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INTRODUCTION

Fanconi anemia (FA) is an inherited DNA repair disorder with heterogeneous clinical
manifestations, including congenital anomalies, progressive cytopenias to frank bone
marrow failure (BMF), and both hematologic and solid malignancies [1]. With one
exception (X-linked FANCB), FA is attributable to biallelic autosomal inactivation of 21
genes encoding member and associated proteins of the Fanconi complex [2—4], which
collectively function to identify and repair DNA breaks during normal cellular replication or
in response to radiation or DNA-crosslinking agents. In fact, it is this marked susceptibility
to DNA-crosslinking agents that permits rapid diagnostic testing. Following exposure to
diepoxybutane (DEB) or mitomycin C (MMC), characteristic chromosomal breaks and
radial figures are observed at high frequency in lymphocytes or fibroblasts of patients with
FA relative to normal controls and patients with other bone marrow failure syndromes and
chromosomal fragility diseases [1].

In 1982, the International Fanconi Anemia Registry (IFAR) was established at the
Rockefeller University to centralize clinical and genetic characteristics of this rare group of
patients, to date enrolling nearly 1300 affected individuals. The IFAR has helped the field
better understand the natural history of FA. Cytopenias and progressive BMF occur early, at
a median age of 7 years, and in nearly all (90-98%) by age 40 years [5, 6]. Furthermore,
hematologic malignancy occurs in 33% at a median age of 40 years [6]. Other registries,
including the North American Survey of Fanconi Anemia (NAS) [7], the German Fanconi
Anemia Registry (GEFA) [6] and the Italian Fanconi Anemia Registry (RIAF) [9], have also
elucidated regional (potentially genetically driven) differences in natural history.

The proposed mechanism of cytopenias and BMF in FA includes intolerance to oxidative
stress, hypersensitivity to pro-inflammatory cytokines, and subsequently, apoptotic
contraction of the stem/progenitor cell pool [10]. Stress-induced activation of stem/
progenitor cells prompts exit from the quiescent GO cell cycle phase into G1/S/G2/M phases.
Increased metabolism producing DNA damaging reactive oxygen species collides with DNA
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replication, a condition of replicative stress capable of producing DNA double strand breaks,
vYH2AX phosphorylation, and in the case of FA, increased rates of apoptosis of inefficiently
repaired DNA double strand breaks or proposition of stem/progenitor cells containing
mutations. The overall effect is attrition of the stem cell pool and/or malignant
transformation [11, 12]. In addition to coordinating DNA-damage repair, non-canonical
functions of Fanconi proteins (particularly FANCC) include promotion of somatic cell
survival by inhibiting apoptotic and activating cell survival pathways [13, 14].

Despite heterogeneity in the genetic etiology of FA, genotype-phenotype associations for
BMF and malignancies have been identified. FANCC patients with an intron 4
(IVS4+4A>T) or exon 14 (R548X or L554P) mutation demonstrate a higher incidence and
more rapid emergence of BMF compared to other groups (HR 1.5, 95% CI, 1.1-2.0) ata
median age of 2.7 and 2.1 years, respectively) [15]. Davies et al. [16] additionally identified
a glutathione S-transferase gene polymorphism (GSTMZ1) in FANCC portending faster
progression to BMF (median of 3 years with GSTM1 vs. 7 years with alternative GST
polymorphisms). Other FANCC patients, however, such as those with exon 1 322delG or
Q13X mutations have hematologic disease at a median of 7 years more typical of FA
patients generally [15]. In contrast to other FA groups, patients with mutations in FANCD1/
BRCA2 and FANCN/PALB2 rapidly develop leukemia without preceding BMF [17-20].
FANCD1/BRCAZ2 develop leukemia before the age of 10 years (80%) with most before the
age of 6 years and even earlier in those with mutations at I\VS7 (< 3 years). In addition,
FANCD1/BRCAZ2 is associated with very high rates of brain tumors and Wilm’s tumor.

To date, the only curative therapy for the hematologic aberrations of FA is allogeneic
hematopoietic cell transplantation (alloHCT). However, the intrinsic FA DNA repair defect
complicates alloHCT because of the general reliance on alkylating agents and radiation in
pre-transplant conditioning, as well as the increased sensitivity to graft-versus-host disease
(GVHD) tissue damage. Following decades of research to better understand the
pathophysiology of FA and thoughtful modifications to transplant regimens, we can now
more safely navigate FA patients through the conditioning and alloHCT. Further, the
outcomes achieved with alternative donor (AD) stem cell sources (matched or mismatched
non-sibling related donor or unrelated donor bone marrow (BM) or peripheral blood stem
cells (PBSC), or umbilical cord blood (UCB)) rival those of historically superior HLA-
matched sibling donor (MSD) BM. Here we review the evolution of conditioning regimens,
hematopoietic stem cell (HSC) source selection and graft manipulation methods, and
promising alternative therapies under development, including gene therapy, epigenetic
targeting and efforts to delay or prevent BMF. Finally, we summarize the remaining
challenges for FA patients after successful alloHCT, including late effects, such as
endocrinopathies, growth failure, and FA-associated epithelioid malignancies.

1.0 Evolution of the Conditioning Regimens

1.1 History—While the first 30 years of advances in alloHCT for FA has been extensively
reviewed elsewhere [21, 22], we briefly summarize several salient points for historical
context. Gluckman et al. [23] was the first to report on the dismal outcomes for 5 FA patients
undergoing HLA matched sibling donor alloHCT (MSD-HCT) with “standard dose’

Expert Rev Hematol. Author manuscript; available in PMC 2018 August 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ebens et al.

Page 3

cyclophosphamide (CY, 100-200 mg/kg), a conditioning regimen used successfully in the
treatment of patients with acquired severe aplastic anemia. All 5 patients experienced severe
grade I11-VI acute GVHD, leading to death in 4. Following laboratory studies that
demonstrated marked hypersensitivity of FA cells to alkylating agents /n vitro [24, 25] and
radiation /n vivo [26], Gluckman proposed a 10-fold reduction in CY dose combined with a
single fraction of 500 cGy thoraco-abdominal irradiation (TAI) for FA patients undergoing
HLA-matched sibling donor alloHCT. Notably, survival was much improved (>80%) and
graft failure was low (<10%). Thereafter, low dose CY and low dose irradiation became the
‘standard’ conditioning prior to alloHCT for FA from the mid-1980’s onward [27-29].
However, high rates of acute (25-40%) and chronic GVHD (up to 40%) remained
problematic. The urgent need for GVHD preventive measures was further amplified by the
association of GVHD and the development of solid tumors after transplant [30], prompting
the testing of more reliable GVHD prevention methods.

1.2 Role of Fludarabine—In the mid-1990’s, graft failure was the primary limiting factor
in those undergoing transplant from an unrelated donor. In 1995, prior to the addition of
fludarabine (FLU) to the pre-transplant conditioning, the International Bone Marrow
Transplant Registry (IBMTR, predecessor to the Center for Blood and Marrow Transplant
Research [CIBMTRY]) reported a graft failure rate of 24% and overall survival of 16% at 2
years for FA patients undergoing AD-HCT [27]. Similarly, poor outcomes were reported
from European Bone Marrow Transplant (EBMT) registry data in 2000 [31]. Emerging
evidence suggested that FLU was a potent immunosuppressive agent that could be safely
administered to patients with FA [32]. As a result, Wagner and MacMillan at the University
of Minnesota [33] investigated the safety and efficacy of FLU, first in patients with HLA
matched sibling and then HLA matched and mismatched unrelated donors for whom the BM
was T cell depleted (TCD) prior to infusion. FLU proved to be a powerful alternative to
escalated doses of TBI or CY, reducing the deleterious effects of HLA mismatched grafts
and recipient T cell mosaicism [34] on risks of graft failure.

In 2007, Wagner et al. [35] updated the CIBMTR experience, reporting on effect of FLU on
outcomes in 98 FA patients undergoing AD-HCT. Recipients of FLU-containing
conditioning regimens had superior neutrophil (89% vs. 69%, p=0.02) and platelet recovery
(74% vs. 23%, p<0.01) as well as 3 year adjusted overall survival (52% vs. 13%, p<0.001).
In addition to use of FLU, age <10 years of age, negative CMV serostatus, and exposure to
<20 blood product transfusions prior to alloHCT were factors associated with better survival.
These results were corroborated by Peffault de Latour et al. [36], reporting on 795 FA
patients from 1972-2009 who underwent a first transplant for pancytopenia, aplastic anemia,
MDS or AML, with either MSD or HLA-matched unrelated donor (MUD) BM or PBSC.
Use of FLU was consistently associated with less graft failure and improved overall survival.
Age <10 years at time of transplant and absence of MDS and AML were also associated
with better outcomes. The impact of FLU in FA patients undergoing alloHCT is summarized
in Table 1, highlighting similar outcomes in MSD-HCT and AD-HCT with FLU in the
conditioning regimen in Table 1a and quantifying the benefit of FLU on outcomes for large
cohorts in Table 1b.
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1.3 Role of Irradiation—Irradiation is a highly effective means of recipient
lymphodepletion historically used to immune suppress the host to prevent graft rejection as
well as efficiently eradicate the diseased marrow. In FA, however, use of radiation and other
DNA cross-linking agents have been particularly challenging. Because of the known late
effects of radiation generally, there has been an effort to reduce or eliminate radiation from
the conditioning regimen in patients with FA..

Bonfim et al. [46] were among the first to investigate a chemotherapy-only conditioning
regimen in part due to the limited accessibility of radiation therapy in Brazil. Therefore,
higher dose CY was investigated. Using CY 60 mg/kg as the conditioning regimen with
cyclosporine A and methotrexate immunoprophylaxis (CsSA/MTX), engraftment occurred in
37 of 42 (88%) recipients of T-replete MSD BM (n=37) with 1 early and 4 late graft failures.
The incidence of acute (grade I11-VI) and chronic GVHD was 2% and 29%, respectively. At
a median follow-up of 3.7 (range 0.6—7.9) years, survival was 93%.

In order to reduce the risk of CY-related toxicities, Benajiba et al. [38] explored the
effectiveness of lower dose CY (40 mg/kg) in combination with FLU 90 mg/m?2 (with 6 also
receiving ATG) in FA patients with BMF and a MSD. Neutrophil engraftment was achieved
in 20 of 20 patients. Using CsA and mycophenolate mofetil (MMF) immunoprophylaxis, the
incidence of acute (grade 111/IV) and chronic GVHD was 15% and 25%, respectively, with a
2 year overall survival of 95%.

On behalf of the CIBMTR, Pasquini et al. [47] compared outcomes of irradiation containing
(n=77, irradiation + CY +/- ATG) to non-irradiation containing (n=71, CY alone, CY +
ATG, Busulfan + ATG, or FLU + CY) conditioning regimens prior to MSD-HCT for FA.
Notably, there was a similar 5-year overall survival (78% vs. 81%, p=0.61), day 28
neutrophil engraftment (94% vs. 89%, p=0.35), day 100 grade 111/IV acute GVHD (6% vs.
10%, p=0.46) and 5 year chronic GVHD (18% vs. 24%, p=0.40). Older recipient age >10
years, pre-alloHCT androgen use, and donor and/or recipient CMV seropositivity, however,
were associated with poorer survival.

With increasing evidence associating higher cancer risk in FA patients with a history of
GVHD after alloHCT, T cell depletion of the graft was considered. Whether a
chemotherapy-only regimen would be sufficient in the context of T cell depletion was
unknown. Tan et al. [33] first reported results in FA patients conditioned with FLU 175
mg/m2, cyclophosphamide 20 mg/kg, and ATG prior to the transplantation of T cell depleted
sibling donor BM. Engraftment occurred in all patients with no patient having acute or
chronic GVHD. Survival was 100% in the first 9 patients. Today, 20 patients with FA have
been treated. Engraftment was observed in all 20, acute GVHD occurred in 1, chronic
GVHD occurred in none and 2-year survival is 95% (unpublished). These results suggested
that in recipients of HLA-matched sibling donor HSCs, addition of FLU to conditioning
allowed for consistent engraftment despite reduced CY dosing and infusion of T cell
depleted BM to abrogate the risk of acute and chronic GVHD.

The next question was whether TBI could be reduced or eliminated in recipients of T cell
depleted AD-HCT or unmanipulated UCB given the increased risk of graft rejection. Mehta
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et al. [48] evaluated the safety and efficacy of a busulfan (BU) based regimen in place of
TBI when used in combination with CY 40 mg/kg, FLU 140 mg/m? and rabbit ATG 10
mg/kg and in recipients of T cell depleted AD-HCT. BU was initially administered at 0.8—
1.0 mg/kg/dose IV every 12 hours x 4 doses (n=25) and subsequently at 0.6-0.8 mg/kg/dose
to reduce the regimen related toxicity. Importantly, for the entire cohort, neutrophil
engraftment occurred in 96% at a median of 9 days after T cell depleted AD-HCT with a 1-
year overall and disease free survival of 79.2% and 76.7%, respectively.

At the University of Minnesota, a TBI dose de-escalation trial was initiated in 1999 in order
to determine the minimum dose that would permit consistent engraftment in recipients of T
cell depleted BM and unmanipulated UCB [49]. All patients received CY 40 mg/kg, FLU
140 mg/kg and ATG 150 mg/kg with TBI (planned doses 300 cGy to 150 cGy to 0 cGy).
Relative to recipients of TBI 450 cGy in whom engraftment was 95% (n=21), engraftment
remained unchanged in recipients of TBI 300 cGy (n=17). However, at a TBI dose of 150
cGy, 2 of 2 recipients had secondary graft failure, halting the trial. All subsequent patients
received TBI 300 cGy, incorporating thymic shielding in 2006 [50] to limit damage to the
thymic epithelium and enhance T cell recovery. Of note, children undergoing AD-HCT after
TBI 300 cGy with thymic shielding demonstrate have high survival with 94% alive at 5
years [45]. MacMillan et al. 2015 [45] summarizes the results of these sequential trials.

In the context of T replete grafts, engraftment rates are excellent in the context of FLU
regardless of the use of lose dose irradiation or non-radiation based conditioning. Yabe et al.
[51] reported 94% sustained engraftment after AD-HCT with 100% alive at 1 year (n=16)
after conditioning with FLU (150-180 mg/m?2), CY 40 mg/kg, ATG 5-10 mg/kg and low
dose TAI or TBI (300 cGy), using MTX + tacrolimus (+MMF in 3 patients) as
immunoprophylaxis without in vivo or ex vivo T cell depletion. Importantly, acute (grade
I11-1V) and chronic GVHD was 6% and 31%, respectively. Motwani et al. [52] used FLU
125-150 mg/m?, CY 20-30 mg/kg, and ATG prior to transplant. While engraftment
occurred in the 3 recipients of 6/6 HLA matched unrelated UCB and 2 recipients of T
replete 8/8 HLA matched peripheral blood, graft failure occurred in 2 or 2 recipients of T
cell depleted haploidentical peripheral blood. Chao et al. [41] reported results in 17 FA with
BMF conditioned with BU 4 mg/kg, FLU 180 mg/m2, CY 40 mg/kg and CAMPATH 35
mg/m2. Grafts from an HLA matched unrelated donor (n=8) were unmanipulated and those
from an HLA-mismatched related or (n=1) or unrelated donor (n=8) were T cell depleted by
CD34+ selection with a fixed add back of 1 x 108 CD3+ cells/kg recipient weight, with CsA
immunoprophylaxis. All exhibited neutrophil engraftment with one requiring a stem cell
boost. None had grade 11-1V acute or chronic GHVD. Two year overall survival was 88%.
Together these results suggest that consistent engraftment can be achieved even in the
presence of T cell depleted HLA mismatched unrelated donor grafts if low dose TBI or
moderately dosed BU is incorporated into the FLU-CY based conditioning. In recipients of
HLA matched sibling donor grafts with or without T cell depletion, FLU-CY alone appears
to be sufficient.

1.4 Graft T-cell depletion—While rates of acute and chronic GVHD in FA patients are
similar to those observed in other young patient populations, the apparent association
between GVHD and risk of epithelioid malignancies [30, 36, 53] has led to a greater interest
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in the application of ex vivoand in vivo T cell depletion. /n vivo T cell depletion typically
relies on monoclonal antibodies directed at lymphocyte populations (e.g. ATG, CAMPATH).
While relatively easy to administer as a mechanism of T cell depletion, these monoclonal
antibodies can induce cytokine release from rapid cell death in addition to eliminating the T
cells destined to contribute to graft-versus-leukemia, support engraftment or participate in
immune recovery. More recently, carefully timed dosing of cyclophosphamide after infusion
of donor hematopoietic cells (days +3 and 4) to selectively target rapidly dividing
alloreactive T cells have been employed as a method of /7 vivo T cell depletion, successfully
allowing safe use of even haploidentical donor grafts. While this method of /in vivo T cell
depletion allows for persistence beneficial homeostatically proliferating T cells, adaptation
of the post-transplant cyclophosphamide strategy to the FA population remains to be
optimized given the risk of alkylator exposure in this population.

Early ex vivo TCD methods included sheep erythrocyte resetting, soybean lectin
agglutination, and counterflow centrifugal elutriation [54, 55]. However, more precise
CD34+ enrichment techniques developed in recent years allow for highly purified cell
population selection and administration [56]. Wagner and MacMillan incorporated a T cell
add-back from the CD34-negative fraction fixing the number of T cells to 1 x 10° CD3+
cells/kg recipient weight in an attempt to minimize the risk of graft rejection and relapse in
those with hematological malignancy. T cell depletion with newer techniques, such as TCR-
ap depletion may allow for retention of specific T cell subpopulations (e.g. TCR-y8) with
enhanced graft protective and graft-versus-leukemia (GVL) effects [57]. While T cell
depletion could have interfered with engraftment, FLU has reduced the risk of this
complication. In the setting of HCT with an HLA matched related donor, acute (grade
I11/1V) and chronic GVHD rates decreased from 30-40% range (25) to <5% [32]. Similar
improvements have been observed in recipients of AD-HCT with grade I11/1V acute GVHD
and chronic GVHD rates at 0 and 9%, respectively, at the University of Minnesota.

2.0 Stem Cell Source

2.1 HLA matched sibling BM / UCB—When available, a HLA matched sibling graft is
the hematopoietic stem cell source of choice. However, there have been some settings in
which this option may not be appropriate (e.g. health of the donor, unknown FA status, or
absence of consent or assent to donate). Historically, parents of children with FA attempted
deliberate conception to produce an unaffected HLA matched sibling donor for the child
with FA. In a report by Auerbach [58] who tracked the outcomes in 32 pregnancies, 30
children were born with 5 (17%) being HLA matched. Importantly, two fetuses were aborted
when found prenatally not to be HLA matched to the living child with FA. Reproductive
technology now offers the possibility of pre-implantation genetic diagnosis (PGD) to select
an embryo from /nvitro fertilization (IVF) that fulfills these criteria. Such “savior siblings”
for FA were first reported in 2001 [59, 60]. However, a recent survey of US and Canadian
FA support groups members found 63% of families were aware of this IVF/PGD with only
34% being offered this option by their health care provider [61]. However, considering
recent improvements in outcomes with AD-HCT and the cost, variable success and ethical
concerns of IVF/PGD, use of these reproductive technologies may be less important.
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At the University of Minnesota, 20 patients have had a HLA matched sibling donor between
June 2001 and May 2015. Nine had an unmanipulated UCB graft while 11 received T cell
depleted sibling donor BM. Neutrophil engraftment occurred in 100% with slightly faster
engraftment in recipients of BM recipients (10 vs. 14 days for UCB). Rates of grade I11-1V
acute GVHD by day +100 were 0% and 11% for BM and UCB recipients, respectively (LR
1.222, p=0.27). No patients had chronic GVHD. There was no statistically significant
difference in 3 year overall survival, 100% for BM and 89% for UCB recipients (LR 1.22,
p=0.27).

In summary, bone marrow from an HLA matched sibling is the graft of choice when it is
available. However, in the setting of UCB, there are times the cell dose is <2 x 107 nucleated
cells per kilogram recipient weight; in these cases, supplemental BM may be added to the
graft.

2.2 Alternative donor stem cell sources—For FA patients without an HLA matched
sibling donor, extended family searches have occasionally identified a HLA matched or 1-
antigen mismatched unrelated donor within the family. While a reasonable donor choice, the
largest experience is with an allele level HLA matched unrelated donor at HLA A, B, C and
DRB1. Today, survival is similar to that observed with an HLA matched sibling donor, likely
reflecting improved donor selection (e.g. more accurate allele level HLA-typing and
considerations of CMV serology, donor age and gender), optimized conditioning regimens
and post transplant immune suppressive therapies. Therefore, an HLA matched unrelated
donor is the second best option.

For those without an HLA matched unrelated marrow donor, there is no clear next best
choice. At the University of Minnesota, an adequately dosed HLA 5-6/6 matched UCB
(based on antigen level typing for HLA A and B, and allele level typing for HLA DRB1) is
often chosen over an HLA mismatched unrelated marrow donor in part due to its rapid
availability but also institutional preference. In the absence of a 5-6/6 matched UCB unit or
7/8 matched marrow donor, a 4/6 matched UCB unit may be considered if there are no other
treatment options. As of May 2015, twenty patients with FA were transplanted with
unrelated donor UCB (two 4/6 HLA-matched, fifteen 5/6, three 6/6). Engraftment occurred
in 84% at a median of 19 days. Grade IlI1-1V acute GHVD and chronic GVHD occurred in
10% and 12%, respectively, with a 3 year overall survival of 71%.

While relatively uncommon, haploidentical transplants have also been used in patients with
FA. Graft manipulation to control donor T cell content with additional agents, such as ATG
or CAMPATH, have been explored (Table 2). Zecca et al. [65] reported results in 12 FA
patients who received CD34+ selected haploidentical PBSCs in FA. While graft failure
occurred in 25% and chronic GVHD in 35%, grade 111/1V acute GVHD was not observed
and overall survival was 83% at 5 years. More recently, Locatelli reported results of
haploidentical AD-HCT using TCR af depletion to prevent GVHD [66, 70]. In the 4 FA
patients, neutrophil engraftment occurred in all 4, none had grade I11/1V acute or chronic
GVHD, and all 4 were alive at the time of the report with a median survival of 18 months
after transplant. Lastly, post-transplant CY has also been explored as a relatively simple
alternative to ex vivo T cell depletion. While this alkylator-based approach to haploidentical
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alloHCT is particularly challenging for FA patients because of the patient’s underlying
hypersensitivity to DNA cross-linking agents relative to the insensitive donor alloreactive T
cells, there has been some success. In 3 patients, Thacker et al. [67] have used haploidentical
donor grafts followed by PTCy at 25 mg/kg on days +3 and +4 (rather than 50 mg/kg x 2 in
other patient populations). All 3 patients engrafted with one dying at day +27 of
disseminated toxoplasmosis and CMV. Of the 2 surviving patients, one had severe acute
GVHD and chronic GVHD. Modifications in this approach are currently being explored.

In summary, nearly all patients have a suitable donor today. While an healthy HLA matched
sibling donor certainly remains the donor of choice, and an HLA matched unrelated
volunteer donor is the next best alternative, use of less well matched donors can still achieve
reasonable levels of success in marked contrast to that observed a decade ago. The rationale
for donor selection prioritization is summarized in Table 3.

3.0 AlloHCT and FA associated hematologic malignancies

3.1 Role of FA Group and BM Cytogenetics—The intrinsic DNA repair defect in FA
cells contributes to baseline dyserythropoiesis [71], progressive BMF and in a proportion of
patients, to MDS and/or acute leukemia. Early onset of MDS and acute leukemia is more
frequent in patients with biallelic mutations in FANCD1/BRCA2 and FANCN/PALB2 [17,
19]. In most cases in all FA groups, MDS and acute leukemia are preceded by clonal
chromosomal abnormalities with a preponderance of +1q, +3q, —7q, and RUNX1
abnormalities [71-73]. As reviewed recently by Peffault de Latour and Soulier [74],
detection of these abnormalities can be challenging. While standard BM karyotyping may
reveal +1qg and —7p clones, +3q and RUNXZ abnormalities may require further investigation
by FISH or next generation sequencing for their identification. Moreover, the presence of
somatic mosaicism may lead to clonal hematopoietic populations with clonal fluctuations
with gain and loss of abnormalities over time [75]. Alter et al. [75] examined the impact of
morphologic MDS, cytogenetic changes, and clonal abnormalities in 41 patients with FA.
Five year overall survival was very poor in those with morphologic MDS without a
detectable clone (9%) and morphologic MDS with a clonal cytogenetic abnormality (0%).
Complex cytogenetic abnormalities and isolated aberrations in chromosomes 3p, 7p, or
RUNXI correlate with clinically poorer outcomes and should prompt alloHCT.

3.2 Role of Pre-Transplant Induction Chemotherapy—The role for induction
chemotherapy prior to alloHCT for MDS and AML remains unclear with inconsistent results
in case reports or small case series. Generally, the inherent hypersensitivity to genotoxic
therapies often leads to significant treatment-associated toxicities and prolonged marrow
aplasia at least with standard regimens. Therefore, several groups have investigated the
potential role of low to moderate dosed FLU, cytarabine and Neupogen (mini-FLAG)
regimen. Mehta et al. [76] evaluated a low dosed FLAG induction regimen prior to alloHCT
in 4 FA patients. It was well tolerated with one surviving the subsequent alloHCT. Talbot et
al. [77] used a higher moderately dosed FLAG. It was also well tolerated in 6 FA patients
with MDS/AML with 4 alive at the time of the report (death due to relapse in one and severe
chronic GVHD in the other) [74]. Whether pre-transplant induction therapy offers any
benefit over transplant alone in FA patients with MDS/acute leukemia still remains unclear.
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However, there appears to be one exception. Patients with FANCD1/BRCA2 with AML or
ALL appear to tolerate conventional doses of chemotherapy with hematopoietic recovery in
some cases. In this group, pre-transplant induction therapy may have a more important role.

3.4 Transplant Outcomes in FA MDS/Acute Leukemia—Not surprisingly, alloHCT
in FA patients with MDS or acute leukemia is less satisfactory relative to those with BMF.
Conditioning regimens have most often consisted of CY 40 mg/kg, FLU, ATG and either
TBI or Busulfan. Use of T cell depleted donor grafts has been variable. In various small
series consisting of 6 to 21 patients [78-81], overall survival at 3 to 5 years has ranged from
33 to 80% with deaths most often due to relapse or opportunistic infection. Ayas et al. [81]
reviewed outcomes for 113 patients (54 with isolated cytogenetic abnormalities, 45 with
MDS, 12 with AML, 2 with ALL) reported to the CIBMTR between 1985 and 2007. Six of
14 patients with leukemia received cytoreductive chemotherapy prior to alloHCT. Sixty
percent received radiation (TBI or limited field radiation). Stem cell source was BM (85
patients - 73 related and 12 unrelated), PBSC (13 patients - 9 related and 4 unrelated), and
UCB (15 patients - 2 related and 13 unrelated). Overall survival was 64%, 58%, and 55% at
1, 3, and 5 years, respectively. Factors impacting 5 year survival was age at transplant (<14
years 69% vs. >14 years 39%, p=0.001), or the development of grade I1-1V acute GVHD
(HR 1.94, p=0.02), and chronic GVHD (HR 2.79, p=0.01). Similarly, Peffault de Latour et
al. [36] reported on 795 FA patients with 58 having MDS or AML reported to the EBMT
between 1972 and 2010. About half were treated with MSD with the rest having a MUD.
Interestingly, graft failure was higher in those with MDS/AML compared to BMF (HR 3.17,
p-0.001). One year cumulative incidence of relapse for the 58 MDS/AML patients was 7%
and 14% after MSD and MUD alloHCT, respectively. Multivariate analysis demonstrated
that patients with MDS/AML had a 2-fold greater risk of death compared to BMF patients
(HR 2.10, p=0.0002). Pre-existing clonal evolution was also an independent risk factor for
development of secondary malignancy (HR 4.56, p=0.03).

In summary, the best outcomes are realized when FA patients proceed to alloHCT prior to
development of clonal abnormalities, MDS, or leukemia transformation, highlighting the
importance of close surveillance with regular blood counts and annual bone marrow
evaluations including cytogenetic and FISH analyses (with even closer monitoring if clonal
cytogenetic changes are demonstrated). For those with advanced MDS or acute leukemia,
the utility of induction cytoreductive therapy prior to alloHCT remains unclear except in
those with FANCD1/BRCAZ2 possibly. When used, prolonged cytopenias should be
anticipated and a urgent donor search be initiated if transplant is an option. For those eligible
for allo-HCT, the optimal conditioning regimen for MSD/leukemia has yet to be identified.
While more intensive myeloablative conditioning may reduce the risk of relapse, higher dose
therapy often leads to end-organ toxicities and infections. Importantly, MDS and leukemia in
a patient with FA does not preclude successful alloHCT with about half alive at 5 years.

4.0 Alternatives to AlloHCT

4.1 Gene Therapy—Researchers in the field of gene therapy hypothesize that autologous
infusion of gene corrected hematopoietic stem and progenitor cells (HSPCs) may delay or
eliminate the risk of BMF, MDS and acute leukemia in patients with FA. Corrected cells
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should exhibit a survival and proliferative advantage over uncorrected FA cells which are
prone to oxidative stress, pro-inflammatory cytokine sensitivity, and ultimately apoptosis.
However, successful application of gene therapy for FA has yet to be effective due to several
important obstacles (Table 4).

Studies of gene therapy in murine models of FA [93] and with human FA cell lines [94] are
ongoing with some promising results. Proceedings of the 1 International Fanconi Anemia
Gene Therapy Working Group Meeting from November 2010 outlines expert opinions on
optimal strategies for proceeding to clinical trials, including details on vector design,
hematopoietic cell preparation, and methods of transduction [95]. European Union
researchers have also developed a working group for development of gene therapy trials for
FANCA (www.EuroFancolen.eu). To date, three trials of gene therapy for FA have been
conducted or are underway in the US (NCT00001399 NHLBI trial using a retroviral vector
for correction of FANCC, NCT00272857 Children’s Hospital Boston trial using a retroviral
vector for gene correction of FANCA, and NCT01331018 Fred Hutchinson Cancer Research
Center trial using a lentiviral vector for correction of FANCA). Thus far, long term
persistence of gene corrected hematopoietic cells has yet to be reported.

4.2 Epigenetic targeting—Given the phenotypic heterogeneity of any given gene
mutation leading to FA, Belo et al. [96] proposed epigenetic modification as a new
therapeutic strategy. Epigenetic modifications such as aberrant DNA methylation and
decreased histone acetylation have been previously shown to silence tumor suppressor genes
and interrupt DNA stability pathways, implicating involvement of such post-translational
modifications in development of MDS, AML and solid tumors. Comparing epigenetic gene
expression and DNA methylation patterns of tumor suppressor genes of 12 FA patients to 14
normal controls, Belo found decreased expression in FA of DNA methyltransferase genes
(DNMT1, DNM3TB) and histone modifying genes (CIITA, PAK1, RNF20, HDACs 2, 8, 9,
10 and 11, and SETDS). In addition there was a global pattern of hypomethylation in FA
cells compared to healthy controls. /n vitro experiments with the histone deacetylase
(HDAC) inhibitor, Vorinostat, induced differential expression of aberrantly expressed genes
and reduced DEB sensitivity in 6 FA patient samples.

4.3 Androgens—Androgen therapy to promote hematopoiesis was first evaluated in the
1950s with response rates exceeding 50%. In 70 FA patients treated with androgens between
1976 and 2014, 68% of the 37 patients with sufficient data demonstrated a partial or
complete response with 88% of responses in 2 lineages [97]. Until recently, its mechanism
of action has been unclear. In a preclinical FA model [98], androgens suppress osteopontin
transcription in turn leading to HSC cycling and the production of blood cells. However,
prolonged use leads to HSC exhaustion and BMF. Therefore it is not surprising perhaps that
the response to androgens has often been temporary with most proceeding to alloHCT. In
addition, androgens are associated with hepatic adenoma, virilization and premature fusion
of growth plates, limiting its long-term use. Importantly, prior use of androgens is an
independent risk factor for poor survival in alloHCT recipients regardless of stem cell source
[31, 47, 79].
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4.4 Investigational—Efforts to delay or halt FA-associated BMF with anti-oxidants or
anti-inflammatory agents are in various stages of development (Table 5).

5.0 Impact of AlloHCT on FA-Associated Late Effects

FA patients are predisposed to a number of late effects, resulting from surgical
complications following repair of severe cardiovascular and/or digestive tract malformations,
the underlying DNA repair defect contributing to cancer predisposition, and various
endocrinopathies.

Compared to the general population, FA patients have a markedly higher risk of malignancy,
particularly squamous cell carcinomas of the aeroesophageal and/or anogenital tracts, in
addition to MDS and AML [7, 8, 102-106]. In contrast to the general population, the peak
hazard for solid tumors increases in a linear manner after the age of 10 years, increasing by
>10%/year after the age of 40. However, the specific impact of alloHCT on the underlying
risk of malignancy remains to be determined. In the large European cohort of FA patients
undergoing alloHCT (n=795) from 1972-2009, Peffault de Latour et al. [36] demonstrated
cancers had a major effect on long-term survival after alloHCT, with a history of chronic
GVHD being a leading risk factor for malignancy. These data, as well as outcomes of 3
additional FA cohorts [30, 53, 107], suggest that both acute and chronic GVHD may
contribute to development of epithelioid malignancies. Conversely, Risitano et al. [9],
reporting on 180 FA patients, found no difference in solid tumor risk conferred by alloHCT
compared to an untransplanted cohort. At this time, cancer risk is high in FA patients aged
30 years and older. While it is possible that alloHCT may increase the risk of cancer, only
the occurrence of GVHD has been associated with risk of cancer after transplant. Donor
source and conditioning regimen have not been found to be risk factors thus far.

Whether there are strategies to reduce the risk generally is of interest to the FA community.
Much work has focused on understanding the role of HPV viral infection in head and neck
squamous cell carcinoma (HNSCC) in FA. Katzenellenbogen et al. [107] reported on
seroprevalence of skin and mucosal HPV types in 62 individuals with FA, with increases
associated with age and HPV vaccination. Sauter et al. [108] found higher HPV
seroprevalence among FA patients (n=126, 11.1% HPV positive) compared to their first-
degree relatives (n=162, 2.5% HPV positive). Several groups have shown mechanisms by
which HPV oncogenes E6 and E7 contribute to increased risk of mucosal carcinogenesis in
FA (promoting genomic instability and DNA damage, p53 repression, as well as further
impairment of the FA DNA repair signaling pathway) [109-113]. As FA patients respond
appropriately to the HPV vaccine [114], vaccinations are recommended just as in the general
population. Liberal use of sunscreens, avoidance of frequent dental radiographic evaluations,
close surveillance of the oral cavity by the dentist and upper aeroesophageal tract by an ENT
specialist are general recommendations for all FA patients regardless of alloHCT.

Similarly, endocrinopathies are common in FA patients with 80% demonstrating short
stature, glucose intolerance, dyslipidemia, hypothyroidism, hypogonadism, pubertal delay
and impaired fertility [115, 116]. With improved long-term survival after alloHCT, there are
greater efforts to quantify and ameliorate the late effects of these endocrinopathies [117]. At
the University of Minnesota [118], 44 patients with FA were followed after alloHCT with all
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receiving TBI 300 cGy. At least one endocrinopathy was reported in 86%, with 11% with =3
endocrine deficiencies. Specifically, Vitamin D deficiency was noted in 71%,
hypothyroidism in 57%, hypogonadism in 27%, short stature in 50%, reduced total body and
lumbar spine bone mineral density (BMD) in 57% and 21%, respectively. Compared to non-
FA patients undergoing alloHCT for hematologic malignancies, patients with FA
demonstrated greater rates of hypothyroidism, short stature, and reduced total body BMD.
Similar post-alloHCT decreases in BMD were documented previously by this group [119].

In contrast to risk of malignancy, type of conditioning does play a role in potentially
exacerbating some of the baseline endocrine risks in FA patients. While gonadal dysfunction
is near universal in males with FA irrespective of transplant, use of TBI or busulfan leads to
high risks of gonadal dysfunction and infertility. Particularly in patients with BMF where
conditioning is not focused on eradicating malignant hematopoiesis, efforts are being made
to preserve gonadal function by the reducing or eliminating TBI or Busulfan, or use of
ovarian shielding in recipients of TBI. With regards to interventions, hormone replacement
is the norm. Of note, growth hormone replacement is safe and often successful for treatment
of short stature even after transplant [120].

6.0 Summary Recommendations

Close monitoring of complete blood counts with white blood cell differential every 3 months
and annual bone marrow evaluations to assess the development and progression of clonal
cytogenetic anomalies are indicated. Particularly in teenagers and older patients, increasing
epithelioid tumor risk requires frequent evaluations of the aeroesophageal (biannual dental
evaluations and annual direct endoscopic laryngoscopy) and anogenital tracts (annual PAP
smears and evaluations). Patients should additionally be encouraged to reduce risk by
avoiding environmental exposures such as alcohol, tobacco products, and ultraviolet
radiation (particularly conscience of sunscreen and burn guard use). Patients and families
affected by FA are encouraged to seek longitudinal comprehensive follow-up care at an
established FA center, allowing for expert evidence-based multi-disciplinary care and for
contribution to databases on FA natural history and responses to treatments/interventions.
For example, such centers would include hematologists, oncologists, ENT, endocrinologists,
dermatologists, gastroenterologists, nephrologists and orthopedic surgeons expert in FA and
its varied manifestations (e.g. growth defects, hypothyroidism, insulin resistance; infertility;
reconstructive surgeries of skeletal anomalies, cancer) as well as genetic counselors.

Any patient with childhood onset BMF should be screened for FA by chromosomal
breakage analysis with subsequent fibroblast testing if signs/symptoms suggest somatic
mosaicism may be responsible for false negative blood testing. Recent recommendations
from Peffault de Latour prompt physicians to consider expanding chromosomal analysis of
annual bone marrow evaluations to include FISH or next generation sequencing for
identification of RUNXZ or +3q abnormalities to ensure malignant transformation is not
overlooked [74]. Table 6 summarizes these recommendations including medical monitoring
and risk reduction behaviors.

The goal of alloHCT in FA is to eliminate cytopenias, MDS, and/or leukemia with consistent
engraftment, no GVHD and minimal late effects. At this time, alloHCT indications include
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(1) severe BMF with risk of infection given low absolute neutrophil count (ANC <500 x
108/L), or anemia (hgb <8 g/dL) or thrombocytopenia (platelet count <20 x 106/L)
approaching transfusion need (ideally blood product transfusions should be avoided prior to
alloHCT to minimize risk of alloimmunization; however, when indicated, products should be
leukoreduced and irradiated); (2) morphological MDS, or (3) leukemia. Generally, pre-
emptive alloHCT should not be considered. However, in rare cases, patients with advancing
(e.g increasing proportions over time) high-risk clonal cytogenetic abnormalities in the
absence of morphological evidence of BMF, MDS, or acute leukemia should be considered
for pre-emptive alloHCT due to high risk of disease transformation and subsequent poorer
alloHCT outcomes. In isolated cases, patients with FANCD1/BRCAZ2 have also been
considered for prophylactic alloHCT although this is controversial.

CONCLUSION

Sequential modifications to alloHCT regimens, specifically dose reductions of alkylating
agents and irradiation, addition of FLU to conditioning, and T cell depletion of the donor
graft, have dramatically improved outcomes for patients transplanted for FA associated
BMF. Current rates of graft failure and acute GVHD are less than 10% with 5 year overall
survival >90% for patients under the age of 10 years. Today, the expectation is that nearly
every patient will have a suitable donor and that the outcome of transplant will likely be
survival. Therefore, the goal now is to minimize the impact of alloHCT on the early and
long-term risks of FA itself. Perhaps one day we can replace alloHCT altogether with FA
targeted gene therapy or develop pharmacotherapeutic strategies to reduce hematopoietic
stress and delay the risk of clonal disease that leads to BMF or malignant transformation.

EXPERT COMMENTARY

Improved understanding of the pathophysiology of FA has contributed to disease-specific
modifications to alloHCT in this disease, making cure of FA-associated BMF, MDS, and
leukemias more readily achievable over time. For BMF specifically, overall survival exceeds
90% with rates of graft rejection and GVHD <10% (using regimens, such as those outlined
in Figure 1). Outcomes of alloHCT for MDS/leukemia lag behind, with 5 year overall
survival for the latter merely 50-60%. Late effects and the interface between alloHCT
complications such as GVHD, endocrinopathies, and subsequent epithelioid malignancies in
FA require more evaluation to inform interventions. Development of effective, safe gene
therapy or editing strategies to correct the specific mutations leading to the hematologic
manifestations of FA provide hope for preemptive therapy obviating the need for alloHCT in
the future.

FIVE-YEAR VIEW

While subtle improvements in alloHCT outcomes for FA-associated BMF will likely be
achieved with continued evolution of conditioning regimens and manipulation of donor
grafts, identification of higher risk mutations for malignant transformation may prompt
preemptive alloHCT for subpopulations of FA patients. Further, mechanisms underlying
such transformation may inform less genotoxic, targeted therapies to replace or be used in
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combination with alloHCT to prevent or treat malignancies. With improved gene therapy
and gene modification technology, we anticipate clinical trials will expand for correction of
the hematologic manifestations of FA with gene-modified HSCs, greatly reducing the need
for alloHCT in the future, and hopefully reducing late effects from chemotherapy, radiation
and GVHD.

KEY ISSUES

. Sequential improvements in conditioning regimens and donor cell manipulation
for alloHCT in FA have resulted in better overall survival (5 yr OS: >90% in
younger patients with BMF, 50-60% for those with hematologic malignancy)

- Reduced transplant related mortality: Decreased doses of
cyclophosphamide and irradiation

- Reduced graft rejection (<10%): Administration of specified donor T
cell dose; recipient lymphodepletion with fludarabine, serotherapy,
and/or low dose irradiation

- Reduced GVHD (<10%): TCD of donor graft, use of serotherapy for /n
vivodonor T cell depletion

- Improved immune reconstitution: Administration of specific donor T
cell dose

. Gene therapy efforts, with less toxic targeted correction of FA mutations in
hematopoietic cells, are well underway

. Increasing knowledge of pathways downstream of FA gene mutations leading to
BMF contribute to potential new therapeutic interventions to delay need for
alloHCT

. Identification of high risk FA mutations, or combinations of acquired mutations

leading to leukemic transformation, may inform use of preemptive alloHCT

. Further characterization of FA-associated late effects, including those
exacerbated by alloHCT, such as epithelioid malignancies and endocrinopathies
will contribute to future interventions or prevention strategies to limit such
complications
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Figure 1.
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