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Abstract

The enormous diversity of proteoforms produces tremendous complexity within cellular 

proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable 

analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling 

often relies on non-targeted liquid chromatography – mass spectrometry (LC-MS), which samples 

proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared 

with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have 

enabled previously unachievable identification and quantification of target proteins and 

posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly 

advancing biomedical research, especially systems biology research in diverse areas that include 

proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent 

development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is 

positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to 

support fundamental and clinical research. Here we review recent applications of bottom-up 

proteomics using targeted LC-MS for systems biology research.
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1. Introduction

Bottom-up proteomics using high-performance liquid chromatography coupled to mass 

spectrometry (LC-MS) has developed into a powerful and highly versatile technology that is 

enabling rapid advances in diverse areas of biomedical research, clinical diagnostics, and 

biotechnology [1, 2]. This is especially true for the emerging scientific discipline of systems 

biology [3]. Beyond basic proteomic profiling, proteomics has recently evolved to enable 

identification and quantification of protein isoforms (e.g., splice isoforms, single amino acid 

polymorphisms, and other genetic variants), numerous posttranslational modifications 

(PTMs), protein turnover, protein conformations, protein-protein interactions, protein 

interactions with other molecules, and protein-protein subcellular proximity [1, 2]. Recent 

novel applications include the search for “missing proteins” (genes and transcripts that 

appear to encode proteins but direct experimental evidence is lacking), kinomics, and 

enzymatic activity assays related to protein modification (described below).

Bottom-up proteomics LC-MS workflows typically use data-dependent acquisition (DDA, 

often referred to as shotgun MS), data-independent acquisition (DIA), or targeted LC-MS. 

DDA involves real-time semi-stochastic intensity-based selection of analytes for 

fragmentation, and is often the method of choice for discovery-level proteomics. DIA is an 

emerging technology which involves nonstochastic multiplexed fragmentation using 

relatively wide precursor ion isolation windows [4, 5]. Compared to DDA, DIA spectra are 

more challenging to analyze, but DIA can identify more peptides with better tandem MS 

sampling reproducibility, and with better quantification accuracy and precision [6, 7]. As 

publicly available DDA spectral libraries and DIA software are further developed, the need 

for experimentalists to perform DDA prior to each DIA experiment will decrease. 

Importantly, this requires robust control of the false discovery rate of peptide, protein, and 

PTM identification.

In a targeted LC-MS experiment, a target list of analyte ion descriptors (e.g., precursor and 

fragment ion m/z, collision energy, LC elution time) is pre-designated to perform MS1 of the 

precursor ion and/or tandem MSn of one or more fragment ions [8, 9]. Targeted LC-MS 

assays are generally designed with the use of DDA LC-MS data, and therefore targeted LC-

MS has greatly benefitted from large-scale proteome-wide DDA LC-MS studies [10], which 

include studies of the yeast proteome [11], the human proteome [12, 13], and the mouse 

proteome and phosphoproteome [14]. Bottom-up proteomics using targeted LC-MS is a 

rapidly developing technology, and numerous methods and protocols have been published 

[15-21]. Neither DDA nor DIA require pre-MS designation of target analytes; as such, 

neither is targeted MS per se. However, because data analysis of DIA spectra can involve a 

target list of analyte descriptors (DIA analyses typically require a library of precursor and 
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fragment ion m/z values produced using DDA MS), DIA is often classified as a form of 

targeted proteomics.

Compared with targeted MS, DDA and DIA workflows typically require significantly less 

preparation and result in far broader proteomic coverage, but both technologies are currently 

less sensitive, accurate, precise, and robust [7, 22-25]. Consequently, DDA and DIA are 

often used for discovery-level experimentation, whereas targeted MS is often used for 

biomarker validation and absolute quantification. Clinical biomarker applications of bottom-

up proteomics using targeted LC-MS have been recently described in two detailed reviews 

[26, 27]. Therefore, here we focus on applications of targeted LC-MS for bottom-up 

proteomics in systems biology research (Fig. 1).

Quantitative immunoassays (e.g., densitometric western blots and enzyme-linked 

immunosorbent assays) are widespread, and can be of very high quality. Alongside 

quantitative immunoassays, targeted LC-MS has developed into a powerful alternative 

approach that can be much more selective, can have a much wider dynamic range, is often 

more amenable to multiplexing, and can otherwise be of roughly similar quality [28]. For 

particularly challenging targets, the two strategies can be integrated by immunoenriching 

target proteins or peptides, and subsequently performing targeted LC-MS.

The earliest LC-MS quantification procedure involved simply analyzing extracted ion 

chromatograms of precursor ions, and this technique still performs very well in some 

applications (described below). Currently, the most common targeted technique is selected 

reaction monitoring (SRM), which is also referred to as multiple reaction monitoring 

(MRM) [29-32]. SRM uses MS2 data for quantification, and is typically performed using a 

triple quadrupole MS. Due to the recent development of high resolution mass spectrometers 

(resolution ≥ ∼50,000) that have fast scan rates (scan frequency ≥ ∼10 Hz), wide dynamic 

ranges (range ≥ ∼1,000), and accurate and precise quantification, parallel reaction 

monitoring (PRM) has emerged as a powerful alternative to SRM [33]. Like SRM, PRM 

uses MS2 data for quantification, but whereas SRM uses fragment ion monitoring, PRM 

uses high resolution MS2 full scans to monitor the intensity of multiple fragment ions in 

parallel (low resolution MS2 full scans are rarely used; these are classified as PRM below). 

Occasionally, targeted LC-MS using MS3 (two stages of fragmentation) is used for 

qualitative reasons (e.g., identifying a phosphopeptide by fragmenting a neutral loss ion or 

distinguishing between two highly similar peptides) or for quantitative reasons (e.g., to avoid 

ratio compression resulting from quantification using isobaric tags). MS3 is highly selective 

and can be highly accurate, but it can suffer from lower sensitivity compared with MS1 and 

MS2.

Relative quantification of an analyte across multiple biological samples can be achieved by 

using the label-free approach (not labeling the analyte using stable isotopes, and performing 

LC-MS of each sample separately). Alternatively, relative quantification can be performed 

using a single LC-MS run by simultaneously analyzing a mixture of both unlabeled and 

stable isotope labeled (SIL) forms of the analyte. For absolute quantification, quantified SIL 

standards are used [34]. Metabolic labeling strategies include 13C labeling, 15N labeling, 

stable isotope labeling by amino acids in cell culture (SILAC), and stable isotope labeling of 
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mammals (SILAM). Alternatively, chemical labels include 18O, SIL dimethylation, isobaric 

tags for relative and absolute quantitation (iTRAQ), mass differential tags for relative and 

absolute quantification (mTRAQ), tandem mass tags (TMT), isotope-coded affinity tags 

(ICAT), and isotope-coded protein labels (ICPL). Standards for qualitative and quantitative 

proteomics include peptides prepared using solid-phase peptide synthesis (SPPS), peptides 

prepared using recombinant expression of a quantification concatemer (QconCAT), and 

intact purified protein standards. The lattermost standards are typically used for protein 

standard absolute quantification (PSAQ) workflows.

Targeted MS experiments depend heavily on specialized software, and this has been 

reviewed by others [35-37]. Recently developed software programs for targeted MS assay 

development include MRMaid [38], PeptideClassifier [39] (notable for its ability to select 

isoform-specific peptides), PeptidePicker [40], PeptideManager [41] (notable for its support 

of multi-species experiments), PREGO [42], and Skyline [43]. Prediction of quantotypic 

peptides, which are peptides that can be assayed to accurately identify and quantify a 

specific proteoform or a specific set of proteoforms (e.g., a set of splice isoforms) remains 

challenging due to, for example, alternative splicing, PTMs, and chemical artefacts that 

result from MS sample preparation [44, 45].

Databases of DDA MS2 spectra of proteotypic peptides are often helpful during targeted MS 

assay development [46], and include The Global Proteome Machine [47], The NIST 

Libraries of Peptide Tandem Mass Spectra [48], and The ProteomeXchange consortium [49] 

(which integrates the iProX, jPost, MassIVE, PeptideAtlas, and PRIDE databases). In the 

absence of DDA data, proteotypic peptide prediction can be performed using CONSeQuence 

[50], ESP predictor [51], PeptideRank [52], PeptideSieve [53], and STEPP [54]. Unique ion 

signatures can be calculated to avoid MS signal interference using Sigpep [55] and 

SRMCollider [56]. Targeted MS software programs for peptide identification and 

quantification include Ariadne [57], Anubis [58], AuDIT [59], mProphet [60], MRMer [61], 

Pinnacle (Optys Tech Corp. Philadelphia, PA, http://www.optystech.com/), Skyline [43], and 

SpectroDive (Biognosys Inc., Schlieren, Switzerland, https://biognosys.com/). Downstream 

data analysis including statistical modeling can be performed using MSstats [62], Qualis-SIS 

[63], and SRMstats [64]. Online data management and sharing tools include the CPTAC 

assay portal [65], Panorama [66], and SRMAtlas [67].

2. Biological processes and molecular functions

Targeted proteomics has been used to study numerous biological functions and disorders 

including autism, cancer, metabolic syndrome, and neuron development (Table 1). For 

example, SRM was used to develop pluripotency assays of reprogrammed human fibroblasts 

[68]. In a second example, 188 biological processes in yeast (e.g., osmotic balance, glucose 

metabolism, autophagy, and DNA damage) were studied using a multiplexed LC-SRM assay 

[69]. This “sentinel fingerprint assay” was used to quantify 300 target peptides to assay the 

abundance of 156 proteins, 11 target peptides to assay degradation products from one 

protein, and 166 target phosphopeptides to assay 80 phosphoproteins.
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Cancer-related proteins have been studied using targeted LC-MS. Isobaric tagging combined 

with targeted LC-MS3 was used to perform high-throughput relative quantification of 69 

cancer-related proteins across the National Cancer Institute NCI-60 panel of sixty cancer cell 

lines [70]. In this study, the samples as well as the peptide targets were multiplexed, and a 

correlation between BAZ1B abundance and doxorubicin sensitivity was discovered. Another 

study used targeted proteomics and transcriptomics to identify breast cancer subtypes [71]. 

SRM was also used to study estrogen receptor alpha-regulated protein expression in MCF-7 

breast cancer cells [72].

Targeted LC-MS has also been used to study sets of proteins related by biochemical function 

(Table 1). The absolute abundance of 51 chaperone proteins in yeast cells was measured 

using LC-SRM, and the substrate flux of each chaperone was calculated [73]. Chromatin 

immunoprecipitation coupled with LC-SRM was used to characterize transcriptional 

regulation of the environmentally regulated FLO11 promoter in yeast [74]. Affinity 

purification coupled with LC-SRM was used to perform activity assays of twelve small 

GTPases within human platelets stimulated with thrombin and lysophosphatidic acid [75]. 

LC-SRM was also used to measure the kinetics of caspase-mediated proteolysis of 350 

proteins in lysates and living cells [76].

3. Posttranslational modifications

Targeted LC-MS is highly amenable to the study of posttranslationally modified proteins 

(Table 2). In a recent report, 30 phosphorylation sites within epidermal growth factor 

receptor (EGFR) were profiled using both DDA and targeted MS of primary tumor explants 

and 31 lung cancer cell lines [77]. From this data, the authors were able to identify sites 

related to EGFR activation and erlotinib-mediated inhibition. A separate study found related 

results [78]. Notably, the authors of the later study successfully developed an LC-MS3 assay 

to distinguish between two extremely similar isobaric EGFR phosphopeptides, 

demonstrating the utility of targeted LC-MS to study extensively modified proteins.

Proteoforms containing multiple PTMs can be especially challenging to study. Histones, for 

example, can often be heavily modified. In one study, genes known to be active in epigenetic 

processes were knocked-down in 293T cells, and a novel targeted MS workflow was used to 

quantify modified histones [79]. In the same report, the authors used the workflow to profile 

knockdowns, knockouts, and drug treatments of murine stem cells. A similar study used LC-

SRM and discovered that histone H2B ubiquitination inversely correlated with H3 

methylation in the U937 human leukemia cell line [80].

Among the most challenging PTMs to study are polymeric, branching PTMs such as 

glycosylation, polyubiquitination, and poly-ADP-ribosylation. Ohtake and colleagues used 

targeted MS to study polyubiquitin K48-K63 branched chains [81]. The authors found that, 

in response to interleukin-1β, the E3 ubiquitin ligase HUWE1 produces K48 branches on 

K63 chains of TRAF6. These K48-K63 branches protected TRAF6 from deubiquitination, 

resulting in amplification of nuclear factor κB signaling.
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4. Protein conformation, protein-protein interaction, and cellular 

components

Targeted proteomics has been used to measure the stoichiometry of numerous protein 

complexes including the centrosome, the focal adhesion complex, the nuclear pore, the 

ribosome, and the spliceosome (Table 3). Shi and colleagues used LC-SRM to determine 

how ribosomal heterogeneity determines selectivity for subpools of transcripts [82]. 

Integration of LC-SRM with super-resolution microscopy and cryo-electron tomography 

was used to determine the structure of the human nuclear pore complex, and to discover that 

it varies across tissues, cancer cell types, and diseases [83, 84]. Ori and colleagues 

investigated spatiotemporal variation of human protein complex stoichiometry using 

numerous transcriptomic and proteomic technologies (including LC-SRM), and the 

nucleosome remodeling deacetylase (NuRD) complex was discovered to be an example of 

paralog switching within a moderately-variable protein complex [85].

Limited proteolysis (LiP) integrated with LC-SRM has been used to measure differences in 

protein conformation across experimental conditions [86, 87]. LiP-SRM was used to 

measure differences between two conformational states of the amyloid-forming protein α-

synuclein (monomeric versus polymeric fibrillar, which are globally different structurally) 

and of myoglobin (unbound versus bound to heme, which are only structurally different at a 

single α-helical fold). LiP, DDA, and SRM were integrated to globally profile protein 

conformation differences between yeast cultured in glucose- versus ethanol-based media. 

Not surprisingly, conformational differences in the core carbon metabolism pathway were 

detected. Unexpectedly, the carboxy-terminal region of the 14-3-3 protein BMH1 was 

dramatically different during glucose- and ethanol-based metabolism. A BMH1-knockout 

strain displayed a growth defect in the ethanol-based medium, confirming that BMH1 has an 

as yet undetermined role in yeast ethanol metabolism. In a related study, DDA LC-MS was 

used to globally measure differences in protein conformation across cancer drug treatments 

(targeted MS was not used) [88]. Therefore, the use of LC-MS to discover changes in 

protein conformation across experimental conditions has developed into a novel and 

powerful methodology to discover changes in protein folding and/or protein-protein 

interaction.

In addition to studying protein conformation and protein-protein interaction, targeted MS 

has been used to study cellular components such as the adenovirus, the postsynaptic density, 

and the Gram-positive bacterial cell surface (Table 3). In the lattermost study, LC-SRM was 

used to produce a structural model of the Streptococcus pyogenes cell surface that included 

adhered human blood plasma proteins [89]. Targeted LC-MS has also been used to identify 

and quantify proteins proximal to G protein-coupled receptors (GPCRs) during signaling 

[90]. The β2 adrenergic receptor and the δ-opioid receptor were each coupled to an 

engineered ascorbic acid peroxidase (APEX). This enabled APEX catalyzed proximity 

labeling, discovery of proximal proteins using DDA MS, and quantification of proximal 

proteins using targeted MS to reveal spatiotemporal signaling by and trafficking of both 

GPCRs. WWP2 and TOM1 were identified as novel mediators of δ-opioid receptor 
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degradation subsequent to prolonged activation (possibly via ubiquitination and trafficking 

to lysosomes).

5. Kinomics and phosphoproteomics

Targeted phosphoproteomic profiling has been used to investigate drug-induced 

phosphorylation, EGF-induced tyrosine phosphorylation, and mitochondrial 

phosphoproteomics (Table 4). It was first used to quantify EGF-induced tyrosine 

phosphorylation initially discovered using DDA LC-MS [91]. Seven time points following 

EGF treatment of 184A1 human mammary epithelial cells were analyzed using SRM, and 

31 novel EGF-regulated tyrosine phosphorylation sites were discovered. In a second 

phosphoproteomic study, targeted MS enabled simplified profiling of drug-induced 

phosphorylation cascades using the P100 abridged set of target phosphopeptides [92]. In this 

investigation, clusters of correlated phosphosites were identified using DDA LC-MS, and 

each cluster was assayed using targeted MS of one or two representative phosphopeptide 

members. Hundreds of drug-treatment samples were rapidly profiled, and it was discovered 

that each drug produced a highly reproducible and distinct P100 phospho-signature. These 

two reports demonstrate the utility of targeted phosphoproteomics downstream of DDA LC-

MS.

Targeted kinomics has been performed by coupling affinity enrichment of active protein 

kinases with targeted LC-MS, and this has been used to study breast, colorectal, lung, and 

skin cancer, as well as diabetes and arsenic poisoning (Table 4). Significant kinome 

reprogramming was discovered by comparing dasatinib-sensitive and insensitive melanoma 

cells, and also lung tumor and adjacent normal lung tissue [93]. A comparison of radiation 

therapy sensitive and resistant breast cancer cells revealed abundance alterations of kinases 

that control cell cycle progression and DNA repair [94]. Tyrosine kinase profiling was used 

to investigate EGF stimulation of skin cancer cells, APC mutation within colon cancer cells, 

ten colorectal cancer cell lines, and erlotinib-sensitive and insensitive lung cancer cells [95]. 

Colorectal cancer cell kinomics revealed compensatory activation of transforming growth 

factor beta (TGF-β) receptor superfamily members in response to treatment with three 

different mitogen-activated protein kinase (MAPK) inhibitors [96]. Fang and colleagues 

integrated kinomics and tyrosine phosphoproteomics to study lung cancer cell lines and 

tumors [97]. The activity of many kinases (measured using desthiobiotin-ATP labeling) 

correlated with their phosphorylation state. This study demonstrated the high value of 

integrating affinity enrichment of active protein kinases, phosphopeptide-enrichment, and 

targeted MS to study signaling cascades.

In addition to profiling the abundance and phosphorylation state of the kinome, targeted LC-

MS has also been used to assay the enzymatic activity of the kinome using a method termed 

KAYAK (Kinase ActivitY Assay for Kinome profiling) (Table 4). In a KAYAK assay, the 

activation state of many kinases within a cell lysate is measured by incubating the lysate 

with a peptide library and subsequently performing targeted LC-MS of the resulting 

phosphopeptides. KAYAK was first used to profile the activity of the kinome upon mitogen 

stimulation, during the cell cycle, and across cancer cell lines [98, 99]. Fast protein liquid 

chromatography (FPLC) coupled with KAYAK was used to identify phosphorylation 
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activity, the responsible kinase, and any associated protein complex members. A novel SRC-

catalyzed tyrosine phosphorylation site on phosphatidylinositol 3-kinase (PI3K) regulatory 

subunits was discovered. In addition, the CDC2 – CCNB1 complex was identified as an 

activated kinase during mitosis. Therefore, KAYAK and FPLC-KAYAK have emerged as 

powerful methods for quantitative comparative kinome activity profiling and for the 

discovery of the responsible kinase(s). More recently, KAYAK was used to measure dose 

response curves of the PKC inhibitor Ro-31-8425 on kinases involved in monocyte 

differentiation into macrophages [100].

6. Metabolic pathways

A fundamental goal of systems biology is the comprehensive characterization of biological 

pathways to enable accurate pathway simulation at the molecular interaction level. These 

simulations are needed for the diagnosis of diseases, to design therapeutic interventions, and 

for pathway engineering. Numerous targeted proteomics investigations have been focused on 

the characterization of metabolic pathways (Table 5). Some of these projects used targeted 

proteomics to support Escherichia coli metabolic pathway engineering. These included 

optimizing the production of a sesquiterpene [101], engineering the mevalonate and tyrosine 

biosynthesis pathways [102], and increasing tyrosine production [103]. A novel principal 

component analysis was successfully applied to targeted proteomics and metabolomics data 

to direct engineering of the mevalonate pathway [104]. Fine-tuning the expression of a 

polyketide pathway protein was used to optimize the production of metabolites that could 

function as possible future biofuels [105].

In some investigations, targeted proteomics has been integrated with transcriptomics, 

metabolomics, and/or phosphoproteomics to study metabolic pathways. Oliveira and 

colleagues combined targeted proteomics with targeted phosphoproteomics to determine 

how protein abundance and phosphorylation affect enzymatic fluxes in yeast central 

metabolic pathways [106]. It was discovered that the absolute abundance of only the non-

phosphorylated form of PDA1 correlated significantly with PDA1 enzymatic flux (total 

PDA1 abundance and phospho-Ser313 PDA1 abundance did not correlate with enzymatic 

flux). In another study, transcriptomics, targeted proteomics, and metabolomics were 

combined to produce a full picture of the macrophage prostaglandin biosynthetic pathway 

over a 24 hour time-course after stimulation with lipid A [107]. Using a similar approach, 

Wienkoop and colleagues used targeted proteomics and metabolomics to produce a detailed 

picture of metabolic and photosynthetic pathways within unicellular green algae [108]. In 

another multi-omic study, transcriptomics, targeted proteomics, and metabolomics were 

integrated to study the induction of terpene synthesis over a 32 day time-course in tree bark 

after treatment with an insect defense hormone [109].

In possibly the most extensive investigation of a metabolic pathway thus far, targeted 

proteomics, metabolomics, enzyme assays, and pathway modeling were integrated to 

construct and refine a model of the yeast glycolysis pathway [110]. Absolute abundance 

values of pathway proteins and metabolites were quantified using MS. Enzyme kinetics of 

purified proteins were assayed using in vitro conditions designed to mimic the in vivo 
environment. The protein abundance and kinetics data were input into an initial pathway 
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model as parameters, pathway simulations were performed, and the resulting predicted 

metabolite abundances were compared to measured values. Eighteen iterations of model 

refinement were performed, partly to account for the effects of side reactions (e.g., the 

glycerol branch on the core glycolytic pathway), reducing the normalized root-mean-square 

deviation down to ∼30%.

7. Signaling pathways

Diverse signaling pathways have been studied using targeted LC-MS (Table 6). 

Quantification of circadian clock transcript and protein oscillations within wild type and 

knockout mice revealed the roles of clock proteins and enabled the development of a novel 

assay for circadian time [111]. Intriguingly, the delay between the circadian transcript and 

protein abundance peaks spanned from ∼0 to ∼8 hours via mechanisms that have yet to be 

discovered. In a recent report, we integrated DDA cellular proteomics, DDA secretomics, 

targeted secretomics, and transcriptomics to study pattern recognition receptor signaling 

[112]. This multi-omic approach enabled detailed comparisons of macrophages stimulated 

using individual pattern recognition receptor ligands (lipopolysaccharide, Pam3CSK4, and 

resiquimod) and whole bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, and 

Burkholderia cenocepacia). Sabido and colleagues used targeted proteomics of the insulin 

signaling pathway merged with seven metabolic pathways to study metabolic syndrome 

resulting from a high-fat diet [113]. The metabolic pathways were: fatty acid biosynthesis, 

fatty acid β-oxidation, glycolysis and gluconeogenesis, pentose phosphate pathway, TCA 

cycle, ketogenesis, and glycogen metabolism. de Graaf and colleagues used targeted 

phosphoproteomics of the PI3K – mechanistic target of rapamycin (mTOR) – MAPK 

pathway to discover phosphorylation sites affected by oncogene-induced senescence and 

pharmacological intervention using BEZ235 (an inhibitor of both PI3K and mTOR) [114].

Some quantitative LC-MS studies of signaling pathways have revealed patterns of conserved 

stoichiometry. Transcriptomics, targeted proteomics, and targeted phosphoproteomics were 

used to study the EGFR – MAPK pathway within a variety of normal and cancerous human 

cell types [115]. The stoichiometry of the pathway transcripts and proteins were found to be 

very similar across the cell types. The glutamatergic signaling pathway within the auditory 

cortex of schizophrenic and control subjects was quantitatively compared using LC-SRM, 

and pathway protein expression and co-expression were significantly correlated with the 

disease [116]. Dysregulation of co-expression strongly correlated with reduced dendritic 

spine density (a schizophrenia phenotype), demonstrating the high value of co-expression 

analysis of targeted proteomics data.

Quantification of pathway proteins and PTMs can be used to enable accurate pathway 

modeling. Targeted phosphoproteomics was used to study an in vitro minimal MAPK 

pathway consisting of only five proteins: a two stage phosphorylation cascade consisting of 

three proteins, and the two reverse reactions catalyzed by two phosphatases [117]. The 

experiments were designed to measure only quasi-steady-state behavior (reaction time = 30 

min). Even in this simple system, perturbations caused by altering protein concentrations 

resulted in reequilibration of phosphorylation that required mass-action kinetics to correctly 

model (that is, simplistic inferences failed).
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Determination of constants related to molecule-molecule interaction, molecular 

transformation (e.g., in protein conformation), and catalysis is necessary for the simulation 

of biological pathways at the molecular level. Numerous experimental methods have been 

developed to measure affinity constants in vitro (e.g., surface plasmon resonance) and in 
vivo (e.g., fluorescence cross-correlation spectrometry) [118-121]. In addition, structural 

modeling software has been developed that can be used to estimate affinity constants 

(PRODIGY, SDA, TransComp, and related tools) [122-127]. A novel strategy using targeted 

proteomics was used to measure in vivo dissociation constants of the yeast galactose 

signaling pathway consisting of galactose, four proteins (Gal1p, Gal3p, Gal4p, and Gal80p), 

and the genes transcriptionally activated by Gal4p (including those encoding Gal1p, Gal3p, 

and Gal80p) [128]. The abundance of the four proteins was systematically varied genetically 

and quantified using LC-SRM, and the pathway output (target gene transcription) was 

quantified. From these data, the protein-protein and protein-DNA dissociation constants 

were determined.

We used targeted proteomics to enable accurate pathway modeling of the mouse 

macrophage chemotaxis pathway [129]. RNA-seq was used to identify target protein splice 

isoforms and to estimate pathway protein absolute abundance values. LC-SRM was used to 

measure the absolute abundance of pathway proteins to accurately parameterize a pathway 

model. The Simmune software suite [130, 131] was used for rule-based pathway modeling, 

microscopy data were used for model training, and GTPase activation assay data were used 

for model accuracy testing. The model successfully simulated pathway behavior consistent 

with the GTPase data, which was not used for model training and was highly orthogonal to 

the microscopy data. In addition, 2,000 perturbed models were generated and used to 

demonstrate that the pathway model was robust. In this way, targeted MS and other state-of-

the-art technologies are enabling the development of accurate and robust pathway models, 

which are critical to the advancement of systems biology, and which will aid the 

development of diagnostics, therapeutics, and personalized medicine.

8. Proteome-wide targeted MS and proteogenomics

Targeted MS has an important role in proteogenomics, especially coding sequence 

annotation (Table 7). Approximately 18% of the human proteome is classified as “missing” 

because there is not strong experimental evidence of the existence of these proteins [132]. To 

address this challenge, the Human Proteome Project is employing targeted proteomics and 

other technologies, and have confidently identified hundreds of formerly missing proteins. A 

typical strategy is to develop LC-SRM assays using synthesized peptide standards, and then 

to use these LC-SRM assays to analyze biological samples (selected because they express 

high levels of the corresponding transcript). Because of the excellent sensitivity and 

specificity of targeted MS, these efforts have often been very successful. For example, one 

study used DDA, PRM, and immunohistochemistry to confirm the expression of 206 

previously missing proteins [133]. In another example, Omasits and colleagues combined a 

stringent re-analysis of proteomics and transcriptomics data with validation using LC-PRM 

to annotate coding sequences of Bartonella henselae [134]. Small coding sequences (∼50 

residues or fewer) are especially challenging to annotate, and have recently been identified 

in numerous genomes including those of mammals [135, 136], mammalian mitochondria 
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[137-139], and prokaryotes [140, 141]. For example, LC-MS1 and LC-SRM were used to 

identify and quantify small open reading frame-encoded polypeptides within human cancer 

cells [135, 136].

Targeted proteomics coupled with other technologies has been used for proteome-wide 

absolute abundance estimation [142]. DDA and targeted LC-MS were combined to estimate 

protein abundances from precursor ion intensity values [143, 144]. Similarly, because 

transcript and protein abundance are sometimes significantly correlated [145], targeted 

proteomics coupled with transcriptomics has been used to estimate protein abundance from 

transcript abundance [129, 146]. It is important to note that transcript-protein absolute 

abundance correlations can vary dramatically across different target protein sets. For 

example, in yeast the transcript-protein correlation of the glycolysis pathway was strong 

(Spearman r = 0.97), whereas the correlation for ribosomal proteins was weak (Spearman r = 

∼0) [147]. This disparity may have resulted from the very different ranges in protein 

abundance across the two target protein sets. The glycolysis proteins ranged from 40,000 – 

1,500,000 copies per cell, whereas the ribosomal proteins only ranged from 250,000 – 

400,000 copies per cell. Therefore, protein abundance estimation using targeted proteomics 

integrated with global transcriptomics requires that the target proteins range in abundance 

across many orders of magnitude.

Recently, targeted LC-MS has developed into a technology capable of proteome-wide 

investigation, and currently the proteomes of four species have been analyzed almost in 

entirety: Mycobacterium tuberculosis, Streptococcus pyogenes, Saccharomyces cerevisiae, 

and Homo sapiens (Table 7). The first human proteome-wide investigation used SPPS to 

generate 166,174 peptide standards, which were used to successfully develop LC-SRM 

assays for 20,225 proteins (158,015 peptides) [148]. To demonstrate the utility of this 

resource, the authors investigated the effects of atorvastatin treatment on the cholesterol 

synthesis pathway in liver cells, and they also investigated a network of proteins associated 

with docetaxel inhibition of prostate cancer cell division. A second human proteome-wide 

investigation used 18,081 recombinant proteins to successfully develop LC-SRM assays for 

16,108 proteins (138,009 peptides) [149]. The authors used this resource to quantify 634 

enzymes to study the effects of oncogenesis on metabolic pathways. Because the 

development of a targeted LC-MS assay can be demanding and time-consuming, the 

proteome-wide development of human protein assays has greatly increased the accessibility 

of this powerful tool to scientists across a wide spectrum of biomedical research fields.

9. Conclusion

Proteomics has evolved far beyond basic proteomic profiling using DDA LC-MS. Targeted 

proteomics has been used to robustly quantify protein abundance, synthesis, degradation, 

PTMs, and other chemical modifications. Proteogenomic applications include identification 

of splice isoforms, identification of single amino acid polymorphisms and other genetic 

variants, identification of missing proteins, and quantification of DNA- and RNA-level 

regulation of protein expression (e.g., RNA interference). Functional proteomics 

applications include kinomics, enzymatic activity assays related to protein modification 

(e.g., protein phosphorylation, proteolysis), and measurement of protein conformation, 
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protein-protein interaction, protein interaction with other molecules, and protein-protein 

subcellular proximity. These technologies are enabling biological pathway mapping, 

simulation, and engineering, and targeted proteomics integrated with other technologies 

(e.g., transcriptomics, metabolomics) has been especially productive. With the recent 

development of LC-SRM assays for nearly the entire human proteome, targeted proteomics 

has emerged as a powerful technology for biomedical research, clinical applications, and 

biotechnology research and development.
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Significance

This manuscript is a comprehensive review of the recent advances in bottom-up targeted 

proteomics research for cell signaling pathways and modeling.
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Figure 1. Timeline of selected applications of targeted LC-MS for systems biology research
Research articles were partitioned into seven research categories and plotted by publication 

year. The symbols (1, 3, P, and S) indicate the principal MS scan type that was used for 

quantification (MS1, MS3, PRM, and SRM, respectively). Selected research topics are noted.
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