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Abstract

The neuroimaging community has seen a renewed interest in algorithms that provide a location-

independent summary of subject-specific abnormalities (SSA) to assess individual lesion load. 

More recently, these methods have been extended to assess whether multiple individuals within the 

same cohort exhibit extrema in the same spatial location (e.g., voxel or region of interest). 

However, the statistical validity of this approach has not been rigorously established. The current 

study evaluated the potential for a spatial bias in the distribution of SSA using several common z-

transformation algorithms (leave-one-out [LOO]; independent sample [IDS]; Enhanced Z-Score 

Microstructural Assessment of Pathology [EZ-MAP]; distribution-corrected z-scores [DisCo-Z]) 

using both simulated data and DTI data from 50 healthy controls. Results indicated that methods 

which z-transformed data based on statistical moments from a reference group (LOO, DisCo-Z) 

led to bias in the spatial location of extrema for the comparison group. In contrast, methods that z-

transformed data using an independent third group (EZ-MAP, IDS) resulted in no spatial bias. 

Importantly, none of the methods exhibited bias when results were summed across all individual 

elements. The spatial bias is primarily driven by sampling error, in which differences in the mean 

and standard deviation of the untransformed data have a higher probability of producing extrema 
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in the same spatial location for the comparison but not reference group. In conclusion, evaluating 

SSA overlap within cohorts should be either be avoided in deference to established group-wise 

comparisons or performed only when data is available from an independent third group.
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Introduction

There has been an increasing focus (Bouix et al. 2013; Kim et al. 2013; Mayer et al. 2014; 

Watts et al. 2014) on methods that are capable of identifying individual differences in 

neuroimaging data (hereafter referred to as subject-specific abnormalities [SSA]). One 

family of methods uses statistical moments derived from a reference group (RF; typically 

healthy controls) to z-transform individual subject data in a comparison group (CP; typically 

patients) and define extrema based on a given statistical threshold. However, the z-transform 

results in different distributional variances for the transformed data, and as a result over-

estimates extrema in CP and under-estimates extrema in RF dependent on sample size 

(Mayer et al. 2014; Mayer et al. 2017; Watts et al. 2014). This subsequently results in group-

wise bias (CP > RF) when comparing the total number of extrema, which is typically 

amplified by the numerous (i.e., voxelwise) statistical tests that occur in neuroimaging 

studies.

More recently, a growing number of investigators have examined the spatial overlap of 

extrema across subjects within individual voxels or regions of interest (ROI) following 

various z-transform methods (Bouix et al. 2013; Hayes et al. 2015; Meier et al. 2016; Miller 

et al. 2016; Miller et al. 2016; Solmaz et al. 2017; Taber et al. 2015; White et al. 2013; 

White et al. 2015). Specifically, these studies have quantified the number of individuals who 

exhibit SSA within the same voxel or region rather than collectively examining the total 

number of SSA across all voxels/regions. Others have extended this approach by providing a 

greater weight based on the proportion of individuals with a sufficient z-score magnitude in 

a given element, generating voxel-wise maps of area under the curve (Seghier and Price 

2016; Ware et al. 2017). The current investigation utilized both simulations and 

neuroimaging data to specifically address whether inferences regarding the spatial 

distribution of SSA across multiple individuals are statistically valid following various z-

transform methodologies.

Methods

Please see previous publications for a full review of simulation methodology and data sets 

utilized in the current report (Mayer et al. 2014; Mayer et al. 2017). Briefly, Monte Carlo 

simulations were used to evaluate the existence of bias in the spatial distribution of extrema 

across four commonly applied z-transformation methodologies (leave-one-out [LOO], 

independent sample [IDS], the Enhanced Z-score Microstructural Assessment of Pathology 

[EZ-MAP] and distribution-corrected z-scores [DisCo-Z]). Simulated datasets containing 

147,244 elements (equivalent to the number of 1 mm voxels in the John Hopkins University 
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white matter atlas) were randomly generated for a standard normal distribution (mean=0, 

variance=1). Each individual dataset was constrained to have an average interclass-

correlation of 0.10 through the addition of correlated noise to more closely simulate real 

data.

For the LOO method, each individual dataset in the RF group was z-transformed based on 

the mean and standard deviation (SD) from the remainder of RF datasets, while datasets in 

the comparison (CP) group were z-transformed based on the entire RF sample (Bouix et al. 

2013; Pasternak et al. 2014). In IDS and EZ-MAP methods, data from the two CP groups 

were z-transformed using statistical moments derived from an independent third RF sample. 

As an additional step in EZ-MAP, bootstrapping (2000 iterations) was used determine a 

variance correction from the independent RF sample (Kim et al. 2013). Extrema were 

identified based on a set threshold (i.e., |z| > 2) for EZ-MAP, IDS and LOO. In contrast, 

extrema were identified based on adjusted z-scores that accounted for distributional 

properties of the transformed RF and CP samples for the DisCo-Z (Mayer et al. 2014).

For all simulations, RF and CP samples were randomly selected with replacement in sample 

sizes ranging from 20 to 50 per group in intervals of 10 across 400 iterations. To investigate 

potential spatial biases following z-transform methods, we identified the number of elements 

where ≥ 10% of the RF or CP sample were identified as having overlapping extrema in the 

same element. By definition, two or more individuals per group must exhibit extrema within 

the same element to qualify as overlap. We therefore selected a minimum of 10% overlap to 

maintain consistency across our various sample sizes (i.e., based on smallest sample size, 

N=20). The total number of non-overlapping extrema was also examined to achieve 

consistency with previous publications (Mayer et al. 2014; Mayer et al. 2017), as well as a 

contrast to potential spatial biases.

For imaging analyses, white-matter fractional anisotropy (FA) maps (based on the Johns 

Hopkins atlas) from 50 adult healthy controls (25 males; 27.42±8.96 years old) were 

randomly sampled with replacement into RF and CP groups. Sample sizes ranged from 20 to 

50 individuals per group (interval = 10) and 400 iterations were performed. Data were 

analyzed without a minimum cluster size threshold to provide continuity with simulations. 

Measures of bias were identical to those for simulated data. Significance testing was 

performed using a 2 [Group (RF v. CP)] × 2 [Tail (Positive v. Negative)] mixed-measures 

ANOVA.

Results and Discussion

Consistent with previous publications (Mayer et al. 2014; Mayer et al. 2017), simulations 

indicated that all four z-transform methods eliminated group-wise bias when the total 

number extrema (i.e., non-overlapping) were summed across all elements (Figure 1; first and 

second rows). EZ-MAP and DisCo-Z (Figure 1B&D) were also more accurate at estimating 

the true number of expected extrema across all sample sizes relative to IDS and LOO 

(Figure 1A&C).
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In contrast, the degree of spatial bias was strongly influenced by both the choice of z-

transform method and sample size. As expected in more robust sample sizes, the number of 

elements with 10% or more overlap decreased as a function of increasing N across all 

methods. Both IDS and EZ-MAP methods utilize statistical moments derived from an 

independent reference group as the initial step in the z-transformation. Consequently, the 

transformed data initially resemble a t-distribution (i.e., heavier tails at lower sample sizes; 

Mayer et al. 2017), without evidence of group-wise bias in terms of how extrema are 

spatially distributed between CP1 and CP2 groups (Figure 1A and 1B third row).

Conversely, DisCo-Z and LOO are transformed using statistical moments from the RF 

group. This resulted in a pattern of spatial distribution bias (CP > RF) that increased as a 

function of N. Specifically, at N ≥ 40, spatial overlap in extrema was essentially non-existent 

in the RF group (Figure 1C&D; third row) while the number of extrema with spatial overlap 

in the CP group was similar to other methods that utilized independent samples (IDS and 

EZ-MAP) at similar sample sizes. To examine the primary determinant of these spatial 

biases, we examined differences between the first four statistical moments of the 

untransformed data (mean, SD, kurtosis, and skewness) resulting from both EZ-MAP (i.e., 

transformation based on independent third group) and DisCo-Z (i.e., transformation based 

on a dependent sample). Within each iteration, the difference in each statistical moment 

between the RF and CP groups (DisCo-Z) or between the CP1 and CP2 groups (EZ-MAP) 

was first calculated. Second, the signed differences for each moment were separately ranked 

by magnitude and assigned a percentile value. Finally, the average normalized frequency of 

elements that exhibited spatial overlap (at least 10% of sample) was plotted at bin intervals 

equal to every 5th percentile (Figure 2).

As expected, the initial differences in statistical moments across CP1 and CP2 groups in the 

EZ-MAP method resulted in a relatively symmetrical pattern of spatial overlap in extrema 

reflected around the 50th percentile with no evidence of bias (Figure 2A–D). Moreover, the 

standard deviation, and to a lesser extent the mean, appeared to be the primary factor for 

determining whether individual elements were characterized by higher spatial overlap. Both 

skew and kurtosis did not appear to contribute bias, which is not unexpected given that data 

were derived from a normal distribution. Results from DisCo-Z indicated that differences in 

the standard deviation and the mean of the RF and CP groups were again the largest 

contributors for determining the extent of spatial overlap within individual elements (Figure 

2E–F). Importantly, regardless of whether the CP or RF group exhibited a higher mean, the 

CP group always exhibited a higher percentage of spatial overlap in terms of extrema. 

Similarly, increased standard deviation in the CP relative to RF group also resulted in 

extremely high spatial overlap in terms of the pattern of extrema in the CP group. Thus, 

extrema in the CP group will always have a much higher probability of spatial overlap 

within the same element relative to extrema in the RF group even though the total number of 

extrema are equivalent.

Both of these phenomena can be easily understood based on the mathematical properties of 

a z-transform. Specifically, in cases where the CP and RF group means differ, the resulting 

z-transformed data for the CP group or groups will always be shifted away from zero, with a 

higher probability of outliers in either the positive or negative tail dependent on the direction 
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of shift (see Figure 2E). Similarly, as expected a higher standard deviation within the CP 

relative to RF group results in a greater number of extrema (i.e., scatter) within z-

transformed CP data (see Figure 2F). In contrast, higher standard deviation within the RF 

relative to CP group may reduce the magnitude of values in the z-transformed CP data as a 

result of division by a larger numerator (i.e., the RF group standard deviation) while having 

minimal impact on the scatter of z-transformed RF data.

Finally, we investigated whether the same group-wise bias in the spatial distribution of 

extrema present in simulations would exist when SSA methods were implemented with real 

data (Figure 3). Given the known correction to results using an independent sample from the 

preceding mathematical exploration of the z-transform equation (as demonstrated in Figure 

2), analyses were limited to the DisCo-Z method. Results from a 2 × 2 [Group (RF vs. CP) × 

Tail (Positive vs. Negative) ANOVA at N = 30 per group (sample size equivalent in most 

imaging experiments) indicated a significantly higher number of voxels (F1,798=952.2; 

p<0.001) exhibiting spatial overlap of extrema for the CP (11,267.6±4,611.6) relative to RF 

group (3,642.0±1,778.1). In addition, the tail bias originally present in the raw count of 

suprathreshold voxels (Figure 3C) carried over to overlap count, with a significant main 

effect of tail (F1,798=44.9; p<0.001; Positive [8,319.3±6,809.4] > Negative 

[6,590.2±5,821.4]; p<0.001). Importantly, there were no differences between groups (p > 

0.10) when the total number of extrema were simply summed as proposed in our original 

method (Mayer et al. 2014). Similar results were obtained at N = 20, 40 and 50 (see Figure 

3C).

Conclusion

In summary, results from the current study suggest that inferences regarding the spatial 

distribution of SSA across multiple individuals following various z-transform methodologies 

are not statistically valid unless an independent third group is utilized for the initial z-

transform. Although it has been repeatedly demonstrated that the LOO, IDS, EZ-MAP and 

DisCo-Z methods eliminate group-wise bias when SSA are summed across individuals 

(Bouix et al. 2013; Kim et al. 2013; Mayer et al. 2014; Mayer et al. 2017), recent attempts to 

quantify the number of individuals who exhibit SSA within the same voxel/region (Bouix et 

al. 2013; Hayes et al. 2015; Meier et al. 2016; Miller et al. 2016; Miller et al. 2016; Solmaz 

et al. 2017; Taber et al. 2015; White et al. 2013; White et al. 2015) or compute weighted 

statistics based on the proportion of individuals with extreme values (Ware et al. 2017) may 

be statistically flawed depending on the transform method utilized. Specifically, any SSA z-

transform (e.g., LOO and DisCo-Z methods) that utilizes the first two statistical moments 

(mean and standard deviation) for both the transform itself as well as for subsequent 

comparison purposes will produce a bias in the spatial location of extrema. In contrast, 

methods that utilize statistical moments from an independent third group (e.g., EZ-MAP and 

IDS) do not produce a bias in the distribution of extrema.

This result is inevitable for both simulated and real data based on the mathematical 

formulation of z-score calculations. Large differences between the means of two samples 

will always result in a higher probability of extrema in the comparison sample due to the 

subtraction of the reference mean; only the sign (positive or negative) of the extrema will 
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vary. Therefore, regardless of whether these differences in the mean are real or due to 

sampling error, the number of extrema will always be greater for the comparison group 

when the sample means differ. Conversely, whereas a large standard deviation (high scatter) 

in the comparison distribution increases the probability of extrema for the comparison 

group, a large standard deviation in the reference group differentially affects the probability 

of extrema in the reference (complex relationship) versus the comparison group (decreases 

magnitude of transformed values).

While deriving statistical moments from an independent third sample will alleviate the flaw 

inherent in transforming based on the reference sample, it is important to remember that, by 

design, SSA methods are meant to provide a location-independent summary of extrema load 

at the group level. The extension of the method for examining common spatial bias was not 

originally anticipated or intended, and is statistically similar to more standard group 

statistics (parametric or non-parametric) that explicitly test for differences in sample 

distributions. Importantly, the use of SSA methods to identify abnormal brain regions in a 

single subject and derive comparisons to clinical findings (e.g., SSA within motor tract 

resulting in hemiparesis) remains feasible if a large and representative sample size is utilized 

for derivation of normative data. In this way, SSA are similar to other blood and chemistry 

tests that are commonly utilized in medical settings.

Table 1 provides a brief summary of the four different z-score approaches for performing 

SSA. Foremost, all methods eliminate group-wise bias (i.e., differences between RF and CP 

groups) that has been shown to characterize the pothole method (Mayer et al. 2014; Watts et 

al. 2014). Second, both IDS and LOO incorrectly estimate the true number of extrema using 

traditional z-score thresholds across both normal and non-normal distributions (Mayer et al. 

2017). Importantly, this over-estimation bias can either be fully (normal or kurtotic 

distributions) or partially (skewed data) addressed by approximating the distributional 

properties of transformed data using an approach like the DisCo-Z. Third, and most relevant 

to the current investigation, both IDS and EZ-MAP require an independent RF group. This 

can be costly and time-consuming for neuroimaging studies to implement (i.e., using the 

same imaging sequence), and potentially increases the risk of convenience sample usage 

rather than appropriate controls. The bootstrapping used in EZ-MAP is also computationally 

intensive. Conversely, the use of an independent sample means that neither IDS or EZ-MAP 

is affected by spatial bias when the investigatory goal is to test for the frequency of 

abnormalities in any given ROI/voxel. Thus, each approach has various strengths and 

weaknesses, some of which can be addressed depending on the desired goals of the study.
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Fig. 1. 
Simulations comparing biases in the independent sample (IDS; Column A), EZ-MAP 

(Column B), leave-one-out (LOO; Column C) and the DisCo-Z (Column D) algorithms. 

Data were initially derived from a normal distribution for both reference (RF) and 

comparison (CP) groups. Sample size (N) within each group is plotted on the x-axis. The 

first row presents the mean number of extreme voxels that were observed in each method. 

Error bars depict the average standard error of the mean across iterations, while the 

horizontal dotted line represents the empirically determined number of extrema for z > |2|. 

The second row depicts group-wise bias, measured by the percentage of t-tests that were 

statistically different (p < 0.05) between the RF and CP groups (LOO and DisCo-Z) or two 

CP (CP1 vs. CP2; IDS and EZ-MAP) groups, with the dotted line representing expected 

percentage of significant tests in a single tail. The third row presents the number of cases 

where 10% or more of the group present with extrema, with the decrease expected from 

binomial distribution theory in number of elements with greater than 10% overlap as a 

function of increasing N. Standard error of mean across iterations is too small to be visible 

in these graphs. Data are color-coded to reflect the number of extrema (Row 1), t-test results 

(Row 2), or overlap (Row 3) from the negative (Neg; black and light gray bars) and 
positive (Pos; dark gray and white bars) tails of the distribution. All methods eliminated 
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global group-wise bias associated with unequal variances following z-transformations, 

whereas only algorithms based on an independent third sample eliminated spatial group-

wise bias. Note that scales differ between all rows.
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Fig. 2. 
Simulations examining distribution of overlap given pre-transformation differences in 

statistical moments (mean [Panels A & E], standard deviation [Panels B & F], kurtosis 

[Panels C & G], and skewness [Panels D & H]) between the study reference (CP1; black) 

and comparison (CP2; grey) groups in EZ-MAP (Panels A–D) and reference (RF; black) and 

comparison (CP; grey) groups in DisCo-Z (Panels E-H) algorithms. Data were derived from 

a normal distribution for both groups at per group sample sizes (N) of 20 (first and third 

rows) and 30 (second and fourth rows) and assigned a bin based on the percentile value of 
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the difference in the moments between untransformed group data across all tests. Data is 

shown as the mean number of voxels where 10% or more of group members presented with 

extrema in either the positive or negative tail of the distribution that were observed in each 

method and grouped as every 5th percentile between 0 and 100. Spatial bias in dependent-

referencing methods appears to be due to difference in the first two statistical moments, with 

the majority of variance attributable to pre-normalization differences in standard deviation 

between the two groups.
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Fig. 3. 
Fractional anisotropy data from 50 healthy controls were randomly sampled with 

replacement into reference (RF) and comparison (CP) groups across 400 iterations at 

samples sizes (N) from 20 to 50 by 10. The first row exhibits spatial results from an iteration 

representative of the average number of elements with 10% (red) or greater (yellow) overlap 

in the positive tail of RF (Panel A) and CP (Panel B) groups. Layout of Panel C is identical 

to Figure 1 (horizontal dotted lines, errors bars, etc.). While no global group-wise bias 

existed between the RF and CP groups, spatial bias (CP > RF) was present in the amount of 

overlap observed between individual z-transformed maps in both the negative (Neg; black 
and light gray bars) and positive (Pos; dark gray and white bars) tails of the 
distribution.
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Table 1

Cost-benefit profile of z-transform methods for SSA analyses.

IDS EZ-MAP LOO DisCo-Z

Eliminates Group-wise Bias + + + + + + + +

Eliminates Estimation Bias* (normal/kurtotic/skewed distributions) − −/− −/− − + +/+ +/+ − −/− −/− − + +/+ +/+

Computational cost + + − − + + +

Additional financial/time cost (requires independent sample) − − − − + + + +

Eliminates Spatial Bias + + + + − − − −

Notes: Number of positive/negative signs indicates degree of benefit/detriment for method.

*
Estimation bias can be reduced in IDS and LOO by a simple correction for distribution type as is done in DisCo-Z.
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