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Abstract

No-reflow phenomenon is defined as the reduced blood flow after myocardial ischemia. If 

prolonged it leads to profound damages in the myocardium. The lack of a detailed knowledge 

about the cells mediating no-reflow restricts the design of effective therapies. Recently, O'Farrell et 

al. (2017) by using state-of-the-art technologies, including high-resolution confocal imaging in 

combination with myocardial ischemia/reperfusion mouse model, reveal that pericytes contribute 

to the no-reflow phenomenon post-ischemia in the heart. Strikingly, intravenous adenosine 

increased vascular diameter at pericyte site after cardiac ischemia. This study provides a novel 

therapeutic target to inhibit no-reflow phenomenon after myocardial ischemia.
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Cardiovascular diseases are among the major public health concerns in the world [1]. 

Myocardial ischemic disease leads to disability, and is considered the main cause of 

mortality worldwide [2]. Early coronary reperfusion of the infracted heart is the major 

therapeutic strategy to treat this heart disease [3,4]. After re-opening of the coronary artery 

post-temporary ischemia, portions of the microvasculature may fail to completely reperfuse, 

leading to the no-reflow phenomenon [5]. This phenomenon happens in approximately 30% 

of patients who receive coronary intervention after acute myocardial infarct. No-reflow leads 

to worse patients' prognosis, and is correlated with infarct expansion, more congestive heart 

failure, and increased death [6–8]. Thus, no-reflow may persist for several weeks, and 

predicts adverse clinical outcome [8]. Therefore, approaches to improve microvascular blood 

flow to treat myocardial ischemia are needed.

The pathophysiological mechanisms involved in no-reflow are poorly understood. Which are 

the cells and the underlying molecular mechanisms involved in this process that directly 

contribute to myocardial ischemic disease remains unknown. The lack of a detailed 

knowledge about the cellular contributors mediating no-reflow restricts the design of 
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effective treatments. Elucidating the causes of the no-reflow phenomenon should be 

beneficial for patients with myocardial ischemia. Now, in a recent article in eLife, O'Farrell 

and colleagues reveal that pericytes participate in the no-reflow phenomenon post-ischemia 

in the heart [9]. The authors investigated the role of pericytes after transient cardiac ischemia 

by using state-of-the-art techniques, including high-resolution confocal imaging in 

combination with myocardial ischemia/reperfusion mouse model. O'Farrell and colleagues 

imaged cardiac pericytes in NG2-DsRed mice after induction of left anterior descending 

(LAD) coronary artery occlusion. These experiments unveiled that microvascular blockage 

localized predominantly in close proximity to pericytes, when compared with random 

distribution of hypothetical blockages throughout the heart vasculature [9]. Importantly, the 

diameter of the vascular lumen measured at pericyte's somata was reduced by more than 

one-third, indicating that pericytes' processes constrict cardiac blood vessels post-ischemia 

[9]. Strikingly, intravenous adenosine increased vascular diameter at pericyte somata after 

cardiac ischemia, suggesting that adenosine reduces no-reflow by reversing the constriction 

caused by pericytes evoked by ischemia [9]. This study provides a new role for pericytes in 

the cardiac microenvironment, and offers a novel therapeutic target to inhibit no-reflow 

phenomenon after myocardial ischemia (Fig. 1).

Here, we discuss the findings from this work, and evaluate recent advances in our 

understanding of the roles of pericytes in the heart.

1. Perspectives/future directions

The main findings from this study are based on the data obtained from NG2-DsRed mice 

[9]. Nevertheless, NG2 proteoglycan is not specific to pericytes, as other cells may express 

this protein [10]. Interestingly, pericytes that do not express NG2 proteoglycan were also 

reported [11]. Currently, there is no single molecular marker yet that can be used to 

unequivocally label exclusively the whole population of cardiac pericytes. Interestingly, not 

all perivascular cells are necessarily pericytes. In addition to pericytes, other cells have been 

described in this position surrounding the blood vessels, including macrophages [12], 

fibroblasts [13], adventitial cells [14], and vascular smooth muscle cells [15]. Altogether this 

brings the possibility that some of the observations by O'Farrell et al. (2017) are in a 

different, non-pericytic, cell population. Presently, the state-of-the-art identification of 

pericytes in tissue preparations relies on a combination of anatomical localization (covering 

endothelial cells and located below the basal lamina), morphology, and the co-expression of 

at least two pericytic molecular markers. The discovery of a single molecular marker 

specific to all cardiac pericytes will facilitate the study of the behavior of these cells in the 

heart.

Pericytes are heterogeneous regarding their distribution, phenotype, marker expression, 

origin, and function [16,31–47], several subtypes have been characterized in various organs 

[11,17–20], including the heart [21]. Cardiac pericytes subpopulations, type-1 (NG2 +/

Nestin-GFP−) and type-2 (NG2 +/Nestin-GFP +) pericytes, were identified in the 

perivascular space of cardiac blood vessels using bitransgenic Nestin-GFP/NG2-DsRed mice 

[21]. Interestingly, after LAD coronary artery ligation, type-1 pericytes multiply, and are 

recruited to the infarcted area after myocardial infarction [21]. Whether both pericyte 
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subpopulations contribute to the no-felow phenomenon after cardiac ischemia remains to be 

examined. Are present during brain embryogenesis remains unknown. Or, more intriguingly, 

is a specific pericyte subset responsible for vasoconstriction after ischemia in the heart?

Although O'Farrell and colleagues suggest that post-ischemic vasoconstriction depends on 

pericytes in the heart [9], they do not explore the molecular and cellular mechanisms 

involved in this process. Which signaling molecules are necessary for pericytes to reduce the 

vascular tone after cardiac ischemia? Recently, it has been shown, after spinal cord injury, 

that expression of the enzyme aromatic L-amino acid decarboxylase (AADC) is essential for 

pericyte-induced vasoconstriction [22]. Is this enzyme also important in cardiac pericytes 

post-ischemia? In addition to studies in genetic mouse models, transcriptomic and single cell 

analysis of cardial pericytes after infarct will allow us to understand better the molecular 

mechanisms involved in the no-reflow phenomenon in the cardiac microenvironment. 

Furthermore, it remains not understood whether other cells are involved and cross-talk with 

pericytes during the no-reflow phenomenon. Are other cells inducing pericytes to contract 

and promote vasoconstriction? Additionally, as discussed here, there are several other 

perivascular cells in the cardiac vasculature. How other perivascular cells participate in this 

process remains to be elucidated. It well known that pericytes produce several signals well 

as respond to various molecules, communicating with other cells, such as endothelial cells. 

In contrast, very little is known about the cross-talk within the population of pericytes. 

Future studies will need to explore how pericytes communicate with their peers in the heart.

The use of transgenic mouse models in which specific cell types can be genetically ablated 

has proved valuable for understanding the role of specific cell types in physiological and 

pathological states [48–54]. O'Farrell and colleagues place pericytes as central responsibles 

in cardiac vasoconstriction [9]. Nevertheless, pericytes have not yet been deleted from the 

heart after myocardial ischemia. Thus, the role of pericytes in the no-reflow phenomenon 

remains uncertain. Does the vasoconstriction still happen or alleviate in the absence of 

cardiac pericytes?

Adenosine is a purine nucleoside with several physiopathological roles [23]. This molecule 

is found endogenously in the extracellular space of multiple tissues [24]. O'Farrell and 

colleagues suggest that administered endogenously adenosine reduces pericyte-derived 

vasoconstriction after ischemia [9]. It remains to be explored whether the endogenous 

adenosine is essential for the role of pericytes in the normal cardiac vascular tone. 

Adenosine acts via several adenosine receptors which are all members of the G-protein-

coupled receptor family [25]. Pericytes have been shown to express adenosine A2 receptors 

[26]. However, it remains unexplored which adenosine receptors are present on cardiac 

pericytes, and which of those are important for pericytes to constrict the underlying 

endothelial bed. Moreover, other cell populations may express adenosine receptors, 

including several cardiac vascular cells, such as endothelial cells [27]. Thus, it remains 

unclear whether the observed vasodilation after adenosine administration is exclusively due 

to pericytes, as other cells may be contributing as well. The modern technologies which 

delete single genes in specific cells in adult mice has allowed us to answer important 

questions regarding the roles of distinct cell types in the regulation of several physiologic 

and pathologic events. Adenosine receptors have not been conditionally deleted from 
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pericytes in the heart, so there is no direct evidence that pericytes are the only/main 

functionally important cell responding to the adenosine treatment. This issue may be 

addressed by analyzing the effect of genetic ablation of adenosine receptors in cardiac 

pericytes on the vascular tone in the heart. The generation of A2R floxed mice to be crossed 

with pericyte-specific inducible CreER drivers [17], will allow us to specifically delete A2 

adenosine receptor in pericytes. In addition to studies genetic mouse models, transcriptomic 

and single pericyte analysis represent fundamental tools that will help us understand the 

roles of pericytes within the heart.

Although pericytes are involved in the no-reflow phenomenon [9], it remains to be examined 

the molecular and cellular mechanisms involved in this process. Which endogenous 

signaling molecules are needed to activate pericytes-dependent vasoconstriction? A recent 

study, in the spinal cord, has shown that expression of the enzyme aromatic L-amino acid 

decarboxylase (AADC) is important for pericyte-induced vasoconstriction after spinal cord 

injury [22,55]. Is this enzyme also important in the cardiac pericyte after myocardial infarct? 

Interestingly, recently it has been shown that cerebral pericytes are plastic, and are able to 

extend processes and replace adjacent pericytes, exerting their function [28]. Pericytes' 

plasticity in the heart should be explored in future studies.

Interestingly, signals from the sympathetic nervous system regulate pericytes' function in the 

bone marrow microenvironment [29,30]. O'Farrell and colleagues showed that half of 

cardiac pericytes are located close to sympathetic neurons varicosities, implicating a 

possible role of noradrenergic regulation in pericytes' behavior [9]. Future experiments will 

reveal whether this regulation in fact occurs. Analysis of pericytes in the heart after genetic 

sympathectomy or achieved by neurotoxin 6-hydroxydopamine treatment will reveal the role 

of sympathetic axons in pericytes control of vascular tone. Additionally, deletion of 

adrenergic receptors in pericytes will allow to elucidate the role of noradrenaline on cardiac 

pericytes.

In conclusion, the study by O'Farrell and colleagues reveal a novel important role of 

pericytes in the ischemic heart. Nevertheless, our understanding of cross-talk between 

different cell types present in the cardiac vascular microenvironment remains limited, and 

the complexity of these interactions in distinct physiologic and pathologic conditions should 

be elucidated in future studies. A big challenge faced now is how to translate animal 

research into humans. Improving the availability of human tissue samples may help to reach 

this goal.
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Fig. 1. 
Cardiac pericytes induce vasoconstriction after myocardial ischemia.

Pericytes are present surrounding the vasculature of the heart. The study of O'Farrell and 

colleagues now suggests a novel role for pericytes in the vasculature of infarcted hearts [9]. 

Cardiac pericytes induce blood vessel constriction post-ischemia, which is reversed by 

adenosine delivery. Future studies will reveal in detail the cellular and molecular 

mechanisms involved in this process in the tissue microenvironment in the heart.
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