronectin).6,54,55 An interesting characteristic of the 
oxide layer is that it can be induced to provide antibacterial 
behaviour through light excitation without affecting mam-
malian cell cytocompatibility.56 For example, light irradia-
tion of amoxicillin gold nanoparticle composites (amoxi@
AuNPs) showed a photo-antimicrobial effect on 
Staphylococcus aureus.57 Furthermore, studies have shown 
the importance of the oxide layer thickness in bone forma-
tion on implants where bone contact may improve via 
increasing the oxide layer thickness.58

Surface roughness and nanostructure

Surface roughness has a vital role in bone healing and 
enhancing the biomechanical properties by increasing the 
mechanical retention (interdigitation) and providing good 
stress distribution. Surface roughness can be divided into 
three levels: macro-roughness (Ra scale around 10 µm), 
micro-roughness (Ra scale around 1 µm) and nano-rough-
ness (Ra scale < 200 nm). Ra is an arithmetic average of the 
absolute values of vertical deviations from a mean 
plane.46,59

Implant roughness can also be classified depending on 
feature morphology such as concave textures, for example, 
HA coating/titanium plasma spraying and convex textures, 
for example, etching and blasting treatments.60 Another 
classification of implant roughness is the orientation of 
surface irregularities such as isotropic surfaces where 
topographies are independent of direction and anisotropic 
surfaces that have a clear direction4,61 (Figure 1).

In cases of poor bone quality and reduced bone vol-
umes, surface roughness is often used in clinical situations 
to help accelerate and enhance osseointegration and bone 
interlocking.46 Previous studies have shown that the opti-
mal Ra needs to be around 1–1.5 µm; otherwise, the 

Figure 1.  The difference between anisotropic and isotropic surfaces. (a) Anisotropic surfaces have clear directionality, differ 
considerably in roughness and the materials properties are not the same at all points or directions. (b) Isotropic surfaces have the 
same topography independent of measuring direction and the physical property is the same at any point/direction through the 
material.
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implant fixation would be weakened.62 Increasing surface 
roughness can, however, via increased surface area, 
increase the potential of microbial colonization and pro-
vide a shelter to bacteria, hence avoiding removal by anti-
biotics.26,63 However, previous studies have shown that 
surface roughness below 0.2 µm was less likely to promote 
bacterial adhesion as most bacteria are larger in size.64,65 
The above studies, however, really only deal with topogra-
phy for mechanical integration rather than cellular integra-
tion (osseoinduction). Surface topography can indeed 
influence the rate at which bone is formed next to the sur-
face, and perhaps more so than the surface oxide thickness 
or microstructure66 as will be further discussed.

There has been some success with improving secondary 
cellular fixation, using topographical modifications. Most 
techniques that are used to produce nanotopography on Ti 
such as sand-blasting,67 acid etching,68,69 cluster deposi-
tion,70 layer-by-layer assembly71 and anodization72 gener-
ate less defined features, lacking precise control and 
tunability of the topographies.73 While such nanoscale fea-
tures may lead to changes in the cell number, size, focal 
adhesion arrangements, cytoskeletal and nucleoskeletal 
organization, reproducible changes may be hard to achieve 
because of batch to batch variations. More precise control 
over nanofeatures traditionally requires lithographical 
techniques that are hard to use with materials such as Ti.74 
However, techniques such as through mask anodization 
have allowed reproducible features to be created.73,75,76 
Such surfaces can be used to produce highly reproducible 
cell effects. These surfaces can reduce73 or increase cell 
spreading and MSC differentiation in vivo or in vitro.77–81 
Such precise nanotopographical tools will help to dissect 
the rules of cell-topographical interactions and how they 
can be useful for work with Ti more simply than using, for 
example, roughness or random patterns.

Types of coating

There are three ways to change the physical, chemical and 
mechanical properties of surfaces: (1) by adding a new 
layer to the surface, (2) by changing the surface itself by 
exposure to physical or chemical agents like plasma or wet 
chemicals or (3) by subtraction or attrition process to mod-
ify the mechanical surface. However, to achieve the 
nanoscale modifications it should be able to reach all the 
topography device surface, change it to reach the commer-
cial scale to be finally industrially integrated.2,82–84

In mechanical modification, the changes are required to 
improve the adhesion, bonding and bio-mineralization by 
increasing the surface area.85 Surface mechanical attrition 
treatment (SMAT) is a novel technique developed to pro-
vide a surface roughness at the nanoscale. This increase in 
the surface roughness leads to increases in the adhesion 
energy which have a positive reflection on cellular 
response.86,87 The cons behind this technique is the flexibil-
ity limitation in controlling the intracellular response beyond 

local adhesion energy.2 There are three ways for chemical 
modification for metal surfaces: (1) physiochemical adsorp-
tion, (2) molecule covalent binding and (3) peptide inclu-
sion into a carrier material. However, different methods 
including anodization, oxidative, biochemical functionali-
zation, acid/alkaline treatment, chemical vapour and sol-gel 
process can affect biologically active moieties onto the sur-
face by controlling the relative densities or arrangement that 
in turn may have an effect on cell signalling.2,88–90 Physical 
modification mainly involves the physical spraying of coat-
ing or atomic rearrangement with ion implantation.91 The 
common techniques used to change the physical compo-
nents of the substrate include plasma and vapour deposition, 
ion implantation, thermal oxidation and laser irradiation. 
Plasma is the fourth type of matter that highly excites the 
atoms, ions or radial species. The vacuum deposition is 
using vacuum condensation of a thin material to coat the 
substrate, while during the ion implantation, selected ions 
can be deposited on the material surface. Moreover, the 
involvement of temperature leads to alteration of the crystal 
structure of the Ti oxide layer which generates a superficial 
stress or changing in the previous surface nanostructure.2 
Previous studies showed the effect of various nanosurface 
modifications on enhancing osteoblast activity, spreading, 
proliferation, differentiation and osteoconduction.91–97

There are three ways of coating: organic, inorganic and 
combination of both. Organic coating such as polymers, 
biomimetic and bioinspired films like a component of nat-
ural cell surroundings and inorganic components such as 
calcium phosphate (CaP), HA, titanium oxide (TiO2) and 
nitride coating.82 The combination coating is also divided 
into many types: by their mode of action, type of biologi-
cal reagent incorporated with (e.g. antibiotics), type of 
coating (e.g. biodegradable polymers, hydrogel or biocer-
amic), coating deposit (layer-by-layer, vacuum deposit or 
electrophoresis) and the coating function. The antibacterial 
combination coating was reported and discussed in detail 
in previous study.98 Tobin,99 in his review, discussed the 
three types of combination device coating: (1) reduced 
infection either by controlling the kinetics release or coat-
ing with low potential to induce microbial resistance, (2) 
enhanced device integration or (3) reduced infection and 
enhanced integration. A number of reviews have been pub-
lished on the combination of different coating on orthopae-
dic implants98–101 and dental implants.46,82

Moreover, implant coating must meet a number of sig-
nificant challenging requirements to achieve a successful 
clinical implementation: for instance, a sufficient mechan-
ical integrity, minimization of the local/systemic cytotox-
icity and genotoxicity, sufficient amount of the 
pharmaceutical or biologic agent in the excipient coating 
matrix, optimization of diffusion kinetics that are not 
impeded by attachment of proteins to the implant, broad 
spectrum of antibiotics against biofilm formation without 
indication a bacterial resistance, and for the technical 
parts: the coating should be produced with a low coat, easy 
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to manufacture, easy handling, long shelf life and ability to 
sterilize using conventional sterilization techniques with-
out damaging the incorporated drug or biologic agent. 
However, there is no current coating system that fulfils all 
of these requirements.100

Nevertheless, due to the differences in cell variability 
related to the species (rat, mouse or human) and cell type 
(stem cell, osteoblast, etc.), the ability to assess a different 
kind of coating on the cell structure and function could be 
challenging. To address this, in the next section (Table 1), 
we provide selected examples of the impact of different 
types of coating (organic/non-organic, physical and chem-
ical coating) on Ti surfaces in vivo or in vitro studies.

Surface modification and bacteria

Ti implants are designed to last around 20–25 years but 
around 10% fail prematurely with the most common cause 
being bacterial infection in the first year of implantation.131 
Bacteria such as Staphylococcus aureus, Staphylococcus 
epidermidis, Klebsiella pneumoniae and Pseudomonas 
aeruginosa for orthopaedic implants and Prevotella inter-
media, Porphyromonas gingivalis and Fusobacterium 
nucleatum for dental implants are understood to play a 
major role in tissue inflammation and subsequent bone 
recession through peri-implantitis, osteolysis and osteo-
myelitis leading to premature implant failure.132,133

Many of these bacteria have the capability to form bio-
films which can potentially occur within hours of initial 
bacteria attachment to an interface (Figure 2(a)). Primary 
colonizers such as Streptococci attach and proliferate to 
form microcolonies and secrete self-produced extracellu-
lar polymeric substances (EPS) such as proteins, extracel-
lular DNA and exopolysaccharides to form a protective 
film or matrix. Once a surface has been populated, second-
ary colonizers, such as Porphyromonas gingivalis, are able 
to adhere to the sessile cells within the biofilm via recep-
tors. Further aggregation, proliferation and EPS produc-
tion result in a mature, multi-species biofilm containing a 
range of environments with varying nutrients and oxygen 
levels, allowing the bacteria to persist for long periods on 
the surface, causing chronic complications and becoming 
resistant to antibiotic treatment.134

One of the superior qualities of Ti is its ability to absorb 
calcium, phosphate and serum proteins that are understood 
to accelerate and support osseointegration. However, such 
beneficial characteristics may also promote unfavourable 
processes such as bacterial adhesion.135

As implants have no resident microbiota to provide 
colonization resistance, they are susceptible to attachment 
by incoming microbes. Ideally, a surface should be 
designed to have selective activity against different cell 
types, mammalian cells or bacterial cells. Antiadhesive 
coatings have been created to repel bacteria from the sur-
face and prevent attachment, thus inhibiting biofilms at the 

first stage. If this surface was then conversely encouraging 
host stem cells to adhere, proliferate, mature and differen-
tiate, producing a continual cell layer before bacteria are 
able attach to the surface, implant infection and biofilm 
growth will be reduced or inhibited altogether (Figure 
2(b)). However, it is important to note that the antiadhesive 
coating may reduce the mammalian cell attachment; hence, 
surface modifications combining antiadhesive polymers 
with cell adhesive motifs (e.g. FN, RGD) would be the 
ideal solution.102,113,126,127

There are two arguments about the effect of surface 
roughness on bacterial adhesion. The first scenario is that 
more bacteria adhere as surface microscale roughness 
increases due to the increased surface area that provides 
more binding sites and protection. The other argument is 
that increasing the surface roughness on the nanoscale may 
provide an unfavourable situation for the bacteria to adhere 
since the bacteria size is in microscale.

Regarding topography, however, after seminal reports 
showing that high aspect ratio topographies can kill bacte-
ria, surfaces that can promote osteogenesis and prevent 
infection are being sought.136–143 The use of such high 
aspect features has been demonstrated in Ti in several new 
reports.142,143 In fact, it is becoming clear that both physical 
and chemical parameters play a role in potentially control-
ling bacterial adhesion (Table 2).

Anti-bacterial, high aspect ratio topographies, in fact, 
exist in nature. For example, cicada and dragonfly wings 
have topography that has been shown to be able to disrupt 
the bacterial membrane leading to cell lysis.136 Chemical 
and physical methods are now being developed to fabri-
cate such topographies on clinically relevant materials like 
titanium, making the prospect of limiting implant infec-
tions while inside the body possible and reducing the rates 
of revision surgery and antibiotic treatment.

A titanium alloy, Ti-6Al-4V, has been developed using 
thermal oxidation to create a range of titanium dioxide 
nanostructures and through fluorescence studies, scanning 
electron microscope (SEM), transmission electron micro-
scope (TEM) and focused ion beam scanning electron 
microscopy (FIB-SEM) has been shown to disrupt the bac-
terial membranes, ultimately leading to 40% E. coli cell 
death after 2-h incubation on the surface.161,162 Furthermore, 
previous studies showed that the TiO2 nanowires interact 
with the lipopolysaccharide and proteins, which are held 
together by electrostatic interactions with divalent cations. 
These interactions are essential to stabilize the outer mem-
brane helping the TiO2 nanowires to form a molecular 
linkage at the cell surface allowing it to disturb bacteria 
membrane function which lead to the lysis of the bacteria. 
However, this is not the case in Gram-positive bacteria, 
where no antimicrobial activity has been observed as there 
might be no interaction of TiO2 nanowires with lipoteichoic 
acid that is present in the outer membrane of Gram-positive 
bacteria.163–165
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Hydrothermal etching has been used to create topogra-
phy in the micron range to produce a hierarchically ordered 
array shown to physically rupture S. aureus and P. aerugi-
nosa cells leading to loss of viability seen in P. aeruginosa; 
47.1% death compared to S. aureus with 19.8% death after 
18 h of incubation.166 A chlorine base etching process has 
also been reported to form anisotropic nanostructures on 
the surface of titanium with a height of approximately 
1 µm. The morphology of P. aeruginosa and S. aureus was 
significantly altered which correlated well with fluores-
cence studies showing high bactericidal activity for the 
Gram-negative bacteria with 98% ± 2% for P. aeruginosa 
and 95% ± 5% for E. coli after 4 h. For the Gram-positive 
bacteria S. aureus, there was less killing, with 22% ± 8% 
non-viable cells after 4 h, but this increased to 76% ± 4% 
after 24 h.139

Alkaline hydrothermal processes use sodium hydroxide, 
high temperatures and pressures to form titanium dioxide 
nano- and microscale topography on titanium substrates. 
Using electron microscopy, bacterial cell envelopes have 
been shown to be pierced by these spikes.161 Using fluores-
cence microscopy, loss of viability has been reported when 
in contact with this nanotopography.141,142,167 Diu et al.167 
reported that motile bacteria (P. aeruginosa, E. coli and B. 
subtilis) were more liable to lysis with more than 50% cell 
death in the first hour while non-motile bacteria (S. aureus, 
E. faecalis and K. pneumoniae) experienced less than 5%. 

Not only has membrane disruption been seen but anti-bio-
film activity has also been shown. Different structures of 
nanotopography have also been formed using alkaline 
hydrothermal method, a ‘spear-type’ topography and 
‘pocket-type’ topography. After 6 days, there was half as 
much growth on the spear-type and five times less on the 
pocket-type compared to a control of flat-polished tita-
nium.141 Tsimbouri et al.142 reported ~30% bacterial death 
after 1-h incubation of P. aeruginosa, which increased to 
58% after 18 h incubation.

Along with having a bactericidal surface, it is important 
to ensure mammalian cells are able to attach, proliferate, 
mature and differentiate into desired lineages such as osteo-
blasts to promote successful osseointegration. Research sug-
gests that the nanotopography is able to support osteoblast 
maturation through expression of osteogenic marker proteins 
such as Runt-related transcription factor (RUNX-2), BMP2, 
osteocalcin (OCN) and osteopontin (OPN).139,142,143,166,167

To improve osteointegration, various coatings have 
been utilized; for example, integrin-binding peptidic 
ligands have been functionalized onto nanotopographies 
and shown to significantly increase human mesenchymal 
stem cells (hMSCs) surface area and decrease the cell’s 
circularity evidence of improving surface interaction.143

Table 2 highlights various studies where titanium sur-
faces have been modified to reduce bacterial adhesion. 
Coatings with metals such as copper, gallium and silver 

Figure 2.  (a) The process of biofilm formation. Initially, cells attach, proliferate and coadhere to form microcolonies. They then 
continue to expand in similar fashion, together with production of EPS, to form a mature biofilm community. (b) Two possible 
ways to reduce implant infection: (1) provide no place for bacteria due to a continuous cell layer on the substrate and (2) use an 
antiadhesive coating that prevent bacterial attachment.
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with well-documented antimicrobial properties have 
shown to reduce biofilm formation of various bacte-
ria.104,144,147,149–151 Antibiotics such as gentamicin are 
widely used in the treatment of both Gram-positive and 
Gram-negative bacteria and have been shown to have 
potential to be used as a coating on titanium surfaces.141 
Antimicrobial peptides (AMPs) are recognized as promis-
ing candidates as alternatives for antibiotics due to the low 
chance of resistance being induced. Various AMPs have 
been functionalized on titanium such as HHC-36, GL13K 
and TBP-1 and have shown potential by reducing biofilm 
formation of both Gram-positive and Gram-negative 
bacteria.151–153

Conclusion

The main aim of bone implant industry is to mimic the 
normal function of tissue by enhancing the implant bio-
compatibility and reduce the bacterial adhesion while pro-
viding mechanical support. Recently, the coating of Ti 
implants has generated much interest in order to improve 
osseointegration and prevent unfavourable tissue reactions 
such as infection, inflammation and the foreign body 
response. Besides that, coated implants must be shown to 
be safe, efficient and cost-effective prior to subsequent 
adoption and widespread usage. Osseointegration/biofilm 
reduction are required goals; coating the implant with 
organic/inorganic components, changing the surface 
topography, and so on have been shown to be efficacious. 
In addition, the coating composition, location, thickness, 
uniformity and other physico-chemical variables are 
important to determine the efficacy and validity of the dif-
ferent coating.

This article aims to provide an overview of the impact 
of different physical and chemical modifications on Ti sur-
face topography. Such alterations can potentially be used 
to enhance bone formation, provide bacterial growth inhi-
bition or even perhaps both. That implant surface charac-
teristics including surface roughness, surface chemistry, 
nanotopography to list a few, have a significant influence 
on osteogenesis and microbiota inhibition is emerging. 
Previous studies have implicated high aspect ratio nanofea-
tures with bactericidal potential. While an ideal implant 
would be both osseoinductive and antimicrobial, many 
aspects of these interactions require more investigation to 
resolve areas of uncertainty surrounding the interaction 
between these surfaces and MSCs when combined with 
bacteria. To conclude, the potential of Ti surface modifica-
tions is largely due to the ageing population placing pres-
sure on orthopaedic treatments and Ti being the gold 
standard for fabrication on dental or orthopaedic implants.
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