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Abstract

The new generation of post-genomic targets, such as protein-protein interactions (PPIs), often 

require new chemotypes not well represented in current compound libraries. This is one reason for 

why traditional high throughput screening (HTS) approaches are not more successful in delivering 

medicinal chemistry starting points for PPIs. In silico screening methods of an expanded chemical 

space are then potential alternatives for developing novel chemical probes to modulate PPIs. In 

this review, we report on the state-of-the-art pipelines for virtual screening, emphasizing 

prospectively validated methods capable of addressing the challenge of drugging difficult targets 

in the human interactome. Collectively, we show that optimal strategies for structure based virtual 

screening vary depending on receptor structure and degree of flexibility.

Introduction

Small molecules remain an available and increasingly diverse source for new and repurposed 

drug compounds. As computational resources and algorithm quality have increased, 

Computer-Aided Drug Design (CADD) has become an integral part of the drug discovery 

process. With massive compound libraries available[1–3] and the ever increasing quantity 

and quality of receptor-ligand structures[4] and other biological data, more efficient 

algorithms and novel techniques will become increasingly necessary to take advantage of 

new data. In this review, we will discuss advances in computational drug discovery, 

including increased chemical diversity and virtual screening technologies.

Current libraries of compounds used for screening are mostly derived from historical 

medicinal-chemistry efforts by pharmaceutical companies. Thus, chemical phenotypes, or 

“chemotypes”, are dominated by past drug-discovery research into kinases, G-protein-

coupled receptors, enzymes and other targets traditionally considered druggable[2,5]. New 

targets, such as protein-protein interactions, often require new chemotypes that are poorly 

sampled in chemical libraries[6]. Thus, expanding the diversity of compound libraries is 
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essential in order to identify new chemical probes that could address the chemotypes 

required for new targets[7].

Virtual small-molecule libraries provide access to an arbitrarily large and potentially more 

diverse chemical space. However, in order to be useful, these libraries must not only be 

available or readily synthesizable but also searchable for compounds likely to bind to the 

target. Many valuable technologies both commercial and open access exist to perform 

structure-based virtual screening of commercially available compounds[3,7,8]. Of note, the 

Dömling and Camacho labs have recently developed breakthrough technologies that allow 

for drug discovery collaboration efforts to be performed in real time by screening millions of 

compound in seconds[7]. These open access tools are not only capable of performing 

pharmacophore-based virtual screening of commercially available compounds[3], but can 

also screen chemical libraries specially designed to disrupt protein-protein interactions 

(PPIs)[7]. The latter are a target class that has proven to be especially difficult to drug using 

traditional libraries. These anchor-biased libraries consist of multicomponent reactions 

(MCR)-derived compounds. MCR chemistry (“one step, one-pot”)[9] is much faster than 

traditional multistep sequential synthesis, allowing for the timely experimental verification 

or falsification of virtual compounds[7].

Critical in virtual screening is the prediction of accurate poses and the enrichment of active 

compounds. When evaluating ranking performance of new virtual screening methods, high 

correlation values between the predicted ranking of compounds by affinity and the actual 

rankings are commonly seen when evaluating on known targets[10]. However, these results 

don't stack up when methods are tested on prospective data sets, even when ample structural 

information is available[11,12]. In this review we discuss recent advances in both the 

software and strategies used for CADD. Much of these improvements has more to do with 

tuning the screening strategy to the type of receptor structure, flexibility, and cofactors than 

the specific software platform or scoring function.

Recent advances in virtual screening strategies

Pose Prediction

Poses are usually predicted based on a two-step approach: (a) ligand conformer generation 

followed by (b) docking and scoring to the target. There are several efficient software tools 

used for conformer generation that can be described as deterministic or stochastic[13]. 

Although generally accurate, sampling of ring structures is still challenging and can 

sometimes impact the outcome. Docking programs combine conformer generation with pose 

scoring[14]. There are many docking programs both commercially and freely available, such 

as AutoDock Vina[15], Smina[16], Glide[17], and Gold[18]. Smina, for example, is a fork 

of AutoDock, which is not only faster but also facilitates the development of new scoring 

functions[16].

Scoring functions often fall into one of three categories: force-field-based, knowledge-based, 

or empirical[14]. Force-field-based scoring functions use actual representations of forces 

between the receptor and ligand molecules. These are often based on existing molecular 

dynamics force field parameters such as the AMBER force field[19,20]. Knowledge-based 
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scoring functions use simplified representations of atomic interactions in order to attempt to 

reproduce experimental structural data. Empirical scoring functions are generated by fitting 

parameters to experimental structural and affinity data. There have been continued 

improvements in scoring functions for docking applications, notably the development of the 

OPLS3 force field[21]. This force field fit new parameters based on a data set consisting of 

small molecule and protein-ligand pairs which leads to better parameterization for analysis 

of protein-ligand interactions. Another recent development has been the use of convolutional 

neural nets (CNNs)[22,23] which can be used for scoring. CNNs are a type of neural net 

architecture where connections between layers are spatially restricted, allowing each neuron 

to learn about nearby features. While neural nets have been used for receptor-ligand scoring 

previously[24], their use is pushing the boundaries of deep learning techniques by increasing 

the ability to learn from spatial interactions from known 3D co-crystal structures[22,25,26].

Receptor Flexibility

Another important characteristic of docking programs is how they treat receptor flexibility. 

While it is not computationally feasible to simulate full protein flexibility when screening 

large numbers of ligands, various strategies have been developed to approximate receptor 

flexibility. For example, a common strategy is the application of ensemble docking[27–29], 

where docking is performed against multiple available receptor structures. Additionally, 

partial receptor flexibility has been modeled in a variety of ways, such as rotamer 

libraries[30], side chain flexibility[31], and full backbone flexibility near the binding 

site[32]. Because of these advances it is becoming increasingly feasible to account for 

protein flexibility in virtual screening. Recently the use of metadynamics[33] has been 

applied to protein-ligand binding[34]. Metadynamics is a method of enhanced sampling 

which introduces an extra variable into the system which is used to steer the simulation away 

from areas which have been previously sampled[33]. This method has allowed researchers to 

combine ideas from induced fit in docking.

Lessons from prospective virtual screening predictions

Because the aforementioned developments are generally trained and tested retrospectively, it 

is difficult to fairly compare different methods. To that end, analysis of prospective 

community-wide experiments provides a unique opportunity to evaluate methods and 

identify problems with different approaches. The Drug Design Data Resource (D3R) project 

was started as a joint project between the NIH and UCSD with the goal of providing blinded 

datasets for prospective evaluation of drug discovery pipelines[11,12].

Pose Prediction

Given compounds as SMILES strings[35], predictions for targets for which there are one or 

more publicly available co-crystal structures (Protein Data Bank (PDB)[4]), are generally 

performed using three major approaches: alignment-based[36–40], standard docking as 

discussed above[36–39,41–43], or simulation-based[37,41,44]. Alignment- and docking- 

based methods have been more consistent in prospective tests[11,12]s. In the former, 

conformers of each compound are generated[45] and aligned to the ligand of an available 

co-crystal structure. Alignment metrics can involve chemical similarity measured by 
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Tanimoto similarity[36–38], 3D shape similarity[40], and hybrid 3D shape/pharmacophore 

feature similarity method[39]. Poses are then minimized and ranked. As expected, higher 

quality poses were generally correlated with number and similarity of available co-crystal 

ligands[38] (Table 1).

Selecting the optimal receptor structure

[16,38] is critical for the outcome of pose prediction. Thus, so-called “close” methods that 

use as receptor the co-crystal structure that had the most similar known ligand perform the 

best. For example, in the D3R competitions[38] we show that “alignclose” (alignment and 

minimization) or “dock-close” (docking to closest receptor) methods lead to top-of-the-line 

predictions, with median predicted poses under 2 Å RMSD[36,38,46], a standard metric for 

measuring success of pose predictions. We found that the quality of docking vs alignment-

based methods depends on both the type of binding pocket being targeted (Figure 1) as well 

as the similarity level of known ligands[36,38] (Figure 2). For more open or flexible binding 

pockets (e.g. MAP4K4 [mitogen-activated protein kinase kinase kinase kinase 4]) 

alignment-based methods performed better than docking methods, whereas for a buried 

flexible pocket (e.g. FXR [farnesoid X receptor]) minimization is not effective and docking 

performs better (Table 1). More resource-intensive molecular-dynamics-based methods that 

used induced fit docking ideas and metadynamics[33,34] were also able to predict similar 

quality poses[37].

Affinity Ranking

A number of techniques have been applied for affinity ranking, from novel scoring 

functions[25,39,42,43,47], to ranking with free energy prediction methods[48–50]. 

Prospective analyses have shown that top of the line Spearman ρ/Kendall’s τ correlations for 

ranking compounds on targets with known co-crystal structures is close to 0.5/0.4 (Table 2). 

However, again the best ranking methods have been shown to depend on the type of target 

and the selection of an optimal receptor. We have shown that docking to a single receptor 

can sometimes lead to better results than methods that use multiple receptor structures[46]. 

The rationale for this is that the energetics of different receptor structures is difficult to 

estimate computationally. However, selecting the optimal receptor for docking is not always 

clear. When there is sufficient data with similar congenerics, rankings are robust[36,38,46], 

the high degree of compound similarity causing the receptor to have similar binding pocket 

conformation. Though it is still possible to choose a receptor that doesn’t generalize well to 

your test set, which can lead to essentially random rankings[38]. For these cases (such as 

MAP4K4 and p38-α in D3R challenges) methods that take ligand similarity into account 

have performed better (Table 2).

Other techniques for ranking are being explored, which aim to take advantage of increasing 

availability of high-quality structural data as well as improving hardware and software 

resources. For example, CNN-derived scoring functions were used in both the 2015 and 

2016 Grand Challenges showing promising results[25]. Interestingly the addition of new co-

crystals of more similar compounds did not appear to have any effect on the quality of 

rankings[11,12], establishing the limitation of current scoring and force fields used.
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Discussion

Different methods apply to different targets

The prospective virtual screening discussed here involve targets with publicly available 

receptor-ligand co-crystal structures. Of note, these targets are generally easier than 

screening apo structures. The above notwithstanding, these targets present different 

challenges. As shown in Figure 1, these receptors had distinct binding modes; from 

relatively exposed ligands (e.g. Cathepsin S) to deeply buried ones (e.g. FXR). Targets also 

included different types of flexibility: from discrete binding modes such as the HSP90 (heat 

shock protein 90) catalytic site to large pockets with flexible loops such as in kinases, e.g., 

MAP4K4. The L2 loop of HSP90 shows a number of conformations induced by binding 

different ligands[38]. Perhaps the most interesting conclusion is that the receptor structure 

and pipeline strategy appear to have more effect on screening outcome than any specific 

software tool[11,12].

Optimal strategies for pose and affinity prediction are generally different. Not surprisingly, 

pose prediction benefits greatly from known co-crystal information. For these targets, 

aligning and minimizing to the closest known inhibitor (“align-close” methods) consistently 

lead to the best poses. However, if the known ligands are not representative of the screening 

set then docking in the corresponding receptor pocket (“dock-close”) performs better (see 

Table 1).

For affinity ranking, docking tends to be the best approach. However, “dock-close” (docking 

each ligand to closest co-crystal receptor) outperforms “dock-cross” (docking ligands to one 

receptor) methods in constrained pockets with different binding modes. “Align” methods 

generally do not perform well in these targets because minimization on a constrained 

environment where clashes are very likely often leads to random poses and scores, whereas 

docking avoids those clashes and final poses tend to retain the chemotypes of the related co-

crystal structure.

Interestingly, prospective predictions for four kinases shows the progress and limitations of 

virtual screening. Quality of rankings is generally measured by either Spearman’s ρ or 

Kendall’s τ, both of which are measures of similarity of two rank-orderings and are values 

between -1 (perfect opposite order) and 1 (perfectly in order). A value of 0 for both would 

be a random correlation. Namely, with a Spearman’s ρ of around 0.5 or Kendall’s τ around 

0.45, structure based virtual screening can produce a significant enrichment of likely 

binders, yet an orthogonal assessment is still needed to limit the potential number of false 

positives in real-world applications. Overall, top scoring methods do not incorporate 

receptor flexibility other than known receptor structures, nor very sophisticated free energy 

calculations [11,12]. The latter have consistently shown error bars on the order of 0.75 

kcal/mol [11,12], which is too large to make a dent on enrichment for large sets of 

compounds.

Despite progress in the area of CADD, there are still obvious areas of improvements. New 

force fields and scoring functions are promising[21], yet we have shown that in prospective 

evaluations with blind data sets simpler virtual screening methods can outperform more 
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complex ones[36,38]. In all likelihood, pose prediction and affinity ranking might have 

exhausted the benefits of rigid receptors and implicit solvent models. New avenues are being 

tested but they have yet to be proven in blind tests. Alternatively, new sources of data should 

be incorporated in the pipeline in order to provide orthogonal validation of the predictions.
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Figure 1. Receptor binding modes of prospectively validated targets
Surface representations of binding pockets of D3R Grand Challenge 1 and 2 targets: a) 

MAP4K4, b) FXR, and c) HSP90. Receptor structure shown as cartoons, co-crystal ligand 

shown as sticks, and volumes shown as magenta surface.
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Figure 2. Free docking versus alignment strategies for pose prediction
Examples of differences in pose predictions for docking (magenta) and alignment-based 

(cyan) methods for MAP4K4 (a and b) and FXR (c and d). Co-crystal ligand shown as white 

sticks. Receptor shown as white cartoon and binding pocket as white surface.
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Wingert and Camacho Page 11

Table 1

Best prospective pose prediction median RMSD from D3R Grand Challenges.

Receptor # Test
Compounds

# PDB
Structures

Best median
RMSD [Å]

Prospective
Best method

HSP90 5 >200 0.3a Align close

FXR 35 27 1.17b Dock close

Cathepsin S 24 25 1.3c Align close

MAP4K4 30 8 1.6a Align close

a
[38]

b
[11]

c
https://drugdesigndata.org/about/grand-challenge-3/cathepsin_s
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