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ABSTRACT: Because of its thermal stability, lead-free
composition, and nearly ideal optical and electronic proper-
ties, the orthorhombic CsSnI3 perovskite is considered
promising as a light absorber for lead-free all-inorganic
perovskite solar cells. However, the susceptibility of this
three-dimensional perovskite toward oxidation in air has
limited the development of solar cells based on this material.
Here, we report the findings of a computational study which
identifies promising RbyCs1−ySn(BrxI1−x)3 perovskites for solar
cell applications, prepared by substituting cations (Rb for Cs)
and anions (Br for I) in CsSnI3. We show the evolution of the
material electronic structure as well as its thermal and structural stabilities upon gradual substitution. Importantly, we
demonstrate how the unwanted yellow phase can be suppressed by substituting Br for I in CsSn(BrxI1−x)3 with x ≥ 1/3. We
predict that substitution of Rb for Cs results in a highly homogeneous solid solution and therefore an improved film quality and
applicability in solar cell devices.

■ INTRODUCTION

Organic−inorganic hybrid halide perovskite solar cells (PSCs)
have attracted strong attention in the past few years and are
becoming one of the most promising types of emerging thin-
film solar cells.1−4 In less than a decade, the power conversion
efficiency (PCE) of PSCs has increased from 3.8% in 2009 to
22.7% in 2017.5,6 Despite the high efficiency of PSCs, two
challenges currently hinder their upscaling toward practical
applications.7 One issue is the long-term instability of PSCs,
which is mainly caused by the intrinsic thermal instability of
hybrid perovskite materials.8−13 Encouragingly, it has been
demonstrated recently that mixing the cations or replacing the
organic cation with an inorganic cation can improve thermal
stability and photostability (e.g., substituting FA for MA in
MAPbI3, Rb for Cs in CsSnI3, and Cs for MA in MAPbI3; MA
stands for CH3NH3, and FA stands for NH2CHNH2).

7,14,15

The other concern is the well-documented toxicity of lead
(Pb), which is particularly problematic because lead halide
perovskites decompose into lead compounds that have
significant solubility in water.16 Consequently, an intensive
research effort focused on finding air-stable lead-free perov-
skites suitable as the light-harvesting semiconductor in PSCs is
now underway.9,17−20

Among the various alternatives to lead, tin (Sn) is regarded
as a promising substitute because Sn-based hybrid perovskites
have been shown to exhibit outstanding electrical and optical

properties, including high charge carrier mobilities, high
absorption coefficients, and low exciton binding energies.21−23

Theoretical predictions by Even et al.24 and Chiarella et al.25

also confirmed the promising properties of Sn perovskites, such
as suitable band gaps and favorable effective mass. However,
Sn-based perovskites also have drawbacks, which have limited
their application in efficient PSCs.1,23,26−29 The primary
challenge is the susceptibility of tin toward oxidation from
the +2 to the +4 oxidation state upon exposure to ambient air,
which, in the case of CsSnI3, ultimately results in the formation
of Cs2SnI6, whose relatively weak light absorption across the
visible spectrum is undesirable for a photoabsorber.22,30−33

Consequently, to date, there has been much less research effort
directed at the advancement of tin halide PSCs than their lead
analogues, and their PCE has remained below 10%.27,28

Recently, a PCE as high as 9.0% in PSCs was achieved using
single-crystalline FASnI3, made by mixing a small amount of
two-dimensional (2D) Sn perovskites with three-dimensional
(3D) FASnI3 in which the organic FA molecules are oriented
randomly,34 an approach that promises further improvement.
As compared to hybrid organic−inorganic Sn perovskites,

all-inorganic Sn perovskites could have the advantage of
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improved thermal stability while maintaining favorable optical
and electronic properties for photovoltaic (PV) applica-
tions.35,36 For example, γ-CsSnI3 is a p-type semiconductor
with a high hole mobility,21,37 a favorable band gap of ∼1.3 eV,
a low exciton binding energy, and a high optical absorption
coefficient.38,39 There have been a few attempts to fabricate
solar cells using γ-CsSnI3 as a photoactive layer, but their
maximum efficiency was still low. In 2012, Chen et al.40 first
used CsSnI3 to fabricate a Schottky contact solar cell, which
achieved a PCE of 0.9%. In 2014, Kumar et al.41 achieved a
PCE of 2.02% by forming the perovskite from a solution under
Sn-rich conditions, using SnF2 as the source of excess Sn, an
approach that reduces the density of Sn vacancy defects. In
2016, Wang et al.19 achieved a PCE of 3.31%. By removing the
electron-blocking layer in a simplified inverted solar cell
architecture and using the additive SnCl2 instead of SnF2,
Marshall et al.22 achieved the highest PCE to date of 3.56%,
together with exceptional device stability under continuous
illumination without device encapsulation. However, the PCE
of γ-CsSnI3-based solar cells is still significantly lower than
those of their hybrid organic−inorganic Sn and Pb perovskite
counterparts, primarily because of the lower open-circuit
voltage. The most important challenges are therefore to
develop ways to increase the open-circuit voltage and to
stabilize tin halide perovskites toward oxidation in air. The
oxidation instability manifests as a phase transition from the
photoactive black orthorhombic (γ) phase to a photoinactive
2D yellow (Y) phase upon exposure to water vapor, which
spontaneously converts to the weakly absorbing one-dimen-
sional Cs2SnI6,

22 leading to difficulties in controlling the
morphology and quality of the perovskite film.
In Pb halide perovskites, the strategy of mixing cations or

anions has been widely used to improve the stability and PV
performance of PSCs.12,42−47 In contrast, explorations of the
mixing of cations and anions in all-inorganic Sn-based
perovskites are scarce.7,48−50 Recently, the electronic structure
variation of γ-CsSnI3 by mixing A-site cations (e.g., mixing Cs
and Rb) has been investigated by Jung et al.7 However, the
relative stability of the structures as compared to the Y phase
was not investigated. To our knowledge, the amalgamated
effect of exchange of both the A-site metal cation and the

halide anion in completely inorganic tin perovskites has not
been investigated.
In this paper, we present a theoretical study of the impact of

cation and anion mixing (Rb/Cs cation exchange and Br/I
anion exchange) in all-organic γ-CsSnI3 using the density
functional theory (DFT)-1/2 method [the local density
approximation (LDA)-1/2 version],51−54 taking into account
the spin−orbit coupling (SOC) effect. We focus on the
evolution of the electronic properties as well as the thermal and
structural stabilities when substituting Br for I and Rb for Cs in
γ-CsSnI3. We predict that 3D perovskites with the composition
RbyCs1−ySn(BrxI1−x)3, where 0 ≤ x,y ≤ 1, are direct band gap
semiconductors with band gaps in the range 1.3−2.0 eV.
Importantly, our results indicate that substitution of Br for I in
CsSnI3 can prevent the unwanted γ-to-Y phase transition,
evidenced by the favorable formation energies of the γ phase
over the Y phase. In addition, calculations of the free energy of
mixing and the prediction of phase diagram demonstrate that
further substitution of Rb for Cs in CsSn(BrxI1−x)3 can
improve the mixing thermodynamics, which is expected to
improve the film-forming properties. Our predicted trends in
the thermodynamic stability and band gaps provide a guideline
to develop more efficient and stable lead-free all-inorganic
perovskites for PSCs.

■ COMPUTATIONAL METHODS AND STRUCTURAL
MODELS

The initial structure optimizations are performed using DFT as
implemented in the Vienna ab initio simulation package
(VASP).55,56 The Perdew, Burke, and Ernzerhof (PBE)
functional within the generalized gradient approximation is
used.57 The outermost s, p, and d (in the case of Sn) electrons
are treated as valence electrons, whose interactions with the
remaining ions are modeled by pseudopotentials generated
within the projector-augmented wave method.58,59 Figure 1
shows the crystal structures and cells used in the DFT
calculations. Unit cells with 20 atoms (four ASnX3 units) are
used for all structures using a 1 × 1 × 1 cell for the γ and Y
phases and 2 × 2 × 1 supercells for the α phase. In the
structural optimization, the positions of the atoms as well as
the cell volume and cell shape are all allowed to relax by setting

Figure 1. Top (a−c) and side (d−f) views of the cubic (α, Pm3m), orthorhombic (γ, Pnma), and yellow phase (Y, Pnma) of ASnX3 (A = Cs and
Rb and X = Br and I).
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ISIF = 3. An energy cutoff of 500 eV and 4 × 4 × 8, 6 × 4 × 6,
and 4 × 10 × 2 k-point meshes (α, γ, and Y phase structures,
respectively) are used to achieve an energy and force
convergence of 0.1 meV and 2 meV/Å, respectively. The
subsequent electronic structure calculations were performed
using an efficient approximate quasi-particle DFT method,
namely, the DFT-1/2 method. The DFT-1/2 method stems
from Slater’s proposal of an approximation for the excitation
energy, a transition-state method,60,61 to reduce the band gap
inaccuracy by introducing a half-electron/half-hole occupation.
Teles et al.51−54 extended the method to modern DFT and
particularly to solid-state systems. Recently, we successfully
applied this method in predicting accurate band gaps of metal
halide perovskites.62 The computational effort is the same as
for standard DFT, with a straightforward inclusion of SOC
when coupled with VASP. In this work, we extend the use of
the DFT-1/2 method with the same settings (CUT values of
2.30, 3.34, and 3.76 for Sn, I, and Br, respectively, with half-
ionized p orbitals) to alloys of CsSnI3 when mixing Cs with Rb
and I with Br. The physical insights of why Sn p and halide I or
Br p orbitals are both half-ionized are demonstrated in Figure
S1.
We calculated the free energy7,63 of mixing for each

composition according to the expression

Δ = Δ − ΔF U T S (1)

where ΔU and ΔS are the internal energy and entropy of
mixing, respectively, and T is the absolute temperature. The
internal energy of mixing of RbxCs1−xSnX3 is then calculated
via the formula

Δ = − − −
−

U E xE x E(1 )Rb Cs SnX RbSnX CsSnXx x1 3 3 3 (2)

where ERbxCs1−xSnX3
, ERbSnX3

, and ECsSnX3
are the total energies of

RbxCs1−xSnX3, RbSnX3, and CsSnX3, respectively.
The internal energy of mixing of ASn(BrxI1−x)3 is calculated

using the formula

Δ = − − −
−

U E xE x E(1 )ASn(Br I ) ASnBr ASnIx x1 3 3 3 (3)

where EASn(BrxI1−x)3, EASnBr3, and EASnI3 are the total energies of
ASn(BrxI1−x)3, ASnBr3, and ASnI3, respectively.
The entropy of mixing is calculated in the homogeneous

limit according to the formula

Δ = − [ + − − ]S k x x x xln (1 ) ln(1 )B (4)

where kB is the Boltzmann constant.
We plot the phase diagram by using the generalized quasi-

chemical approximation (GQCA)63,64 code developed by
Walsh et al.63 to further investigate the thermodynamic
properties of γ-ASnX3. The phase diagram offers insight into
the critical temperature for mixing and into the stability of the

solid solution for typical temperatures at which perovskites are
synthesized.
On the basis of the size of the cells for calculations, we have

considered seven (ASn(BrxI1−x)3, x = 0, 1/6, 1/3, 1/2, 2/3, 5/
6, and 1) and five (RbyCs1−ySnX3, y = 0, 1/4, 1/2, 3/4, and 1)
concentrations of A cations and X anions, respectively. For the
γ phase structures, all possible configurations (2, 4, and 2 for y
= 1/4, 1/2, and 3/4, respectively) of substituting Rb for Cs
were considered. Owing to the large number of possible
configurations of substituting Br for I (22, 139, 252, 139, and
22 possible configurations for x = 1/6, 1/3, 1/2, 2/3, and 5/6,
respectively), we have considered only two possible config-
urations for each concentration of Br, namely, the two extreme
cases with most negative and least negative ΔH. From Figure
S2 and Table S1, the formation energy of configuration 3 is the
most negative, whereas that of configuration 7 is the least
negative. This indicates that the Br ions tend to sit as close as
possible to each other and to form as many bonds as possible
with Sn ions. We use this strategy to select two extreme
configurations for all other Br−I alloys considered in this work.

■ RESULTS AND DISCUSSION

Before studying the mixing of A cations and X anions in
ASnX3, we first performed calculations for the four pure
compounds: CsSnI3, CsSnBr3, RbSnI3, and RbSnBr3. The
calculated lattice parameters of orthorhombic (γ) ASnX3 are
shown in Table 1. Those of other polymorphs including cubic
α, tetragonal β, and Y phase structures are listed in Table S2.
The optimized lattice parameters are in good agreement with
experiments, with a slight overestimation of lattice constants by
about 1%, and with other theoretical results (differences within
0.1%).7,38,49,65−68 It should be noted here that the predicted
lattice parameters of α-CsSnI3 and γ-CsSnI3 in our previous
work are smaller because of the use of LDA, which slightly
underestimates the lattice parameters.62 In this work, PBE is
used, resulting in a slight overestimation of lattice parameters.
Consequently, the predicted band gap of γ-CsSnI3 (1.36 eV) in
this work (will be discussed in the next paragraph) is slightly
higher compared to that of previous work (1.34 eV).62

The calculated band gaps of γ-CsSnI3 and γ-CsSnBr3 are
1.36 and 1.72 eV, respectively, in excellent agreement with
reported experimental measurements49 (1.27 and 1.75 eV) and
GW0 calculations68 (1.34 and 1.83 eV). There are no
experimental reports known to us of the band gap of either
RbSnI3 or RbSnBr3. Only theoretical results from HSE06 for γ-
RbSnI3 and PBE for α-RbSnBr3 are found to be 1.41 and 0.57
eV, respectively.7,69 Our predicted band gap for γ-RbSnI3 is
1.55 eV. Substituting Br for I in γ-RbSnI3 further increases the
band gap to 2.01 eV.
It is worth noting that although CsSnBr3 is reported to have

the α structure at room temperature, the actual atomic
arrangement at finite temperature (due to the dynamic

Table 1. Lattice Constants (in Å) Obtained by DFT and Band Gap Energies Eg (in eV) Obtained with the DFT-1/2 Method
Including SOC Compared to Experimental Data and Theoretical Predictions Based on Hybrid and GW Methods

material
lattice constants
(this work)

lattice constants
(experimental)

lattice constants
(other theoretical work)

Eg
DFT-1/2 + SOC

Eg
(experimental) Eg + SOC

γ-CsSnI3 8.99, 12.52, 8.63 8.69, 12.38, 8.64a 8.94, 12.52, 8.69b 1.36 1.27c 1.34 (GW0)
d

γ-RbSnI3 8.91, 12.28, 8.47 8.93, 12.28, 8.47b 1.55 1.13 (HSE06)b

γ-CsSnBr3 8.36, 11.79, 8.22 1.72 1.83 (GW0)
d

γ-RbSnBr3 8.38, 11.55, 7.98 2.01
aReference 38. bReference 7. cReference 49. dReference 68.
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disorder of the ions in the lattice)70 resembles that of the γ
phase. Consequently, it is not surprising that predicted band
gaps using α structures are always significantly smaller than
those measured experimentally.7,24,71,72 Therefore, in this
work, we always report band gaps calculated using γ phases.
RbSnI3 has been reported to exist in a nonperovskite 2D Y
phase structure owing to the small cationic size of Rb+.38,66

Nevertheless, for comparison with the alloys RbyCs1−ySnI3, the
band gaps of RbSnI3 in a 3D γ phase are also predicted. In
addition, all band gaps of α structures are also provided in the
Supporting Information in Table S2 and Figure S3 for
comparison. The calculated effective masses of the electrons
and holes at the G point for γ-ASnX3 are given in Table S3.
Figure 2 shows the computed band gaps for the γ phases of

ASn(BrxI1−x)3 and RbyCs1−ySnX3 perovskites, whereas the
band gaps of the other structures are shown in Figure S4. In
general, the band gap increases with increasing percentage of
Br in ASn(BrxI1−x)3 and Rb in RbyCs1−ySnX3. From Figure 2a
and Table S4, generally, the band gaps change because of the
variations in both volume and lattice distortion. However, the
changes in cell volume have more pronounced effects on the
band gaps than the changes in lattice distortion, that is,
octahedral tilting. The reduction of the cell volume is
responsible for the widening of the band gap in ASn(BrxI1−x)3
or RbyCs1−ySnX3 solid solutions with an increased Br or Rb
percentage. For the band gap variations with the same Br or Rb
percentage in ASn(BrxI1−x)3 or RbyCs1−ySnX3 solid solutions,
there is no certain relationship found between the degree of
lattice distortion (i.e., the degree of octahedral tilting, which is
the tilting angle difference |Δθ̅|)4 and band gaps.
It is well-known that for single-junction and multijunction

solar cells, the Shockley−Queisser limit suggests optimal band
gap ranges of 0.9−1.6 and 1.6−2.0 eV, respectively, for
achieving a maximum PCE.23,73 The band gaps of CsSn-
(BrxI1−x)3 are almost completely in the optimal range (1.30−

1.55 eV) for single-junction PSCs. When substituting Rb for
Cs in CsSn(BrxI1−x)3, the band gaps of RbSn(BrxI1−x)3 increase
by 0.2−0.3 eV as compared to their Cs counterparts, making
RbSn(BrxI1−x)3 (x > 1/3) ideal as a wide-band gap material for
tandem solar cells in conjunction with narrow-band gap
semiconductors such as Si or CsSn(BrxI1−x)3. The changes in
band gap when mixing Rb and Cs cations are much smaller
than those when mixing I and Br. This is true for all values 0 ≤
y ≤ 1 and also for different structures with a fixed y. The band
gaps of RbyCs1−ySnBr3 (1.71−2.01 eV) and RbyCs1−ySnI3
(1.36−1.55 eV) are in the ideal range for tandem and single-
junction solar cells, respectively.
In addition to the band gap, another key property for the

application of mixed inorganic perovskites in PSCs is their
structural stability. CsSnI3 has two coexisting polymorphs (the
γ and Y phases) at room temperature, which both belong to
the Pnma space group. Although both phases have similar free
energies and stable phonon modes, a transition from the black
γ phase to the yellow Y phase has been observed in ambient
conditions.7,38,74 Oxidation of Sn2+ to Sn4+ spontaneously
occurs after the transformation of the γ phase to the Y phase.75

Because of the different crystal structure and electronic
properties of the Y phase (i.e., a 2D structure and an indirect
band gap of 2.6 eV), the unwanted phase transition from γ to Y
can considerably decrease the efficiency of a solar
cell.14,22,75−77 In addition, the Y phase will spontaneously
react with O2 when exposed to air, resulting in Cs2SnI6 with a
face-centered cubic structure.30,32 Therefore, we focus here on
the evolution of the stability of the γ and Y phases upon
gradual substitution of Br for I and Rb for Cs. The results of
our calculations for other structures are given in Figure S5.
The formation energy of ASnX3 is defined as ΔH = EASnX3

−
EAX − ESnX2

, where EASnX3
, EAX, and ESnX2

are the total energies
of ASnX3, AX, and SnX2, respectively. Here, a negative value of
ΔH represents favorable formation of ASnX3 perovskites. The

Figure 2. Calculated band gaps of (a) γ-ASn(BrxI1−x)3 and (b) γ-RbyCs1−ySnX3 perovskites. The dashed lines are guides to the eye.

Figure 3. Formation energy (ΔH) of (a) ASn(BrxI1−x)3 and (b) RbyCs1−ySnX3 perovskites for the γ and Y phases. Because of the large number of
possible configurations for each substitution concentration x of Br in ASn(BrxI1−x)3, we only show in (a) the results for the two configurations with
the most negative and least negative ΔH.
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more negative ΔH, the more stable the corresponding
structure. It can be clearly seen in Figure 3 that all perovskites
considered exhibit good thermal stability, with large negative
ΔH values. Figure 3 also shows the effect of ion mixing on the
stability of the γ phase with respect to the Y phase.
For CsSnI3, the formation energies of the γ and Y phases are

the same. However, with the increase of Rb concentration, the
structural instability of RbyCs1−ySnI3 becomes increasingly
pronounced. Consequently, upon exposure to air, the rate at
which the perovskite oxidizes is predicated to increase with an
increasing Rb concentration.75 The substitution of Rb for Cs
seems to facilitate the formation of the Y phase, as now
evidenced by the more negative formation energy of the Y
phase than the γ phase. It should be mentioned that the
formation energies are both negative for RbSnI3 in both γ and
Y phases. However, the formation energy of the Y phase is
relatively more negative, indicating that the Y phase is more
favorable than the γ phase. Indeed, the instability of the γ phase
is in agreement with the experimental observation of RbSnI3
only existing in a 2D yellow phase.75 On the contrary, for
CsSnBr3, the formation energy of the Y phase is much less
negative than that of the γ phase (by 0.06 eV), indicating that
the γ phase is more stable than the Y phase. The substitution of
Rb for Cs results in a slight decrease (to 0.04 eV) in the energy
differences between the two phases, with the γ phase still being
favored.
The formation energies of mixing Cs and Rb in

RbyCs1−ySnI3 or RbyCs1−ySnBr3 follow a perfect linear relation
(Figure 3b), indicating favorable mixing thermodynamics.
However, substitution of Br for I (Figure 3a) shows an unusual
trend as a function of x: the curves show first a decrease and
then an increase, with a valley point at x = 1/3 in both
CsSn(BrxI1−x)3 and RbSn(BrxI1−x)3. When x < 1/3, the most
negative ΔH of the γ phase for each concentration is relatively
more positive than or nearly equal to the most negative ΔH of
the Y phase, which indicates that the Y phase is favored over
the γ phase. When x = 1/3, the most negative ΔH of the γ

phase is clearly more negative than the most negative ΔH of
the Y phase, whereas the least negative ΔH of the γ phase is
almost equal to the most negative ΔH of the Y phase. When x
> 1/3, all ΔH of the γ phase for each concentration are more
negative than those of the Y phase, which means that the γ
phase is stabilized. For RbyCs1−ySnI3 or RbyCs1−ySnBr3, mixing
Cs and Rb does not change the stability of the γ phase with
respect to the Y phase (Figure 3b). For RbyCs1−ySnI3, the Y
phase is always favored when mixing Rb and Cs, whereas for
RbyCs1−ySnBr3, the opposite is true. We conclude that the
addition of Br to RbyCs1−ySnI3 tends to stabilize the favorable γ
phase and suppress the transformation to the Y phase. The
critical Br concentration is about one-third. This prediction
calls for an experimental validation.
As shown in Figure 3, very different trends are observed for

mixing of cations (Rb and Cs) and anions (I and Br) in γ-
CsSnI3. For a deeper insight, we have investigated the different
mixing thermodynamics by calculating the Helmholtz free
energy of mixing. Details of the calculations can be found in
the Computational Methods and Structural Models section.
Results of these calculations are shown in Figure S6. On the
basis of the Helmholtz free energies, we plot the phase diagram
for γ-ASnX3 by using the GQCA

63 code, as shown in Figure 4.
For CsSn(BrxI1−x)3, the critical temperature is 291 K (see

Figure 4a), indicating that the mixing of anions (I and Br) is
favorable at room temperature (300 K). However, for
RbSn(BrxI1−x)3 at 300 K, a miscibility gap is found in the
composition region between x1 = 0.33 and x2 = 0.70 (see
Figure 4b). The pure compounds RbSnI3 and RbSnBr3 are not
miscible inside the miscibility gap under equilibrium
conditions, leading to the formation of two phases with Br
concentrations x1 and x2. Meanwhile, the alloy has spinodal
points at the compositions x1′ = 0.40 and x2′ = 0.62 at room
temperature. Thus, in the intervals x1 < x < x1′ and x2′ < x < x2,
a metastable phase can occur, showing small fluctuations in
composition. The predicted critical temperature (the temper-
ature above which the solid solution is stable for any

Figure 4. Predicted phase diagrams of (a) γ-CsSn(BrxI1−x)3, (b) γ-RbSn(BrxI1−x)3, (c) γ-RbyCs1−ySnBr3, and (d) γ-RbyCs1−ySnI3 solid solutions.
The purple and pink lines are binodals and spinodals, respectively. The dashed horizontal lines indicate room temperature (300 K). In (b), the gap
between the horizontal line and the critical miscibility temperature is the miscibility gap in γ-RbSn(BrxI1−x)3. A thermodynamically stable solid
solution can be formed only in the white region.
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composition) is 312 K, which is significantly lower than the
critical temperature of 343 K predicted for the MAPb(BrxI1−x)3
perovskite.63 This indicates that, although mixing of Br and I is
not favored slightly below (for CsSn(BrxI1−x)3) or around (for
RbSn(BrxI1−x)3) room temperature, the phase segregation in
these alloys is less significant than that in MAPb(BrxI1−x)3
perovskites.
A uniform mixture can be synthesized either through control

of the deposition kinetics or by annealing above the critical
miscibility temperature. The uniform mixture tends to
segregate below the critical temperature, but this segregation
is a very slow process.63 The inclusion of smaller cations often
provides an improvement, overcoming kinetic barriers and
changing the local critical temperature. For example, smaller
cations such as Cs and Rb were introduced in (FA/MA)Pb(I/
Br)3 and were shown to have a positive effect on the structural
and photostability of state-of-the-art PSCs.8,10,13,78 Indeed, we
predict that mixing of Rb and Cs in RbyCs1−ySnX3 is very
favorable at room temperature. For RbyCs1−ySnBr3 and
RbyCs1−ySnI3, the phase diagrams show that mixing of cations
(Rb and Cs) is favorable at temperatures above 118 and 137 K,
respectively (see Figure 4c,d). Our prediction of the critical
miscibility temperature of 137 K of RbyCs1−ySnI3 is in good
agreement with the result of 140 K calculated by Jung et al.7

The slight difference of the predicted critical temperature
could be caused by the small variation in energies per cell due
to the differences in computational settings (energy cutoff
value, k-point grid, version, and implementation of VASP
codes) in DFT calculations. The critical temperatures of
mixing of Rb and Cs in RbyCs1−ySnX3 are much lower than
those of mixing of Br and I in ASn(BrxI1−x)3. Therefore,
additional mixing of Cs and Rb in ASnIxBr1−x is predicted to
bring down the critical temperature for mixing of Br and I
below room temperature, suppressing phase segregation and
resulting in better material quality for PV applications.

■ CONCLUSIONS

In summary, the effects of cation (Cs and Rb) and anion (I
and Br) mixing in all-inorganic tin halide perovskites have been
investigated with DFT-based calculations. Using standard DFT
for structure optimization and the DFT-1/2 method with SOC
for band structure calculations, we studied the evolution of the
structural, thermodynamic, and electronic properties as a
function of the extent of substitution of Rb for Cs and Br for I.
We predict that CsyRb1−ySn(BrxI1−x)3 perovskites have direct
band gaps in the range of 1.3−2.0 eV. The alloys with high I
and Cs concentrations are well suited for highly efficient single-
junction PSCs, whereas those with high Rb and Br
concentrations are suitable as wide-band gap materials for
tandem PSCs. Importantly, we found that substitution of Br for
I can suppress the unwanted γ-to-Y phase transition. The
critical concentration for stabilization of the γ phase with
respect to the Y phase in CsyRb1−ySn(BrxI1−x)3 is x = 1/3.
Furthermore, phase diagrams based on the free energy of
mixing show that a solid solution of Br and I is thermodynami-
cally possible around and slightly above room temperature for
CsSn(BrxI1−x)3 and RbSn(BrxI1−x)3, respectively. Finally,
substitution of Rb for Cs to ASn(BrxI1−x)3 is predicted to
decrease the critical temperature to well below room
temperature, enabling the formation of highly homogeneous
solid solutions for improved solar cell performance. Our
predictions regarding the stabilization of the γ phase and the

use of five elements in RbyCs1−ySn(BrxI1−x)3 as an efficient and
stable light absorber for PSCs call for experimental exploration.
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