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Abstract

In real-world situations, speech is masked by both background noise and reverberation, which 

negatively affect perceptual quality and intelligibility. In this paper, we address monaural speech 

separation in reverberant and noisy environments. We perform dereverberation and denoising 

using supervised learning with a deep neural network. Specifically, we enhance the magnitude and 

phase by performing separation with an estimate of the complex ideal ratio mask. We define the 

complex ideal ratio mask so that direct speech results after the mask is applied to reverberant and 

noisy speech. Our approach is evaluated using simulated and real room impulse responses, and 

with background noises. The proposed approach improves objective speech quality and 

intelligibility significantly. Evaluations and comparisons show that it outperforms related methods 

in many reverberant and noisy environments.

Index Terms

Complex ideal ratio mask; dereverberation; deep neural networks; speech separation; speech 
quality

I. Introduction

Room acoustics affect the speech signal transmitted inside a room. When someone is having 

a conversation, they hear not only the sound that directly reaches their ears, but also 

reflections off the walls, ceiling and furniture. These reflections, termed reverberation, are 

altered versions of the original speech. In fact, reverberant speech consists of three 

components: the direct sound, early and late reflections. The direct sound is the anechoic 
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part corresponding to the first wavefront, early reflections typically arrive up to 50 ms after 

the direct sound, and late reflections come anytime thereafter.

Reverberation is problematic because the reflections cause smearing across time and 

frequency, which interferes with the direct sound. This is particularly challenging for 

hearing-impaired listeners, since the smearing affects their ability to recognize speech [2], 

[28]. Additionally, the performance of speech processing applications is degraded in 

reverberant environments, where reverberation causes automatic speech recognition (ASR) 

[22] and speaker identification systems [45] to become less accurate. The problem is 

worsened when background noise is present. Roman and Woodruff [34] show that 

reverberation combined with additive noise can be detrimental to the speech intelligibility of 

normal hearing listeners. A solution for removing reverberation and noise would be 

beneficial for a variety of speech processing tasks.

Many approaches have been developed to remove reverberation. Delcroix et al. use a 

weighted prediction error (WPE) algorithm and beamforming to remove room reverberation 

[6]. Reverberant speech corresponds to convolving a room impulse response (RIR) with 

anechoic speech (i.e. direct sound). WPE is an unsupervised approach that operates in the 

complex time-frequency (T-F) domain and uses linear prediction to shorten the RIR, which 

in effect removes late reverberation [44]. Although WPE helps with dereverberation, it does 

not address noise that is typically present in real situations. Inverse filtering is another 

technique for dereverberation. Inverse filters attempt to undo the effects of the RIR, since the 

convolution of the inverse filter with the reverberant signal results in anechoic speech. 

Inverse filters, however, cannot be fully realized, since the RIR is unstable due to its 

nonminimum phase nature [29]. Miyoshi and Kaneda [26] address the invertibility of the 

inverse filter by utilizing multiple finite impulse response (FIR) filters. In [21] and [35], the 

T-F magnitude response of the RIR is estimated. Another approach uses the RIR magnitude 

response and nonnegative matrix factorization (NMF) to remove reverberation [27]. A two-

stage algorithm for enhancing reverberant speech is described by Wu and Wang [43], where 

the first stage estimates an inverse filter and the second stage uses spectral subtraction to 

minimize long-term reverberation. A monaural pitch-based method that estimates an inverse 

filter [33] has also been investigated. It should also be noted that inverse filtering is 

fundamentally sensitive to RIRs, which strongly limits the robustness of this approach [20], 

[32].

More recent studies perform dereverberation in a supervised manner. In [20], Jin and Wang 

use a multi-layer perception (MLP) to learn a mapping from pitch-based features to 

grouping cues that encode the posterior probability of a T-F unit being speech dominant 

given the reverberant observation. The mapping results in a binary mask that is used to retain 

the speech dominant units. Evaluations show that this system generalizes well in various 

reverberant environments. Jiang et al. [19] use deep neural networks (DNNs) to estimate the 

ideal binary mask (IBM), where binaural and monaural features are used to train a DNN. 

Weninger et al. [40] use deep bidirectional Long Short-Term Memory (LSTM) recurrent 

neural networks (RNNs) to dereverberate features that are inputed to an ASR system. Very 

recently, Han et al. [13] learn a spectral mapping from the log-magnitude spectra of noisy 

and reverberant speech to the log-magnitude spectra of clean speech using a DNN. Although 
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each of these approaches produces improvements in various conditions, their performance is 

limited since they only enhance the magnitude response, and use reverberant and noisy 

phase during signal reconstruction. As a result, the quality of separated speech is not good 

when interference is strong, and there is a strong need to produce speech estimates with high 

quality in reverberant and noisy environments.

When dealing with background noise, we recently found that performing T-F masking in the 

complex domain is very beneficial [42]. This approach jointly enhances the magnitude and 

phase response of noisy speech by estimating the complex ideal ratio mask (cIRM) in the 

real and imaginary domains. The performance of complex domain processing is not bounded 

since a full (magnitude and phase) reconstruction of speech is possible in the ideal case. 

Results show that the estimated cIRM substantially outperforms directly estimating speech 

in the time domain, traditional ideal ratio mask (IRM) estimation in the magnitude domain, 

and other related methods. Furthermore, cIRM estimation is shown to outperform methods 

that separately enhance the magnitude and phase of noisy speech. More details about 

different phase enhancement techniques can be found in [11].

Complex ratio masking, however, has not been investigated in adverse conditions with both 

room reverberation and background noise. In this paper, we propose to use DNNs to learn a 

mapping from reverberant (and noisy) speech to the cIRM. We extend the definition of the 

cIRM to deal with reverberant (and noisy) spectra, where the desired output is the spectra of 

the direct sound source. Unlike previous approaches, applying the cIRM enables the 

complete reconstruction of the clean and anechoic speech, since it jointly enhances the 

magnitude and phase. To our knowledge, this is the first supervised separation study that 

addresses dereverberation and denoising in the complex domain. A preliminary version of 

this work is published in [41].

This paper is organized as follows. Section II provides notations and definitions. A 

description of our algorithm is given in Section III. The evaluation criteria and experimental 

results are given in Section IV. A discussion of related issues and a conclusion are given in 

Section V.

II. Notation and Definitions

As mentioned earlier, reverberation can be modeled as the convolution of speech with an 

RIR:

y t = h t ∗ s t (1)

where ‘*’ indicates convolution, and t indexes a time sample. y(t) denotes reverberant 

speech, and s(t) clean anechoic speech. h(t) denotes the RIR, which models every aspect of 

sound propagation from the source to the receiver. In this case, it models the direct sound 

(delayed and attenuated speech) that reaches the ears, as well as the early and late 

reflections. These terms can be modeled with h(t), by dividing it into three components (one 

for each signal) and using the distributive property of convolution [30]. In other words, the 
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RIR can be represented as the sum of impulse responses for the direct sound, early and late 

reflections:

h t = hd t + he t + hl t (2)

where hd(t), he(t), and hl(t) are the impulse responses for the direct sound, early and late 

reflections, respectively. An example of this decomposition is given in Fig. 1. The direct 

sound impulse response, hd(t), ranges from the start of h(t) and ends approximately 1 ms 

after the first impulse. The early reflection impulse response, he(t), extends 50 ms after the 

end of the direct sound impulse response [3], and the late reflection impulse response 

extends from the end of he(t) to the end of h(t). Note that the length of each of the impulse 

responses is the same as h(t), but the component impulse responses are zero outside of the 

regions defined above. The distributive property of convolution says that the three 

components of reverberant speech can be computed by convolving their corresponding 

impulse response with speech

y t = hd t ∗ s t + he t ∗ s t + hl t ∗ s t
= d t + ye t + yl t

(3)

with d(t) corresponding to the direct sound, and ye(t) and yl(t) corresponding to the early and 

late reflections.

When reverberation and noise are present, reverberant and noisy speech, yrn(t), is defined as

yrn t = hs t ∗ s t + βhn t ∗ n t (4)

where n(t) corresponds to the noise at time t. The RIR for reverberant speech and noise are 

represented with hs(t) and hn(t), respectively. The parameter β controls the signal-to-noise 

ratio (SNR) between the reverberant noise and speech.

Our goal in this study is to estimate the short-time Fourier transform (STFT) of the direct 

sound D, since it is clean and anechoic. It is a delayed and attenuated version of the true 

speech, but it is time aligned with the reverberant speech. This time alignment assists in 

learning a mapping from noisy speech features to a training target. An exact description of 

this mapping is presented in the next section.

III. Algorithm Description

We propose to use a DNN to learn a spectral mapping from reverberant (and noisy) speech 

to the cIRM. We begin this section by describing the spectral features. We then define the 

cIRM in this domain space, and conclude by providing details about the DNN.
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A. Features

A complementary set of features is computed from the given signal [37]. These features 

include amplitude modulation spectrogram (AMS) [23], relative spectral transform and 

perceptual linear prediction (RASTA-PLP) [14], [15], mel-frequency cepstral coefficients 

(MFCC), as well as their deltas. Gammatone filterbank energies and their deltas are also 

appended to the feature vector. The features are computed for each time frame of the signal. 

A variant of this feature set has been shown to be effective for speech separation [38], and 

they have recently been shown to work well for cIRM estimation [42].

Since speech is correlated from frame to frame, we incorporate temporal dynamics by 

joining adjacent frames into a single feature vector. The feature vector centered at the kth 

time frame is defined as F∼ k = F k − p , …, F k , …, F k + p T where p denotes the number 

of adjacent frames to include on each side.

B. Complex Ideal Ratio Mask (cIRM)

The complex ideal ratio mask is a T-F mask constructed from the reverberant (and noisy) 

signal and the targeted speech. The cIRM is defined so that when it is applied to the 

reverberant observation, the targeted signal results [42]. In other words, D(k, f) = M(k, f) × 

Y(k, f), where D(k, f), M(k, f), and Y(k, f) are the STFTs of the targeted speech, the cIRM, 

and the reverberant speech at time frame k and frequency channel f. In this case, the targeted 

speech is the spectra of the direct sound source, D. These STFTs are complex, so they have 

real and imaginary components. The traditional IRM can be defined as the ratio between the 

spectral magnitudes of the direct and reverberant speech (i.e. MIRM = D / Y ). On the other 

hand, the cIRM is defined as follows:

M(k, f ) = D(k, f )
Y(k, f )

=
Yr(k, f )Dr(k, f ) + Y i(k, f )Di(k, f )

Yr(k, f )2 + Y i(k, f )2

+ j
Yr(k, f )Di(k, f ) − Y i(k, f )Dr(k, f )

Yr(k, f )2 + Y i(k, f )2

(5)

where subscripts r and i indicate the real or imaginary components, respectively. In essence, 

the cIRM can be thought of as an inverse filter, since it reverses the effects of reverberation. 

A depiction of the real and imaginary components of the direct speech, reverberant speech, 

and cIRM is shown in Fig. 2.

Eq. (6) shows that M has real and imaginary components, but it can also be defined in polar 

coordinates.

M(k, f ) = D(k, f )
Y(k, f ) e

j(ϕd(k, f ) − ϕy(k, f ))
(6)
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where ϕd and ϕy are the phases of the direct speech and reverberant observation, 

respectively. This equation shows that the cIRM is based on the magnitude and phase of the 

targeted and reverberant signals. This is important since it means that when it is applied to 

the reverberant speech, both the magnitude and phase are enhanced, which is crucial for 

speech quality [31]. Recently, a phase-sensitive mask (PSM) has been defined [8], which 

amounts to the real portion of the cIRM (i.e. MPSM = D / Y cos ϕd − ϕy ). Unlike the cIRM, 

the PSM does not completely enhance reverberant speech, since it cannot completely restore 

the phase.

The real and imaginary components of the target and reverberant speech have large values in 

the range (−∞, ∞) Since a smaller range is more favorable for supervised learning with 

DNNs, we compress the components of the cIRM using the following hyperbolic tangent.

Mx′ = Q1 − e
−C ⋅ Mx

1 + e
−C ⋅ Mx

(7)

where x ∊ {r, i}, denoting the real or imaginary components of the compressed cIRM, M′. 
The mask values are compressed to be within [−Q, Q], and C is a steepness constraint.

C. cIRM Estimation

We train a deep neural network to learn the spectral mapping from reverberant, or 

reverberant and noisy signals to the cIRM. A depiction of the DNN is shown in Fig. 3.

The DNN is given the complementary set of features that are defined in Section III-A. 

Before adding temporal correlations, the feature vector has dimensionality of R units. After 

augmenting the feature vector to include temporal correlations, the feature vector has 

dimensionality of R(2p + 1). The input is normalized to have zero mean and unit variance. 

After normalization, auto-regressive moving average (ARMA) filtering is performed on the 

input features [5]. The output layer of the DNN is divided into two sublayers. The sublayers 

are for the real and imaginary components of the cIRM. Since the real and imaginary 

components of the cIRM are related, it is important that the network structure jointly 

estimate them [4]. Linear activation functions are used in the output layer, whereas rectified 

linear functions are used in the hidden layer.

Back propagation based on the mean-square error is used to train the DNN. Eq. (9) is the 

cost function for each training utterance:

1
2N ∑

k
∑

f
Mr′ k, f − Mr′ k, f 2 + Mi′ k, f − Mi′ k, f 2

(8)

where Mr′(k, f ) and Mi′(k, f ) are the estimated real and imaginary components that are 

generated by the DNN. N is the number of time frames for the input. Adaptive gradient 

descent [7] with a momentum term is used.

Williamson and Wang Page 6

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2018 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The output of the DNN is an estimate of the compressed mask values of the cIRM. During 

testing, we uncompress these values using the following:

Mx = − 1
C log(

Q − Mx′
Q + Mx′

) (9)

The uncompressed estimates for the real and imaginary components are then used to extract 

an estimate of the direct speech (i.e. D = MY , where M = Mr + jMi).

IV. Evaluations and Results

A. Comparisons and Metrics

We compare cIRM estimation with two dereverberation algorithms. Yoshioka and Nakatani 

[44] use weighted error prediction to develop a filter that removes late reverberation. This 

approach is used by Delcroix et al. [6]. The filter shortens the RIR by leveraging the 

temporal correlations of speech. The filter is defined in the complex domain, but it is 

estimated in an unsupervised manner. This approach is denoted as WPE. We also compare to 

a recent approach by Han et al. [13], which uses a deep neural network to spectrally map the 

log-magnitude response of reverberant speech to the log-magnitude response of clean 

speech. This approach is denoted as DSM. For this study, the DNN uses the log-magnitude 

response of reverberant speech as input, and estimates the log-magnitude response of the 

direct speech signal.

In addition to the above comparisons, we compare cIRM estimation to other supervised T-F 

masking based approaches. The approaches described below have previously been evaluated 

for denoising only and not dereverberation. This study shows their performance in 

reverberant and noisy environments. We compare our approach to IRM estimation [38] to 

determine the significance of complex masking. The IRM gives the proportion of speech 

energy in each T-F unit, where speech energy is based solely on the magnitude responses of 

the direct sound and the reverberant (and noisy) observation. Unlike the cIRM, the IRM does 

not address phase and it uses the phase from the unprocessed signal for reconstruction. We 

also compare our approach to phase-sensitive mask (PSM) estimation [8] and time-domain 

reconstruction (TDR) [39]. PSM corresponds to the real component of the cIRM. TDR uses 

a DNN to map features to a time-domain signal using a ratio masking subnet and noisy 

phase. We modify TDR to use the enhanced phase from cIRM estimation when mapping to 

the time-domain signal, since we find that this gives a slight improvement boost. DNNs are 

separately trained to estimate each of these targets using the same network structure and cost 

function as described in previous sections. In each case (cIRM, IRM, PSM and TDR), the 

input to the DNN is the complementary feature set defined in Section III-A. Note that we 

evaluated DSM with the complementary feature set as input, but this did not perform as well 

as the log-magnitude response of reverberant speech.

STFTs are computed by first dividing a signal into 32 ms time frames with an 8 ms frame 

shift (i.e. 75% overlap). The fast Fourier transform (FFT) is then computed within each time 
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frame using a 512-point FFT. A 16 kHz sampling rate is used for each signal, so each time 

frame of the STFT consists of 257 elements.

The DNN is given the complementary feature set, which contains 246 units (i.e. R = 246). 

After including temporal correlations, the feature vector has the dimensionality of 246 × (2p 
+ 1) = 246 × 5 = 1230 (p is set to 2 based on our prior study [42]). Therefore, the input layer 

of the DNN has 1230 units. Mean and variance normalization is performed once for the 

entire feature set during training, and once per utterance during testing. Each output sublayer 

consists of 257 units, where linear activation functions are used. Each hidden layer has 1024 

units and three hidden layers are used. The momentum rate of the DNN is set to 0.5 for the 

first 5 epochs, and 0.9 thereafter. A total of 80 epochs are used. The weights of the DNN are 

randomly initialized. When compressing the cIRM for training, we set Q to 1 and C to 0.5. 

Other values were evaluated, but this combination performed best empirically.

We evaluate our approach using objective metrics that give scores for speech quality and 

intelligibility. The perceptual evaluation of speech quality (PESQ) gives a speech quality 

score by comparing an enhanced signal to the direct speech signal [18]. PESQ gives scores 

in the range of [−0.5, 4.5], where higher scores indicate higher quality. In terms of 

intelligibility, we use short-time objective intelligibility (STOI) [36]. STOI computes the 

correlation between the temporal envelopes of reference and processed speech signals over 

short-time segments. It returns a score between 0 and 1, where higher scores indicate better 

intelligibility. It is important to know that both PESQ and STOI have been shown to be 

highly correlated with speech quality and intelligibility of human listeners, respectively. In 

addition, we evaluate the frequency-weighted segmental signal-to-noise ratio (SNRfw) [25], 

which computes and then averages the weighted signal-to-noise ratio in each critical band. 

The direct speech is used as the reference for each metric. The improvement score for each 

metric, relative to the unprocessed reverberant (and noisy) speech, is used to evaluate each 

approach.

We start by evaluating cIRM estimation, DSM and WPE in reverberant environments and 

environments that contain reverberation and noise. Afterwards, we compare cIRM 

estimation with other supervised T-F masking approaches.

B. Reverberation: Simulated RIRs

We first evaluate the dereverberation approaches using simulated RIRs. Simulated RIRs are 

generated using the imaging method [1], which is implemented in [12]. The RIR is 

generated by placing the target speaker and microphone in random positions in a simulated 

room of size 9m × 8m × 7 m, where the distance between the speaker and microphone is 

fixed at 1 m. The elevations of the speaker and microphone are identical. With this 

configuration, sets of 11 room impulse responses are generated using T60 times of 0.3, 0.6, 

and 0.9 s, respectively. At each T60, 10 of the RIRs are used for training, while the other 1 is 

used for testing. So in total, 30 RIRs are used for training and 3 are used for testing. The 

average direct-to-reverberant ratio (DRR) at each T60 for the training RIRs is 8.6, 3.2, and 

1.1 dB, while the DRR for the testing RIRs is 7.8, 2.7 and 0.8 dB, respectively.
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We use the IEEE corpus [17] to train and test our system. This corpus contains 720 

utterances spoken by a single male speaker. Our DNN is trained by convolving 500 of these 

utterances with the 30 training RIRs, resulting in a set of 15000 reverberant signals. For 

testing, 100 utterances that are not used during training are convolved with the 3 testing 

RIRs, resulting in 300 test signals. A development set of 100 different utterances is also 

convolved with the 30 training RIRs for parameter tuning and early stopping.

The results using these utterances and simulated RIRs are shown in Fig. 4. For PESQ, shown 

in Fig. 4(a), cIRM estimation (denoted as cRM) significantly improves performance relative 

to the unprocessed reverberant speech. The average improvement is 0.41 points. On the 

other hand, the improvement over unprocessed reverberant speech is not as high using WPE 

and DSM algorithms. Note that PESQ improvement for DSM in reverberation is lower in 

[13], since they predict the clean speech signal as opposed to the direct speech. STOI 

evaluation results are shown in Fig. 4(b). The STOI performance for each approach 

increases as T60 increases, but each approach lowers STOI at 0.3 s. STOI performances for 

WPE and cIRM estimation are approximately equal at 0.3 and 0.6 s, but cIRM estimation 

performs best at 0.9 s, which is the most challenging case. SNRfw, results in Fig. 4(c) show 

that cIRM estimation increases SNR the most, with an average improvement of 1.74 dB. In 

fact, cIRM estimation is the only approach to increase SNR at a 0.3 s T60.

C. Reverberation: Real RIRs

Although simulated RIRs are important for evaluation purposes, it is necessary to assess 

performance in real room environments. To that end, we also evaluate our system using real 

RIRs from the Surrey binaural RIR (BRIR) database [16]. These RIRs are captured in real 

rooms from sine sweeps played through a loudspeaker, where the responses are deconvolved 

to produce the impulse response. The loudspeaker is placed along a radius of 1.5 m away 

from the Head and Torso Simulator (HATS). The position of the loudspeaker is varied in 5° 

increments along the radius, where the center of the loudspeaker is placed at the same 

elevation as the ears of the HATS. For this study, we are focused on the monaural case, so 

the RIR of one of the ears is used. Specifically, when the loudspeaker is closer to the right 

ear, the right RIR is used and vice versa for the left ear. When the loudspeaker is at equal 

distance to the right and left ears, the left ear response is used. The RIRs are captured in four 

different room types. The dimensions of each room, the resulting T60 and DRR are shown in 

Table I.

Seven RIRs for each room (i.e. 28 total RIRs) are used to train a DNN. These real RIRs are 

convolved with the same 500 IEEE training utterances that are used in Section IV-B, 

resulting in 14000 total training utterances. The same 100 IEEE testing utterances from 

Section IV-B are convolved with 8 unseen real RIRs (2 per room) to produce a testing set of 

800 reverberant signals.

The average results for these real RIRs are shown in Fig. 5. Fig. 5(a) shows the improvement 

in terms of PESQ. For each T60, cIRM estimation produces the greatest improvement, and it 

substantially outperforms WPE and DSM. The STOI results are shown in Fig. 5(b). cIRM 

estimation produces the largest increase in STOI at T60 s of 0.47 and 0.89 s, while WPE 

performs best at 0.32 and 0.68 s. DSM lowers the objective intelligibility of the reverberant 
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speech for three of the T60s. Lastly, Fig. 5(c) shows the improvement in SNRfw. cIRM 

estimation produces the highest SNR gain at 0.47 and 0.89 s, whereas WPE performs best at 

0.32 and 0.68 s. Overall, the improvement of cRM over reverberant (and noisy) speech is 

slightly higher for real RIRs than for simulated RIRs.

D. Reverberation and Noise

In real environments, reverberation and noise are both present. We test each system’s ability 

to simultaneously perform dereverberation and denoising. For this scenario, the input to each 

system is reverberant and noisy speech features. The output target for the supervised systems 

are based on the direct speech.

To evaluate performance in this environment, we generate a set of RIRs for the speech (i.e. 

hs(t)) and the noise (i.e. hn(t)). The position of the speech and noise are randomly placed on 

a 1 m radius from the microphone, where the elevations of the three components are equal. 

Eleven pairs of RIRs are generated for hs(t) and hn(t) at T60s of 0.3, 0.6, and 0.9 s, resulting 

in a total of 33 RIR pairs. Of these 33 RIR pairs, 30 (10 per T60) are used in the training set, 

while the remaining 3 (1 per T60) are used in the testing set. Four noise types are used: 

speech-shaped noise (SSN), cafe noise, factory noise, and babble noise. These noises are 

approximately 4 minutes in length. For training, random cuts from the first 2 minutes of the 

signals are used. The SNR in each case is set to 0 dB, where SNR is the ratio of energy 

between the reverberant speech and the reverberant noise. The training signals are mixed by 

combining 500 utterances with the 30 training RIRs and 4 noises (500 × 30 × 4 = 60000 

training signals). Testing signals are generated by combining 100 utterances with the 3 

testing RIRs and 4 noises (100 × 3 × 4 = 1200 testing signals). The testing noise signals are 

generated from random cuts of the last 2 minutes of the mentioned noises.

Fig. 6 displays the performance by noise type, averaged over all T60s, for each system in 

noisy and reverberant conditions. In terms of PESQ, Fig. 6(a), directly mapping to log-

magnitude spectra using DSM improves PESQ by 0.26 points on average over the 

unprocessed noisy reverberant speech. Under these conditions cIRM estimation produces the 

largest gain of 0.54 points over the unprocessed speech on average. Note that WPE barely 

improves performance over the unprocessed speech, but this is partially expected since WPE 

is designed to deal with reverberation and not noise. Fig. 6(b) shows the STOI improvement. 

cIRM estimation produces an improvement score of 0.13 on average which is clearly higher 

than the other approaches. For SNRfw, Fig. 6(c), DSM and cIRM estimation produce very 

similar improvements for each noise type.

E. Supervised T-F Mask Comparisons

The PESQ results when cIRM estimation is compared to other supervised T-F masking 

approaches are shown in Fig. 7. Fig. 7(a) shows the PESQ improvement over the 

unprocessed reverberant speech when simulated RIRs are used. In this case, each approach, 

except TDR at 0.3 s, improves objective quality. TDR produces the smallest gain on average 

followed by IRM estimation (RM). The benefit of enhancing the magnitude and phase 

spectra is shown in the results for cIRM estimation. The complex ratio mask improves 
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performance over ratio masking at each T60. PSM estimation performs similarly to cIRM 

estimation in all cases, except at 0.3 s where cIRM estimation performs slightly better.

The PESQ improvement results using real RIRs are shown in Fig. 7(b). All approaches 

improve objective speech quality over the unprocessed reverberant speech in this case. As 

with the simulated RIRs, TDR and IRM estimation offer the lowest gains. In each case, ratio 

masking in the complex domain (i.e. cRM) outperforms ratio masking in the magnitude 

domain (i.e. RM). Estimating the cIRM performs best for each T60 as well. A similar trend 

is exhibited when noise and simulated RIRs are used to generate noisy-reverberant speech, 

where cIRM estimation offers the largest improvement for SSN and Factory noise. In terms 

of STOI, ratio masking (i.e. RM) produces the highest improvements (~0.04) when 

simulated and real RIRs are used, while cRM and PSM closely follow (difference of ~0.1). 

When simulated RIRs are used with noise, complex ratio masking produces the largest gain 

(0.13 compared to 0.12 for PSM). The cRM improvements over TDR in STOI are 

statistically significant when simulated and real RIRs are used. In simulated room responses 

with noise, cRM STOI improvements over TDR and RM are statistically significant. The 

SNRfw improvement results follow a similar trend.

F. Reverberation: Unseen Speakers and Simulated Rooms

To further test generalizability, we test cRM’s ability to perform dereverberation in unseen 

rooms using utterances from unseen speakers. To accomplish this, we employ the training 

and testing setup as shown in Table II. The boldface rows indicate training rooms (4 in total), 

and the remaining rows represent unseen data (room or T60). Six RIRs (2 per T60) are 

generated for each of the training rooms (24 in total), where the corresponding average 

DRRs are shown in the third column of Table II. This allows for testing within and beyond 

the critical distance. The distance between the speaker and microphone is fixed at 1 m, but 

the positions are randomly placed in the rooms. Each of the training RIRs is convolved with 

500 utterances from the TIMIT speech corpus [9], using 10 utterances from each of 50 

different speakers. For testing, six new RIRs are generated for each of the rooms (2 per T60). 

The testing RIRs are convolved with 100 different utterances from 10 different speakers (10 

utterances per speaker) from the TIMIT speech corpus.

We train and test the DNN for cIRM estimation in the environments described above, and 

we compare it to WPE since it is an unsupervised approach. The average PESQ results for 

the unprocessed mixtures, WPE, and cRM are shown in Table III. The average results are 

shown by the type of room (seen during training, or unseen), and the T60 and average DRR 

combination. The ‘(i)’ in Table III refers to the average results over the ith T60 value and the 

ith Avg. DRR value across all rooms from Table II. Notice that the proposed cRM clearly 

outperforms WPE and the unprocessed mixtures in all cases, indicating its ability to 

generalize to unseen rooms and speakers. The differences are statistically significant in each 

case.

G. Reverberation: Real RIRs and Multiple Speakers

In addition to the above tests, we further evaluate our approach using real RIRs and multiple 

speakers. Each method is trained using the 500 utterances (10 from each of 50 speakers) and 
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tested using 100 utterances (10 utterances from each of 10 different speakers) as mentioned 

previously. The DNN is trained using 15000 reverberant mixtures generated by convolving 

the training utterances with 30 different real RIRs. The training RIRs are captured from 

three of the four rooms in Table I using the Surrey BRIR database [16]. RIRs from the fourth 

room are held out for testing, and we rotate the room that is unseen during training. Ten 

different RIRs are used for training in each room. The testing utterances are convolved with 

8 RIRs, 2 from each of the four rooms listed in Table I. Therefore, this test set evaluates each 

approach using unseen speakers, unseen RIRs from seen rooms, and unseen RIRs from an 

unseen room. We compare with several approaches, which are trained as previously 

described.

Table IV shows the average PESQ scores for each approach across each room and training 

set, where one room (indicated by BOLD) is held out during training. The results reveal that 

cRM and PSM perform similarly and the best overall for seen and unseen rooms. A one-way 

ANOVA test (5% confidence interval) shows that cRM improvements over the other 

comparison methods are statistically significant.

V. Discussion and Conclusion

Our approach significantly improves dereverberation and de-noising performance over 

unprocessed signals. It also outperforms most methods in terms of objective speech quality 

and intelligibility metrics. Our informal listening to enhanced signals indicates that 

perceptual quality is consistent with objective results. Most importantly, the results reveal 

that magnitude and phase are both important for quality, so they both should be enhanced. 

The joint enhancement of magnitude and phase is the main reason cIRM estimation 

outperforms IRM estimation and DSM. Incorporating magnitude and phase information is 

the main reason why PSM estimation performs well.

A. Ideal Performance of T-F Masking Approaches

An important comparison is between the ideal performance of the T-F masking approaches. 

The average ideal PESQ results for IRM, cIRM, and PSM are 3.53, 4.5, and 3.61, 

respectively. Notice that only the cIRM is capable of producing the maximum attainable 

PESQ score, due to its enhancement of magnitude and phase. PSM estimation is close to 

cIRM estimation likely due to the challenge of estimating the imaginary portion of the 

cIRM, which is less structured than the real component. This indicates that refinements for 

estimating the imaginary component should be developed.

B. Complex-Domain DNN

Section III-C describes how a standard DNN with real components (weights, biases, 

activation function) is used to jointly estimate the complex components of the cIRM. Since 

the real and imaginary components of the cIRM are related, it is important to determine if a 

DNN can further capitalize on this relationship. One way to take advantage of this 

relationship is to utilize a complex-domain DNN, where the inputs, weights, biases, 

activation functions, and outputs are all complex. For this purpose, we have defined a 

complex-domain DNN and used it to either estimate the cIRM or the STFT of direct speech. 
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The structure of the complex-domain DNN matches that of the standard DNN (see Figure 

3), except a single layer in the output layer is used. The complex weights are randomly 

initialized. A complex hyperbolic tangent function is defined and used as the activation 

function in each layer, where the real and imaginary components of this activation function 

are defined similarly to Eq. (8). Complex domain back propagation is used [10], [24]. This 

complex domain DNN is evaluated using the same experimental setup as defined in Sections 

IV-B to IV-D. The input to the complex DNN is the STFT of reverberant (and noisy) speech.

The experimental results for estimating the STFT of direct speech and the cIRM are shown 

in Table V. It is clear from the results that cIRM estimation using a standard DNN is 

superior.

Although WPE is complex, its worth noting that cIRM estimation outperforms it largely due 

to the benefit of supervised learning. It must be pointed out that WPE only deals with late 

reverberation, so the comparison might not be truly fair. To address this, we also define the 

cIRM (and other approaches) with the direct sound plus early reverberation as the target, so 

it only removes late reverberation. Table VI shows PESQ improvement scores for each 

approach, respectively. The PESQ results show that cIRM estimation still outperforms WPE 

when simulated and real RIRs are used, but these results are not as good as when early and 

late reverberation are removed (see Section IV). Its also worth pointing out that WPE is an 

utterance based approach, meaning that it processes the entire utterance multiple times 

before the final dereverberant signal is produced. This differs from the DNN based 

approaches, which only use a small sliding window to generate speech estimates for a single 

time frame.

We investigated other approaches for estimating the cIRM. We separately train DNNs to 

estimate the real and imaginary components, and we jointly estimate the absolute value (i.e. 

instantaneous amplitude without sign) and sign (positive or negative) of the cIRM. 

Additionally, we experimented with computing the imaginary component from an estimated 

IRM and the real component. These cases, however, did not perform as well as the proposed 

approach. We also conducted experiments using the following features that contain phase 

information: magnitude and phase, real and imaginary components, or the complementary 

feature set extracted from the real and imaginary components of reverberant speech. These 

features, however, did not perform as well as the complementary set. The cIRM amounts to 

scaling the IRM by factors between −1 and 1 based on the cosine and sine of the phase 

difference (see Eq (7)). We think that the nonlinear nature of the DNN and the usage of back 

propagation enable the DNN to jointly estimate the scaled versions of the IRM without 

including phase in the input feature set.

In conclusion, we have proposed a supervised learning approach to separate speech in 

reverberant and noisy environments. We show how the cIRM can be used, where it enhances 

the magnitude and phase response of an observation. By addressing the magnitude and 

phase, the cIRM is capable of producing clean and anechoic speech estimates. We train a 

deep neural network to estimate the cIRM from noisy and reverberant speech, and its 

performance is consistent using simulated and real room impulse responses and when 

reverberant noise is present.
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Fig. 1. 
A depiction of the decomposition of a room impulse response into its three components: 

Direct, early, and late.
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Fig. 2. 
(Color Online). Spectrogram plots of the real (top) and imaginary (bottom) STFT 

components of direct speech, reverberant speech, and the complex ideal ratio mask. The 

reverberant speech is generated using a T60 of 0.9 s and a 1 m distance exists between the 

speaker and microphone.
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Fig. 3. 
(Color Online). Network structure of the DNN that estimates the complex ideal ratio mask.
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Fig. 4. 
(a) ΔPESQ, (b) ΔSTOI, (c) ΔSNRfw results using simulated RIRs. The improvement relative 

to the unprocessed reverberant speech is shown. ‘#’ indicates that the differences from cRM 

results are not statistically significant according to a one-way ANOVA test with 5% 

confidence interval.
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Fig. 5. 
(a) ΔPESQ, (b) ΔSTOI, (c) ΔSNRfw results using real RIRs. The improvement relative to the 

unprocessed reverberant speech is shown. All differences from cRM results are statistically 

significant according to a one-way ANOVA test with 5% confidence interval.
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Fig. 6. 
(a) ΔPESQ, (b) ΔSTOI, (c) ΔSNRfw results using simulated RIRs and background noise. 

The improvement relative to the unprocessed noisy-reverberant speech is shown. ‘#’ 

indicates that the differences from cRM results are not statistically significant according to a 

one-way ANOVA test with 5% confidence interval.
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Fig. 7. 
Supervised masking-based approaches are compared. The PESQ improvement is shown for 

(a) simulated RIRs, (b) real RIRs, and (c) simulated RIRs plus noise. ‘#’ indicates that the 

differences from cRM results are not statistically significant according to a one-way 

ANOVA test with 5% confidence interval.
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TABLE I

Characteristics of the Rooms Used to Capture the Real RIRs

Room Dimensions T60 [s] DRR [dB]

A 6.64 m × 5.72 m × 2.31 m 0.32 6.09

B 4.65 m × 4.65 m × 2.68 m 0.47 5.31

C 18.8 m × 23.5 m × 4.6 m 0.68 8.82

D 8.72 m × 8.02 m × 4.25 m 0.89 6.12
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TABLE II

Characteristics of the Simulated Rooms Used for Training and Testing (Dim. Stands for Dimension)

Dim. (meter) T60 (second) Avg. DRR (dB)

5 × 4 × 3 [0.2, 0.3, 0.4]
[0.3, 0.5, 0.7]

[2.62, −0.66, −2.69]
[−0.64, −3.90, −5.82]

6 × 4 × 3 [0.3, 0.8, 1.1] [2.25, −0.85, −6.21]

7 × 5 × 4 [0.3, 0.5 0.8]
[0.5, 0.8, 1.0]

[3.11, −0.30, −2.90]
[−0.49, −3.15, −4.32]

7 × 6 × 4 [0.5, 0.9, 1.2] [7.14, −0.15, −3.17]

8 × 7 × 5 [0.4, 0.75, 1.1]
[0.75, 1.1, 1.3]

[4.30, 0.43, −1.62]
[0.38, −1.65, −2.49]

8 × 7 × 6 [0.6, 1.2, 1.4] [4.89, 2.28, −1.42]

9 × 8 × 7 [0.6, 1.0, 1.2]
[1.0, 1.2, 1.4]

[3.18, 0.75, −0.07]
[0.42, −0.39, −1.06]

10 × 9 × 7 [0.8, 1.2, 1.5] [7.00, 3.88, 1.59]
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TABLE V

Average PESQ Results When a Complex-Domain DNN is Used to Estimate the STFT of Direct Speech and 

the cIRM

Sim. RIR Real RIR Sim. RIR + Noise

cRM - stand. DNN 3.42 3.35 2.39

STFT - complex DNN 1.86 1.76 1.71

cRM - complex DNN 2.90 2.80 2.06
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TABLE VI

Average PESQ Improvement Scores When the Target is Direct Signal With Early Reflections. Improvement is 

relative to THE unprocessed MIXTURE. BOLD IDENTIFIES THE SYSTEM THAT PERFORMED BEST

Sim. RIR Real RIR

WPE 0.23 0.26

RM 0.19 0.23

cRM 0.31 0.33

PSM 0.30 0.33
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