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Abstract

Objective—This paper proposes a novel method to localize origins of premature ventricular 

contractions (PVCs) from 12-lead electrocardiography (ECG) using convolutional neural network 

(CNN) and a realistic computer heart model.

Methods—The proposed method consists of two CNNs (Segment CNN and Epi-Endo CNN) to 

classify among ventricular sources from 25 segments and from epicardium (Epi) or endocardium 

(Endo). The inputs are the full time courses and the first half of QRS complexes of 12-lead ECG, 

respectively. After registering the ventricle computer model with an individual patient’s heart, the 

training datasets were generated by multiplying ventricular current dipoles derived from single 

pacing at various locations with patient-specific lead field. The origins of PVC are localized by 

calculating the weighted center of gravity of classification returned by the CNNs. A number of 

computer simulations were conducted to evaluate the proposed method under a variety of noise 

levels and heart registration errors. Furthermore, the proposed method was evaluated on 90 PVC 

beats from 9 human patients with PVCs and compared against ablation outcome in the same 

patients.

Results—The computer simulation evaluation returned relatively high accuracies for Segment 

CNN (~78%) and Epi-Endo CNN (~90%). Clinical testing in 9 PVC patients resulted an averaged 

localization error of 11 mm.

Conclusion—Our simulation and clinical evaluation results demonstrate the capability and 

merits of the proposed CNN-based method for localization of PVC.
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Significance—This work suggests a new approach for cardiac source localization of origin of 

arrhythmias using only the 12-lead ECG by means of CNN, and may have important applications 

for future real-time monitoring and localizing origins of cardiac arrhythmias guiding ablation 

treatment.

Index Terms

12-lead ECG; Convolutional Neural Network; Source Localization; Endocardium; Epicardium; 
Premature Ventricular Contraction; Cardiac Arrhythmia; Whole Heart Segmentation

I. Introduction

Since its invention, the 12-lead ECG has been widely used as a diagnostic test for cardiac 

arrhythmias and it can be recorded rapidly with portable equipment for a long time by using 

a Holter monitor. [1] A normal heart beat would produce four entities on the ECG: a P wave, 

a QRS complex, a T wave and a U wave. They represent different electrophysiological 

stages of the heart: atrial depolarization, ventricular depolarization, ventricular 

repolarization and papillary muscle repolarization. Among them, the QRS complex is of the 

most interest to cardiac electrophysiologists since a majority of ventricular arrhythmias are 

reflected by the changes of morphology on the QRS complex.

A premature ventricular contraction (PVC) is a type of ectopic beat, in which the heart beat 

is initiated by an ectopic pacemaker in the ventricles. It is one of the most common 

ventricular arrhythmias and its prevalence is associated with many factors. The prevalence of 

PVC is >6% among 15,792 adults (aged 45–65 years) from the US based on a 2-minute 

ECG in a large cross-sectional analysis. [2] If not treated in time, the condition of PVC may 

degenerate into other ventricular arrhythmias such as ventricular tachycardia (VT) and 

ventricular fibrillation (VF) and finally lead to sudden cardiac death. Radiofrequency 

catheter ablation [3] is a minimally invasive procedure that by delivering energy to the 

sections of the heart who are prone to producing arrhythmias, the arrhythmias are terminated 

and the patient is treated. To localize the site of ablation, pace-mapping is a predominant 

technique being used in clinical settings. [4] If the morphology of QRS complex by pacing 

at a site matches well with the VT or PVC observed on the 12-lead ECG, this site is 

considered to be a potential ablation site. Pace-mapping is done by stimulating at different 

endocardial sites, so it is invasive. Non-invasively, researchers have been investigating 

features of the QRS complex obtained from the 12-lead ECG to help identify ablation targets 

for PVC and VT. [5]–[7] Some typical characteristics of the QRS complex used for 

localization are QRS width, QRS axis, QRS patterns (qR, QS, RsR’ and so on), R wave 

amplitude and concordance.

Some characteristics of the QRS complex are easy to calculate automatically, however, for 

other features that involve pattern recognition, it is subjective to some degree and requires 

expertise obtained from a long-time training.

Neural network is well known for recognizing patterns and classification. [8]–[10] The 

accuracy can be higher than 90% given ample training samples. [11] The input to the neural 

network can be the original time course of the 12-lead ECG, [12] features extracted from 
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time domain, [13] statistical features, [14], [15] features extracted from frequency domain, 

[16] components resulting from different transforms, [17]–[19] and outputs from some 

clustering algorithms. [20] The application of neural network can be the classification 

among ventricular arrhythmias, [12], [15], [16] classification between normal heart beat and 

arrhythmias [17], [21], [22] or among all types of arrhythmias. [20] Another important 

application is the discrimination between healthy subjects and patients, such as patients with 

myocardial infarction [23]–[25] and patients with coronary artery disease. [18] These 

applications of neural network are mostly concerned about the state of the heart, whether it 

is in arrhythmias or have cardiac diseases.

We propose to classify and localize origins of cardiac arrhythmias throughout the ventricles 

by applying neural networks to 12-lead ECG. The ventricles are divided into 25 segments 

based on standard myocardial segmentation of the left ventricle [26] and expanded it to the 

right ventricle. A realistic anisotropic ventricle computer model is used to generate QRS 

complexes of 12-lead ECG from pacing at all possible ventricular locations. The time course 

of QRS complexes generated are then fed to convolutional neural network (CNN) for 

classification and localization purpose.

Epicardial mapping and ablation have expanded considerably in the past few years. It was 

reported that 13% to 17% VT ablation procedures were epicardial mapping or ablation. [27], 

[28] On ECG, epicardial VT is reflected as a slow onset of the QRS because the initial part 

of the wave front progresses slowly until it reaches the Purkinje system at the 

subendocardium. [29] The intracardiac delay of electrical conduction produces a slurred 

initial part of the QRS complex (pseudo Δ wave) [30] So the initial part (first half) of the 

QRS is critical for the detection of an epicardial or endocardial focus. In this study, we use 

the first half of QRS complexes generated by the ventricle computer model as input to the 

CNN to classify between an epicardial ectopic beat and an endocardial ectopic beat.

Thus, our proposed method consists of two neural networks: Segment CNN with 25 

classifications and Epi-Endo CNN with 2 classifications. The localization of origins of PVC 

is a function of probability distribution outputs of the two CNNs and the center of gravity of 

each segments in the ventricular model. Our proposed method was applied to the real 12-

lead ECG collected from 9 PVC patients who underwent ablation treatment.

There are other studies to localize the origin of PVC from the 12-lead ECG. Van Dam et al. 
used myocardial activation imaging technique based on an equivalent double layer model to 

localize the PVC origin, [31]–[33] although positions of 12-lead ECG were unknown, thus 

the accuracy of results was reduced. Also, a quantitative measurement of localization error 

was lacking. In our study, electrodes’ positions were digitized and the average localization 

error was presented by calculating the spatial distance between the CNN predicted sites of 

origin of PVC and successful ablation sites recorded from EP study in the patient.

Recently, a patient specific model based intracardiac electrograms simulation was done to 

resemble clinical body surface signals. [34] Our study would be considered a step forward as 

the model-based noninvasive identification of ablation targets.
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For a more accurate estimation of cardiac activation sequence to localize origins of PVC or 

VT, a noninvasive 3-dimensional cardiac electrical imaging technique was developed based 

on the body surface potential mapping. [35], [36] It was evaluated under a variety of animal 

studies [37]–[41], in pathological hearts [42], and applied to detect high-frequency drivers of 

atrial fibrillation. [43]

II. Method

The rationale behind this study is that we assume PVCs are generated by focal sources, and 

if we train CNN with all the possible 12-lead ECGs resulting from a single-site pacing 

covering the ventricular volume with a certain level of noise, the CNN will be able to 

identify which segment the origin of PVC lies in and whether it is an epicardial or 

endocardial source given a set of 12-lead ECGs. And depending on the probability 

distribution of CNN output, we could also give an estimation of source location based on the 

classification information.

A. Realistic Anisotropic Ventricle Computer Model

The ventricular excitation was simulated by a cellular automaton heart model. As described 

in the paper by He et al., [44] heart geometry was constructed from CT images of a human 

subject and discretized into around 38,000 cellular units with a side length of 1.5 mm. Then 

a generalized ventricle conduction anisotropy was incorporated into the model. The 

myocardial fiber orientations rotated counterclockwise over 120° from the outermost layer 

(epicardium, −60°) to the innermost layer (endocardium, +60°) with equivalent increment 

between the consecutive layers. The conduction velocity along the fiber was 0.6 m/s, and 0.2 

m/s transverse to the fiber, respectively. Also the longitude intracellular conductivity was set 

as 0.3 S/m and the transverse intracellular conductivity was 0.075 S/m, respectively. The 

action potential and the vector of local fiber orientation were set individually over all the 

ventricular cellular units. The equivalent current-dipole density of each unit was computed 

as the product of the myocardial conductivity tensor and the spatial gradient of instantaneous 

transmembrane potential. Each dipole has three orthogonal components. Finally, cellular 

units were further grouped into 3,887 dipoles according to their segment number. The time 

resolution of electric potentials is 1 millisecond. This ventricle current-dipole model was 

used previously in the simulation study of a 3-dimensional cardiac imaging technique. [35], 

[36]

B. Segmentation of the Whole Ventricle and Extraction of Epicardium and Endocardium

In the ventricle current-dipole model which consists of 3,887 cardiac dipoles, the left 

ventricle was segmented according to AHA standardized myocardial segmentation into 17 

segments, [26] and the right ventricle was segmented in a similar way as the left ventricle 

into 8 segments. Thus, the whole ventricle was classified into 25 segments in total. The 

position and the number of each segment are shown in the middle column of Fig. 1. The 

number of cardiac dipoles each segment includes is in the parentheses on the bottom. The 

left column in Fig. 1 is a visualization of 25 segments. The dipoles lying on epicardium and 

endocardium were identified and labeled as 1 and 2 respectively, and all other dipoles were 
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assigned 3 as transmural dipoles. Both the left side and the right side of the septum are 

considered as endocardium.

C. 12-lead ECG for Simulation

The torso and lungs were segmented from a high-resolution male torso MRI images (ViP 

V2.0 IT’IS Foundation, Zürich, Switzerland). Then the boundary element model of heart-

torso was built using a commercial software (Curry 6.0, Neuraoscan, North Carolina, USA). 

208 body surface electrodes were placed on the front and back of body surface. By 

multiplying the current-dipoles with the leadfield matrix between each dipole and each 

electrode, we could get body surface potentials. Among these signals, nine were chosen to 

generate 12-lead ECG. Three electrodes were selected to represent the electrodes placed on 

left leg, left arm, and right arm, respectively. So lead I, II III and lead aVL, aVR and aVF 

could be derived from the signals of these electrodes. Other six electrodes were selected as 

V1 to V6 according to their anatomical locations.

D. Training and Testing of Convolutional Neural Network

Convolutional neural network (CNN) is a type of deep, feed-forward artificial neural 

network. We used a deep learning toolbox in MATLAB developed by Rasmus Berg Palm 

[45] to setup, train and test CNN. It uses a sigmoid function as the activation function for 

feed forward propagation and a gradient descent projection method as the back propagation 

algorithm. Convolution and pooling were done in 2-dimension (2-D). The stride, namely the 

number of unit that convolutional kernel shifts each time, is equal to 1. There is no padding 

in convolutional layers. The 2-D convolutional kernel has an equal size along both 

directions. To ensure the applicability of the convolutional kernel, the input should also be in 

square shape. Thus, we added 4 more leads derived from three limb leads (LL for left leg, 

RA for right arm, LA for left arm): LL−RA−LA; LA−RA−LL; RA−LA−LL; (LL+RA

+LA)/3. The last one corresponds to the Wilson central terminal. [46] Along the time 

dimension, we down-sampled the time courses of QRS (or first half of QRS) to 16 time 

points before adding noise in simulation. Therefore, each input set of ECGs is a 16 ×16 

square matrix. This size results in the fast response of both CNNs.

In order to localize the origins of PVCs, we utilized the classification information from two 

types of CNN: Segment CNN and Epi-Endo CNN. The study diagram of this section is 

shown in Fig. 2.

Segment CNN—The cardiac dipole components resulted from pacing were multiplied by 

the lead field matrix to generate body surface electrical potentials. Thus, we would have 

3,887 sets of 12-lead ECGs corresponding to pacing at 3,887 locations in the ventricular 

model. QRS complexes were extracted from each lead. A certain level of Gaussian white 

noise (20 dB, 10 dB or 5 dB) was added to all the leads 10 times to generate noise 

contaminated 12-lead QRS complexes. Adding a certain level of noise 10 times is for 

increasing the robustness of Segment CNN to this level of noise since we would have ample 

training samples representing different noise variations. In total, our data pool had 38,870 

sets of noise-contaminated 12-lead QRS complexes. 10% of the whole data was used for 

testing, which means 3,887 sets were the testing data. In order to test the CNN without 
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segment bias, within each segment, 155 (≈ 3,887/25) sets of 12-lead QRS complexes were 

randomly selected each time for testing. The remaining 90% data were used for training 

procedure. The Segment CNN consisted of 6 layers: Input layer (A set of 12-lead QRS 

complexes), Hidden layer 1 (convolutional layer with a kernel size of 5), Pooling layer 1 

(sampling scale of 1), Hidden layer 2 (convolutional layer with a kernel size of 3), Pooling 

layer 2 (sampling scale of 2), and Output layer (25 neurons for 25 segments). The batch size 

was 23, alpha was 1 and the number of epochs was 10. After a ten-fold cross-validation, the 

accuracy and precision rate of each segment of Segment CNN were calculated.

Epi-Endo CNN—Similar to Segment CNN, 1,709 dipole sources located on epicardium 

and endocardium were identified and were used to generate single-site pacing 12-lead 

ECGs. QRS complexes were extracted and the first half of 12-lead QRS complexes was 

used. Gaussian white noise of a specific SNR was added 10 times. Thus for Epi-Endo CNN, 

we had 17,090 sets of first half of QRS complexes from 12 leads. 10% of this data was used 

for testing, which means 855 (≈1,709/2) sets were randomly selected from each category. 

The remaining 90% data were used for training. The Epi-Endo CNN consisted of 6 layers: 

Input layer (first half of QRS complexes from 12-lead ECGs), Hidden layer 1 (convolutional 

layer with a kernel size of 5), Pooling layer 1 (sampling scale of 2), Hidden layer 2 

(convolutional layer with a kernel size of 3), Pooling layer 2 (sampling scale of 2), and 

Output layer (2 neurons corresponding to epicardium and enodcardium). Parameters were 

set as following: batch size = 25, alpha = 3 and number of epochs = 10. After a ten-fold 

cross-validation, the accuracy and precision rate of Epi or Endo were calculated.

E. Localization of Origins of PVCs

After training procedures, we tested the localization performance of these two CNNs by 

feeding a new set of data, which included 12-lead ECGs with a certain SNR resulting from 

pacing at all possible dipole locations. For each set of 12-lead ECGs, Segment CNN would 

assign a probability to each segment and Epi-Endo CNN would tell how possible it was from 

epicardium or endocardium. Based on these two probability distributions, the estimation of 

source location was calculated as following:

S = ∑
i = 1

N
Pi × ( ∑

j = 1

2
P j × CoGij) (1)

In (1), S is source location, Pi is the normalized probability of ith segment and its adjacent 

segments, the output of Segment CNN. N is the number of adjacent segments each segment 

has based on the ventricle segmentation in Fig. 1. Pj is the probability of Epi or Endo, the 

output of Epi-Endo CNN. And j is 1 for Epi; 2 for Endo. CoGij is the center of gravity of Epi 

or Endo dipole sources in ith segment.

The segment with the maximum probability from Segment CNN was considered as the 

output segment. Its adjacent segments (sharing boundaries with the output segment) were 

determined based on the ventricle segmentation in Fig. 1. The endocardial center of gravity 

and epicardial center of gravity in each segment were calculated. By multiplying spatial 
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locations of epicardial and endocardial centers of gravity with the probabilities of 

epicardium and endocardium from Epi-Endo CNN, we obtained epi-endo-informed centers 

of gravity of the output segment and its adjacent segments. This process corresponds to the 

multiplication inside the parentheses in (1). Since some dipole sources locate near the 

boundary of two segments, it was probable that Segment CNN would assign it to its 

neighboring segment. This is why we took the adjacent segments of an output segment into 

consideration to decrease the localization error (LE). And it was done by first normalizing 

the output probabilities of Segment CNN only among the output segment and its adjacent 

segments, and then multiplying the normalized probability with each epi-endo-informed 

center of gravity. Adding all up, we estimated the source location.

F. Application to PVC Patients

We collected data from 9 PVC patients (Male = 3, Female = 6, average age = 48.3 ± 12.3 

years old). The patient statistics were summarized in Table 1. None of them have undergone 

ablation procedure before and none of them have structural heart disease. Study protocols 

were approved by the Institutional Review Board of University of Minnesota and Shanghai 

Ruijin Hospital (affiliated with Shanghai Jiao Tong University School of Medicine, 

Shanghai, China). Written consent forms were obtained from all patients. For each patient, 

we had CT images of heart, lungs and torso. Then a boundary element model was built 

including lungs and torso by using a commercial software (Curry 6.0, Neuroscan, North 

Carolina, USA). After the segmentation of patient’s heart, we registered our ventricular 

model with it. Prior to the EP study, 208 Ag-AgCl carbon electrodes were placed on the 

front and back of body surface to record body surface electrical potentials with 2kHz 

sampling rate for about 10–30 minutes and positions of electrodes were digitized (Fastrak, 

Polhemus Inc., Colchester, VT, USA). During the recording, all of the patients have 

spontaneous PVCs recorded and 2 of them also have non-sustained VT detected. Nine 

electrodes were selected to form 12-lead ECGs later based on their anatomical positions. We 

registered the generic model with the patient’s heart based on the least sum of distances 

between the two. By using Curry 6.0, the leadfield between these nine electrodes and our 

generic ventricular model was generated. After the EP study, we also collected CARTO files, 

which contained spatial locations of successful ablation sites. And CARTO data were 

registered with the patient’s heart based on the landmarks of the geometry of ventricles 

recorded by the CARTO system. The successful ablation sites are considered as the origins 

of PVCs in this study.

QRS complexes of 10 PVCs were exported from body surface potential recordings of each 

patient. Body surface recordings were first filtered by a bandpass filter from 1 Hz to 30 Hz. 

After filtering, the QRS and the first half of QRS were down-sampled to 16 time points 

respectively to construct input for Segment CNN and Epi-Endo CNN. To estimate the SNR, 

signals of the same length as QRS complexes of PVCs between heart beats were also 

exported and were considered as noise. Average SNR is defined as the average of SNR of 

each channel. Then we trained and tested two CNNs using simulated 12-lead ECGs with the 

average SNR between QRS complexes and Gaussian white noise. Training and testing 

details are described in Section D. The only difference is that the leadfield used to generate 
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12-lead ECGs here is specific to each patient. Finally, 12-lead ECGs of 10 PVCs were fed 

into two trained CNNs to determine source locations.

G. Statistical Analysis

The accuracy of Segment CNN and Epi-Endo CNN were presented as mean ± SD. The 

localization error was defined as the spatial distance between the estimated source location 

and the location of the dipole source in the generic ventricular model that generates the 12-

lead ECGs by pacing in simulation, and was defined as the spatial distance between the 

estimated source location and successful ablation sites in patients’ CARTO data.

III. Results

Table 2 shows the accuracy and precision of individual segment when Segment CNN was 

trained and tested on three different Gaussian white noise levels. Accuracy is defined as the 

percentage of dipole sources being correctly classified within each segment. Precision is 

defined as when Segment CNN predicts it is in one segment, how often it is correct. Fig. 3 

shows the precision matrices of Segment CNN. Each column is the precision vector for this 

segment. When the probability of Segment CNN assigning this segment to other segments is 

higher than 5%, it is labeled in black in the figure. For example, when trained and tested on 

20 dB, for segment 4, Segment CNN would have a relative higher probability of assigning 

segment 19 and segment 10 to segment 4 even though the precision for segment 4 is 74.1% 

from Table 2. Table 3 is the precision matrices of Epi-Endo CNN trained and tested on 

different noise levels.

When we tested the localization performance of two CNNs, we tested them by feeding them 

3,887 new sets of 12-lead ECGs by pacing at a single site with a variety of noise levels (25 

dB, 20 dB, 10 dB, 5 dB, 0 dB, −5 dB and −10 dB). Fig. 4 presents the LEs along with 

average accuracies of Segment CNN and Epi-Endo CNN. The left part of the figure is the 

average LE when Segment CNN and Epi-Endo CNN were tested on 12-lead ECGs from all 

possible pacing sites in the ventricular model with different noise levels. And during the ten-

fold cross validation, namely trained and tested on 20 dB 12-lead ECGs, the average 

accuracy of Epi-Endo CNN was 87.68 % and the average accuracy of Segment CNN was 

77.71 %. The middle part and the right part are presented in a similar way as the left part. 

The exact numbers displayed on Fig. 4 are also included in Table 4.

IV. Discussion

This study shows the feasibility of utilizing convolutional neural network to localize origins 

of PVCs from 12-lead ECGs. We tested the method in both simulation data and clinical 

patients’ data, and obtained good localization errors in both situations.

A. Properties of Segment CNN and Epi-Endo CNN

The information in Fig. 3, Table 2 and Table 3 could be obtained when we train and test two 

CNNs on any patient-specific leadfield and under any noise level. It will guide us and give 

us a prior knowledge of how good two CNNs perform before we feed testing (or clinical) 

data to calculate the source location. From Fig. 3, we could see as SNR decreases, it is more 
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likely for Segment CNN to assign dipole sources from other segments to one segment, 

which means the precision rates have dropped. The number of blocks labeled in the 

precision matrix increases as SNR decreases. Table 3 is the precision matrices of Epi-Endo 

CNN under different noise level. The common feature of these three precision matrices is 

that it is more likely for Epi-Endo CNN to assign sources on endocardial surfaces as 

epicardial sources. From Table 2, we could know the percentage of dipole sources in each 

segment that are correctly detected, namely the accuracy of each segment. And also how 

confident we are in the detection results if one dipole source is predicted to be from some 

segment.

B. Localization Errors of CNN

From Fig. 4 and Table 4, we could summarize the following trends of the performance of 

two CNNs: (1) as SNR drops, the accuracies of both CNNs decrease; (2) as SNR of input 

data drops, the average LE increases; (3) the average LE is the result of two factors, one is 

the SNR that two CNNs are trained and tested, the other is the similarity between input data 

and tested data. The accuracy of Segment CNN of 10 dB is only 6 % less than that of 20 dB. 

So when the SNR of input data is 10 dB and less than 10 dB, the average LEs of CNNs 

trained with 10 dB are all smaller than those of CNNs trained with 20 dB. This is when the 

similarity factor plays a dominant role. However, when the accuracy of Segment CNN drops 

to 58 %, which is 13 % less than that of 10 dB, the accuracy plays an important role in 

determining source locations. Because even though input data of 5 dB is more similar to 

CNNs trained with 5 dB, the average LE is larger than that of CNNs trained with 10 dB and 

input data of 5 dB. Actually, the average LEs of CNNs trained with 5 dB are all larger than 

those of CNNs trained with 10 dB. Finally, when we compare the performance between 

CNNs trained with 20 dB and trained with 5 dB, the average LEs of input data with 0 dB 

and less of CNNs trained with 5 dB are smaller than those of CNNs trained with 20 dB. This 

is because even with a much higher training accuracy, CNNs trained with 20 dB fail to 

classify 12-lead ECGs that are too unlike the training data.

A conclusion from the above simulation results is when the SNR of input data is very low, it 

is best to train and test CNNs with around 10 dB to minimize LEs, and when the SNR of 

input data is good, it is best to train and test CNNs with a noise level that is the same as the 

SNR of input data.

C. Localization Errors of CNN with Heart Registration Errors

Since we register our ventricle current-dipole model with patient’s heart and train and test 

CNNs using this model and finally use CNNs to localize origins of PVCs, it is necessary to 

investigate the influences of heart registration errors on the localization performance of 

CNNs. So Fig. 5 shows the average LE when we trained and tested CNNs with correct 

registration, and applied to localization when the input 12-lead ECGs were generated by the 

leadfield with heart registration errors. The SNR of training and testing data is the same as 

the SNR of input data for testing localization performance.

Three categories of heart registration errors were investigated: shift, rotation and scaling. 

Overall, all the average LEs are larger than those of correct registration. Within shift group, 
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because heart is already very close to the front body surface, so we could only move heart 

forward by 5 mm. For comparison purpose, we also moved heart backwards by 5 mm. Heart 

moving to the right always generated a larger LE than moving to the left. Within rotation 

group, heart rotating to the right always generated a larger LE than rotating to the left. 

Within scaling group, there is no obvious trend. Among all the registration errors, we found 

that shift group gave higher LEs than the other two groups on average.

Based on the above analysis of the registration error results, we should pay attention when 

we need to shift the ventricular model for the registration with patient’s heart. And CNNs 

are generally robust to a variety of heart registration errors if we compare these LEs with 

those that are from correct registrations: 10.43 ± 9.77 mm (20 dB), 10.61 ± 9.64 mm (10 dB) 

and 11.73 ± 9.80 mm (5 dB). Generally, the above heart registration errors would increase 

average LE by 1 to 2 mm.

D. Application to PVC Patients

From the last column in Table 1, which is the ablation record from CARTO files, the origins 

of PVC lied in different regions in the ventricles, 1 patient had PVC originated from the left 

anterior fascicle, 6 patients were ablated at free-wall side of right ventricular outflow tract, 

and PVCs in the left 2 patients were detected in the septal side of right ventricular outflow 

tract. On average, the localization error of 9 patients is 10.9 ± 5.5 mm, which is good and 

reasonable considering the source location was estimated solely from 12-lead ECGs. The 

average median registration error is 2.4 ± 0.2 mm. Registration error is one factor that 

contributes to the final localization error. The present results demonstrated the feasibility of 

employing a generic anisotropic ventricle current-dipole model to mimic cardiac activities in 

a patient without structural heart disease. Generally, the more similar a patient’s heart is with 

the ventricular model, the more accurate the predictions will be. And this also shows the 

capability of our method to estimate origins of PVCs from different areas.

E. Merits and Limitations

Merits—This method can be applied to the localization of PVC and focal ventricular 

tachycardia (VT) since the training data is generated from single-site pacing. It is a stable 

method in the sense of two-fold: once CNNs are trained on a patient, they are applicable to 

all the other PVCs and focal VTs from the same patient; structures and parameters of both 

CNNs all remain the same across different subjects and noise levels. It is a robust method 

because average LEs under different noise levels and heart registration errors fluctuate in a 

range of 1 to 2 mm. Since a generic ventricle current-dipole model is used, this method does 

not require high-resolution contrast cardiac CT images. Anatomical CT images show the 

shape and orientation of ventricles are good enough for the registration purpose. Thus, we 

reduce patients’ burden by avoiding injecting contrast into the body. Training and testing of 

CNNs could be done off-line prior to the EP study and it generally takes about 20 minutes. 

The total analysis time including building the boundary element model, registration of the 

ventricular model, calculating the leadfield between electrodes and ventricular model, and 

training and testing CNNs would not be longer than 2 hours in a 64-bit operating system 

with 3.40 GHz Intel i7 processor. Once CNNs have been trained, it would take 0.2 s to 

calculate the source location given QRS complexes from 12-lead ECGs. Other than the 
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previous methods which requires calculating statistical features from 12-lead ECGs, some 

expertise of recognizing patterns from 12-lead ECGs, and are usually limited in the types of 

ventricular arrhythmias, the method we present here is easy to implement, relieves the 

burden on electrophysiology specialists, and finally helps guide ablation procedure by 

providing potential source locations throughout the ventricles.

Limitations—Because it is a single-site pacing ventricle current-dipole model, this method 

is not applicable to multisite excitation activities and reentry VT. The sources of localization 

errors mainly come from two places: one is the registration between the ventricular model 

and patient’s heart, the other is the registration of 12-lead electrodes. While the latter can be 

reduced by digitizing more anatomical landmarks to help the registration of electrodes, the 

former is somehow unavoidable because we use a generic ventricular model. In the future, 

we could employ a personalized cardiac electrophysiology model as have been used in 

cardiac electrical imaging studies [36]-[43][47] to overcome the first source of localization 

errors.

V. Conclusion

We have proposed a novel method to localize the site of origin of premature ventricular 

contractions from 12-lead ECG using convolutional neural networks and a realistic 

anisotropic ventricle computer model. We have evaluated our method under various 

numerical experiments, and achieved good overall performance. By applying it to real data 

in a group of 9 PVC patients, we have shown the capability of our method to target the 

potential ablation site in premature ventricular contractions patients. This work suggests a 

new approach for cardiac source localization of origin of arrhythmias using only the 12-lead 

ECG by means of CNN, and may have important applications for future real-time 

monitoring and localizing origins of cardiac arrhythmias guiding ablation treatment.
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Figure 1. 
Segmentation of the whole ventricles. Left ventricle segmentation follows the AHA 

standardized myocardial segmentation, and the right ventricle is segmented in a similar way 

developed by the authors. The most right column shows the colorful endo-surfaces of both 

ventricles and also the gray epicardium. The bottom panel lists all the segments in order, 

their physical position and the number of cardiac dipoles each segment contains in the 

ventricle current-dipole model. In total, there are 3,887 current dipoles in the model.
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Figure 2. 
Training and Testing study diagram. (A) Segment CNN. All cardiac dipoles are multiplied 

by the leadfield of 12-lead ECG to get the time courses of electric potentials. Then different 

levels of Gaussian white noise were added to the potentials. 90% of the QRS complexes 

(Blue in the bar) from 12-lead ECG were selected as the input to Segment CNN for training 

procedure. The other 10% (White in the bar) were used for testing. The output of Segment 

CNN is a probability distribution among 25 segments, the segment with the maximum 

probability is considered as the output segment. (B) Epi-Endo CNN. Cardiac dipoles located 

at epicardium and endocardium were selected and multiplied by the leadfield of 12-lead 

ECG. Different levels of Gaussian white noise were added and the first half of QRS 

complexes served as the input for Epi-Endo CNN. 90% of the data were for training and the 

other 10% were for testing. The output is a probability distribution among two output 

neurons, either neuron 1 (Epi) or neuron 2 (Endo) would have a larger probability.
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Figure 3. 
Precision Matrix of Segment CNN trained and tested on 3 different SNR signals. Each 

column represents the precision of this segment over all the other segments. All the blocks 

with precision higher than 5% are labeled.

Yang et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Simulation results of CNN. The top two lines are the average accuracy of Segment CNN and 

Epi-Endo CNN trained and tested on 3 different SNR signals. The bottom bars are the 

average localization errors when applying Segment CNN and Epi-Endo CNN together to 

data with different SNRs.
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Figure 5. 
Average localization errors of a variety of heart registration errors. 1=Heart move to the right 

10 mm; 2=Heart move to the left 10 mm; 3=Heart move up 10 mm; 4=Heart move down 10 

mm; 5=Heart move to the anterior 5 mm; 6=Heart move to the posterior 5 mm; 7=Heart 

rotate right 10°; 8=Heart rotate left 10°; 9=Heart rotate upwards 10°; 10=Heart rotate 

downwards 10°; 11=Heart rotate clockwise 10°; 12=Heart rotate counterclockwise 10°; 13= 

Heart inflated 10 mm; 14=Heart deflated 10 mm.
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Figure 6. 
Results of 9 PVC patients. The right y axis represents the accuracy and average precision 

rate of the trained Segment CNN and Epi-Endo CNN. And the left y axis shows the average 

localization error of 10 PVCs from each of 9 patients (blue bars). The orange bars represent 

the median registration error between the general model and patient’s heart geometry. On the 

bottom, x axis is the noise level estimated from 12-lead ECGs and is also the noise level we 

trained and tested the CNNs by adding Gaussian white noise.
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Table 4

Accuracy of Segment CNN and Epi-Endo CNN (trained and tested on 3 different SNR signals) and 

localization errors of applying the CNNs under simulation

CNN SNR 20 dB 10 dB 5 dB

Segment Accuracy (%) 77.71±0.01 71.11±0.53 58.18±0.27

EpiEndo Accuracy (%) 87.68±0.61 76.40±0.07 66.20±0.01

Average LE(mm) of Different Data SNR

25 dB 10.37±9.74 10.56±9.73 11.55±9.74

20 dB 10.43±9.77 10.58±9.74 11.55±9.75

10 dB 10.76±9.65 10.61±9.64 11.56±9.82

5 dB 11.38±9.51 10.94±9.68 11.73±9.80

0 dB 13.09±9.97 11.73±9.65 12.54±9.80

−5 dB 16.63±11.52 14.32±10.57 14.66±10.36

−10 dB 22.47±13.28 19.36±11.94 19.96±11.85
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