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Summary

The problem of estimating the average treatment effects is important when evaluating the 

effectiveness of medical treatments or social intervention policies. Most of the existing methods 

for estimating the average treatment effect rely on some parametric assumptions about the 

propensity score model or the outcome regression model one way or the other. In reality, both 

models are prone to misspecification, which can have undue influence on the estimated average 

treatment effect. We propose an alternative robust approach to estimating the average treatment 

effect based on observational data in the challenging situation when neither a plausible parametric 

outcome model nor a reliable parametric propensity score model is available. Our estimator can be 

considered as a robust extension of the popular class of propensity score weighted estimators. This 

approach has the advantage of being robust, flexible, data adaptive and it can handle many 

covariates simultaneously. Adopting a dimension reduction approach, we estimate the propensity 

score weights semiparametrically by using a nonparametric link function to relate the treatment 

assignment indicator to a low-dimensional structure of the covariates which are formed typically 

by several linear combinations of the covariates. We develop a class of consistent estimators for 

the average treatment effect and study their theoretical properties. We demonstrate the robust 

performance of the estimators on simulated data and a real data example of investigating the effect 

of maternal smoking on babies’ birth weight.
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1. Introduction

Estimating the average treatment effect is important in comparing different medical 

treatments, social programs and intervention policies. The problem is challenging when the 

data come from an observational study instead of a randomized experiment. Direct 

differencing of the sample averages is susceptible to confounding bias, which is caused by 

imbalances in baseline covariate distributions between the treatment group and the control 

group.

Under the commonly imposed no unmeasured confounder assumption (Rosenbaum and 

Rubin (1983); De Luna et al. (2011)), a variety of methods have been proposed to 

consistently estimate the average treatment effect. The class of doubly robust (DR) 

estimators (Scharfstein et al. (1999); Robins and Rotnitzky (2001); Bang and Robins (2005); 

Rubin and van der Laan (2008); Cao et al. (2009); Tan (2010); Rotnitzky et al. (2012); van 

der Laan and Rose (2011); Vansteelandt et al. (2012); van der Laan (2015); Benkeser (2016), 

among others) have been particularly popular due to their double protection against model 

misspecification.

For most practitioners, the application of DR estimation often adopts parametric 

specification of both the propensity score model and the outcome regression model, 

hereafter referred to as parametric DR. The parametric DR estimators are consistent when 

either the parametric propensity score model or the parametric outcome regressions model is 

correctly specified. However, Carpenter et al. (2006), Kang and Schafer (2007) and 

Vansteelandt et al. (2012) observed that the finite-sample bias can be amplified when one of 

the working models is misspecified and the bias of parametric DR estimators can be severe 

if both models are slightly misspecified. Vermeulen and Vansteelandt (2015) recently 

proposed a novel generic strategy for bias reduction under misspecification of both models. 

Vermeulen and Vansteelandt (2016) further explored the use of data-adaptive estimators in 

constructing bias-reduced doubly robust estimation. These estimators provide very useful 

improvement over standard parametric DR estimators, but still need at least one working 

model to be correctly specified using a parametric model.

Motivated by the practical concern of bias reduction, we propose an alternative approach by 

directly considering estimators of average treatment effects that are consistent in a larger 

class of semiparametric propensity score models. The semiparametric class we study 

imposes a semiparametric structure for the propensity score model while imposing no 

structure for the outcome regression model. As a direct consequence, our proposed estimator 

is expected to be consistent for many distributions where most of the standard parametric 

DR estimators would become inconsistent. This will be demonstrated by the numerical 

results in Section 4. Furthermore, we derive the asymptotic normality of the proposed 

estimator for the average treatment effect, which remains valid for this general class of 

semiparametric distributions.

There has been growing recent interest in relaxing the parametric specification of working 

models in parametric DR. Hirano et al. (2003) and Wang et al. (2010) considered 

nonparametric approach for estimating the propensity score. However, the nonparametric 
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approach is not feasible when many covariates are present due to the curse of 

dimensionality. Imai and Ratkovic (2014) introduced covariate balancing propensity score as 

a method that is robust to mild misspecification of the parametric propensity score model. 

McCaffrey et al. (2004); Ridgeway and McCaffrey (2007); Petersen et al. (2007); Westreich 

et al. (2010); Lee et al. (2010) explored machine learning approaches for modeling the 

propensity score but have not studied the asymptotic properties of the resulted average 

treatment effect estimator. In a sequence of impressive work, Van der Laan and his coauthors 

proposed and carefully studied targeted maximum likelihood estimators (TMLE) which 

incorporates the state-of-art of machine learning and uses an ensemble of models. See van 

der Laan and Rubin (2006), the recent manuscript of van der Laan and Rose (2011) and the 

references therein. van der Laan (2014) showed that a double targeting can guarantee that 

the bias of the estimator of the target parameter is of second order and hence asymptotically 

linear. van der Laan (2015) further proposed a general one-step targeted minimum loss-

based estimator based on an initial estimator of the nuisance parameters defined by a loss-

based super-learner and proved that this one-step TMLE is asymptotically efficient. The 

latter estimator is understandably more computationally intensive than our proposed 

approach as it involves multiple tuning parameters and requires cross-validation.

The approach we propose can be viewed as a middle ground between the parametric DR and 

the nonparametric DR. Compared to parametric DR, our method does not rely on parametric 

specification of the propensity score model or the outcome regression model. In fact, we do 

not attempt to model the outcome at all, and only model the propensity score 

semiparametrically, hence it is more robust as far as the dependence on the propensity score 

model is concerned. Compared to the nonparametric DR, it has the advantage of being able 

to handle many covariates. Specifically, we relax the commonly imposed parametric 

assumption on the propensity score model by only assuming the probability of assigning the 

treatment depends on the p-dimensional covariate vector X through several linear 

combinations ℬTX, where ℬ is a p × d matrix with d < p. We then estimate this conditional 

probability by employing a nonparametric link function. Note that much work exists in 

studying how to model the relation between a binary response and many covariates, see for 

example, Pregibon (1980), Koenker and Yoon (2009), Li et al. (2016). The special case of d 
= 1 yields the single index model and is especially well studied (Härdle et al., 2004). As an 

intermediate model for the propensity score in the treatment effect estimation, our 

semiparametric approach for estimating the propensity score is most closely related to the 

sufficient dimension reduction literature (Cook, 1998) and is of independent interest. 

Existing methods for estimating the dimension reduction space such as sliced inverse 

regression (SIR)(Li, 1991), sliced average variance estimation (SAVE) (Cook and Weisberg, 

1991), directional regression (Li and Wang, 2007), generalized directional regression (Li and 

Dong, 2009; Dong and Li, 2010) have two limitations in relation to our problem. First, they 

rely mainly on a linearity condition and/or a constant variance condition, i.e. E(X | ℬTX) 

being a linear function of ℬTX and var(X | ℬTX) being a constant matrix, or their generalized 

form, which may not hold in our problem. Second, they require a reversal of the relation 

between X and T, i.e. they require to compute expectations of the functions of the covariates 

X conditional on T. Because T only has two values, each expectation will generate only two 

different values, which is not sufficient for subsequent operations of these methods. This 
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hampers the direct application of these methods. On the other hand, other methods based on 

nonparametric regression (Xia, 2007) and semiparametric regression (Ma and Zhu, 2012, 

2013) exist, but they also need to be adapted instead of directly applied to estimating the 

propensity score which concerns binary response.

The rest of the paper is organized as follows. In Section 2, we introduce the multi-index 

semiparametric estimator of the propensity score function and a robust estimator of the 

average treatment effect. In Section 3, we study the asymptotic properties of the estimators. 

Simulation studies are conducted and presented in Section 4. We illustrate the usefulness of 

the method in a real data example of analyzing effect of maternal smoking on babies’ birth 

weight in Section 5 and conclude the paper with a brief discussion in Section 6. The 

Appendix contains the derivation of the efficient score function and the proof of Theorem 1. 

The regularity conditions, proofs of Lemmas and additional numerical results are given in 

the online supplementary document.

2. A robust estimator of the average treatment effect

2.1 Notation and setup

We consider the popular setting of a binary treatment T (T = 1 for treatment and 0 for 

control). To estimate the treatment effect, we adopt the potential or counterfactual outcome 

framework (Neyman et al., 1990; Rubin, 1974). Let Y*(1) be the outcome of the subject had 

s/he (possibly counter to fact) received treatment; and Y*(0) be the outcome of the subject 

has s/he (possibly counter to fact) received non-treatment. Our goal is to estimate the 

average treatment effect

τ = E{Y∗(1) − Y∗(0)} .

The difficulty of the problem arises because for each individual in the sample, we observe 

either Y*(1) or Y*(0), but not both. The observed outcome is Y = TY*(1) + Y*(0)(1 − T), 

that is, the observed outcome is the potential outcome corresponding to the treatment the 

subject actually receives, which is often referred to as the consistency assumption in causal 

inference (Rubin, 1986).

Given data from an observational study {Yi, Ti, Xi}, i = 1, …, n, where Yi is the response of 

the ith subject, Ti is the binary treatment indicator, Xi is a vector of covariates, we are 

interested in estimating the average causal effect of the treatment. Direct differencing the 

sample averages of the treatment and control groups often leads to a biased estimator of τ in 

observational studies as the two groups often differ in some covariates that are associated 

with both the treatment and outcome. Let π(X) = P(T = 1|X) be the propensity score 

function and assume that the unconfoundedness given X assumption is satisfied, that is 

{Y*(1), Y*(0)} ⊥ T|X, or the treatment assignment is independent of the potential outcomes 

given the covariates. Rosenbaum and Rubin (1983) showed that adjusting for propensity 

score can completely remove the confounding bias from the difference in covariates.

Hahn (1998) derived the semiparametric efficiency bound for estimating τ in the general 

model where only the independence between treatment and potential outcomes given 
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covariates is assumed. The propensity score can be used in different ways to obtain a 

consistent estimator for the average treatment effect. Hahn (1998) also proposed an 

estimator that achieves the semiparametric efficiency bound, but his estimator involves 

estimating E(YT|X), E{Y (1 − T)|X} and π(X). Hirano et al. (2003) further showed that a 

simpler estimator that only estimates π(X) nonparametrically can also achieve the 

semiparametric efficiency bound. However, these nonparametric estimators suffer from the 

curse of dimensionality in real data analysis even with a moderate amount of covariates such 

as four covariates.

In practice, existing work on causal inference usually adopts a parametric approach to 

modeling the propensity score function. For example, logistic models are frequently used to 

model disease occurrence in case-control studies (Prentice and Pyke, 1979; Chatterjee and 

Carroll, 2005; Lin and Zeng, 2009; Ma and Carroll, 2016), in missing probability problem 

(Rubin, 1976; Rubin and Little, 2002), and even in survival models (Efron, 1988). However, 

the parametric approach is prone to model misspecification and can result in substantial bias.

The crux of our robust estimator of the average treatment effect is to develop a flexible 

estimator of the propensity score function. Instead of the parametric logistic regression 

model for the propensity score function, we assume

pr(T = 1|X = x) = exp{η(ℬTx)}
1 + exp{η(ℬTx)}

, (2.1)

where X ∈ ℛp, ℬ ∈ ℛp×d and η is an arbitrary unspecified function. Note that we use the 

logit link function here for parameterization purpose to ensure that the depicted probability 

function takes values between 0 and 1. As the function η is completely unspecified, our 

model allows the probability of being assigned to the treatment to depend on several linear 

combinations of X in a nonparametric fashion. In contrast, the popular logistic regression 

model assumes this probability to depend on one particular linear combination of X in a 

known parametric fashion.

2.2 Flexible estimation of the propensity score

To obtain a more concise form, we rewrite (2.1) equivalently as

pr(T = t |X = x) = exp{tη(ℬTx)}
1 + exp{η(ℬTx)}

. (2.2)

The log-likelihood function of ℬ and η is ∑i = 1
n (tiη(ℬTxi) − log[1 + exp{η(ℬTxi)}]). For 

identifiability of ℬ, we require ℬ to have the form ℬ = (Id, ℬl
T)T, where the upper submatrix 

Id is the d × d identity matrix while the lower submatrix ℬl is an arbitrary (p − d) × d matrix. 

To estimate the semiparametric propensity score function, we need to estimate ℬl and the 

unknown function η, the former of which contains pt = (p − d)d free parameters while the 

latter can be viewed as an infinite dimensional parameter, where the subindex in pt stands for 
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“total”. In the sequel, for notational convenience, for any arbitrary p × d matrix ℬ, we define 

the concatenation of the columns contained in the lower p − d rows of ℬ as vecl(ℬ) = vec(ℬl) 

= (βd+1,1, …βp,1, …βd+1,d, …βp,d)T where “vec” stands for vectorization while “vecl” is the 

vectorization of the lower part of the original matrix.

Our approach of estimation relies on first deriving the influence function using the geometric 

technique (Bickel et al., 1993; Tsiatis, 2006). In the Appendix, we derive the efficient score 

function with respect to ℬ:

Seff(ti, xi, ℬTxi, η, η′)

= vecl  {xi − E(Xi |ℬ
Txi)} ti −

exp{η(ℬTxi)}
1 + exp{η(ℬTxi)}

η′(ℬTxi)
T .

(2.3)

We use the Nadaraya-Watson kernel estimator to estimate E(Xi | ℬTxi), that is,

E(X |ℬTx) =
∑i = 1

n xiKh(ℬTxi − ℬTx)
∑i = 1

n Kh(ℬTxi − ℬTx)
, (2.4)

where h is a bandwidth and K is a multivariate kernel function, Kh(·) = K(·/h)/hd. Neither η 
nor η′ is known in a real data analysis. To deal with this complexity, in the following we 

borrow the idea of locally efficient and adaptively efficient estimators in general and 

especially in Ma and Zhu (2012) and consider two different options, which lead to two 

different estimators of ℬ.

First, we consider an estimator of ℬ based on a posited form of η, denoted as η*, which may 

not be identical to η. The corresponding derivative is denoted by η*′. This yields the locally 

efficient score function

Seff
∗ (ti, xi, ℬ, η∗, η ∗ ′)

= vecl  {xi − E(Xi |ℬ
Txi)} ti −

exp{η∗(ℬTxi)}
1 + exp{η∗(ℬTxi)}

η ∗ ′(ℬTxi)
T .

(2.5)

Obviously, there are many different choices of η, as long as η* is a smooth function of ℬTx. 

For example, when we choose η∗(ℬTx) = 1d
TℬTx where 1d is a length d vector of ones. Then 

η*′(ℬTx) = 1d. The locally efficient estimator of ℬ solves the estimating equation
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∑
i = 1

n
vecl {xi − E(Xi |ℬ

Txi)}{ti −
exp(1d

T ℬTxi)
1 + exp(1d

T ℬTxi)
}1d

T = 0 . (2.6)

We denote this estimator by ℬ̂1.

Next, we consider estimating η(ℬTxi) and its first derivative nonparametrically to obtain an 

adaptively efficient estimator of ℬ. We adopt the local linear kernel method to estimate 

η(ℬTx) and its first derivative, which solves

∑
i = 1

n
ti −

exp{b0 + b1
T(ℬTxi − ℬTx0)}

1 + exp{b0 + b1
T(ℬTxi − ℬTx0)}

Kh(ℬTxi − ℬTx0) = 0 (2.7)

∑
i = 1

n
ti −

exp{b0 + b1
T(ℬTxi − ℬTx0)}

1 + exp{b0 + b1
T(ℬTxi − ℬTx0)}

(ℬTxi − ℬTx0)Kh(ℬTxi − ℬTx0) = 0 . (2.8)

The estimators b̂0 and b̂
1 are the estimators of η and η′ at ℬTx0, respectively. We can vary 

x0 to obtain estimates of the functions at various values. We write the resulting estimators as 

η̂(·, ℬ) and η̂′(·, ℬ), which can be considered as profiled estimators for η and η′. We 

subsequently plug η̂(·, ℬ), η̂′(·, ℬ), Ê(X | ℬTx) into (2.3) and solve for ℬ to obtain the 

efficient estimator, which we denote by ℬ̂2.

2.3 Robust estimation of the average treatment effect

To estimate the average treatment effect robustly, we propose to use

τ = 1
n ∑

i = 1

n T iY i
π(Xi)

−
(1 − T i)Y i
1 − π(Xi)

, (2.9)

where π̂(Xi) is obtained from the semiparametric model (2.1) and estimated using either of 

the two options discussed in Section 2.2. Algorithm 1 below depicts the detailed steps of 

obtaining the estimator τ̂ when the locally efficient estimator of π(Xi) is used (i.e., based on 

ℬ̂1). The algorithm based on ℬ̂2 is similar. The above procedure can be considered as an 

extension of the celebrated Horvitz–Thompson inverse probability weighted estimator 

(Horvitz and Thompson, 1952), which was originally developed for survey sampling.

The proposed estimator enjoys nice robustness properties. It is more flexible than the 

parametric propensity score model and hence is less prone to misspecification. It also does 

not propose any outcome regression models, which leads to computational simplicity. One 

can further pursue a double robust estimator by augmenting the estimator we propose. It 
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could further improve estimation efficiency at the price of more complex modeling and/or 

computation. The estimator can accommodate a large number of covariates. Note that 

although nonparametric smoothing is used to estimate π(Xi), the smoothing is implemented 

with respect to ℬTx. Under the dimension reduction assumption, it is often sufficient to 

consider a small d in practice; our estimator does not face the kind of curse of 

dimensionality that prevents the practical implementation of the estimators in Hahn (1998) 

and Hirano et al. (2003). Furthermore, we allow the covariate X to include both continuous 

and discrete or categorical variables without imposing any distributional assumptions on the 

covariate.

Algorithm 1

Robust estimator of the average treatment effect

Input: {Yi, Ti, Xi}, i = 1, …, n, where Yi is the response of the ith subject, Ti is a binary treatment indicator (Ti = 1 for 
treatment and 0 for control), Xi is a vector of covariates.

Output: Estimator τ̂.

  1: Use (2.6) to obtain a local efficient estimator of ℬ, denoted as ℬ̃ via, for example, choosing η∗(ℬTx) = 1d
TℬTx.

  2: Perform nonparametric estimation of η(ℬTxi) and its first derivative η′(ℬTxi) by implementing (2.7). Write the 
resulting estimator as η̂(ℬTxi, ℬ) and η̂′(ℬTxi, ℬ).

  3: Perform nonparametric estimation of E(Xi | ℬTxi). Write the resulting estimator as Ê(ℬTxi).

  4: Plug η̂(·, ℬ), η̂′(·, ℬ) and Ê(·) in to Seff and solve the estimating equation

∑
i = 1

n
Seff(yi, xi, ℬ, η, η′, E) = 0,

using ℬ̃ as starting value, to obtain the efficient estimator ℬ̂.

  5: Repeat Step 2 to obtain the final estimator of η(·) and form π̂(Xi) = 1 − 1/[1 + exp{η̂(ℬ̂Tx)}].

  6: return τ = n−1∑i = 1
n TiYi

π(Xi)
−

(1 − Ti)Yi
1 − π(Xi)

.

Remark 1—A technical detail involved in the nonparametric step of the above procedure is 

bandwidth selection. Through extensive numerical experimentation, we find that the ℬ 
estimation procedure is quite insensitive to the bandwidth, while inference precision could 

be affected by the bandwidth. Thus, guided by the theoretical properties (see Lemma 1, 

Lemma 2 and the regularity conditions C4), we recommend simply setting the bandwidth to 

be var(‖Xi‖2)n−1/5 throughout the estimation of ℬ, and use a leave-one-out cross-validation 

procedure to obtain the smoothing parameter h in estimating η after fixing ℬ̂. The same 

bandwidth then can be used in the inference procedure.

3. Asymptotic Properties

We now study the asymptotic properties of the estimators for the propensity score function 

for the robust estimator of the average treatment effect. The regularity conditions that are 

needed for the theoretical development are given in the online Supplementary Materials. 
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Condition C1 consists of some standard requirements on the univariate and multivariate 

kernel functions. Condition C4 contains some mild requirement on the bandwidth. 

Conditions C2–C3 and C5–C8 contain the boundedness, smoothness and invertibility of 

several functions or matrices. All these conditions are very mild.

First, we study the asymptotic properties of ℬ̂1, the nonparametric estimators of η, η′ and ℬ̂2 

discussed in Section 2.2. The results are summarized in Lemmas 1 and 2 below. The proofs 

are relegated to the online Supplementary Materials.

Lemma 1

Let ℬ̂1 be the estimator defined in Section 2.2. Under the regularity conditions (C1)–(C6), ℬ1̂ 

is locally efficient. As n → ∞,

n{vecl(ℬ1) − vecl(ℬ)} N{0, A−1G(A−1)T}

in distribution, where

A = E ∂
∂(vecl  ℬ)T

vecl  {Xi − E(Xi |ℬTXi)} Ti −
exp{η∗(ℬTXi)}

1 + exp{η∗(ℬTXi)}

η ∗ ′(ℬTxi)
T ,

G = E vecl  {Xi − E(Xi |ℬTXi)} Ti −
exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
η′(ℬTXi)

T
⊗ 2

.

Here and throughout the paper, a⊗2 ≡ aaT.

Lemma 2

Assume the regularity conditions (C1)–(C4) and (C7)–(C8) hold. The local linear kernel 

estimators of η̂(ℬTx) and η̂′(ℬTx) defined in Section 2.2 satisfy

E{η(ℬTx)} − η(ℬTx) = O(hm), E{η′(ℬTx)} − η′(ℬTx) = O(hm),

var{η(ℬTx)} = Op{(nhd)−1},      var{η′(ℬTx)} = Op{(nhd + 2)−1} .

Furthermore, ℬ̂2 defined in Section 2.2 is efficient and satisfies

n{vecl(ℬ2) − vecl(ℬ2)} N(0, V−1)
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in distribution as n → ∞, where

V = E{Seff(Ti, Xi, ℬTXi, η, η′, E) ⊗ 2}

= E vecl  {Xi − E(Xi |ℬTXi)} Ti −
exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
η′(ℬTXi)

T
⊗ 2

.

We provide the asymptotic property of the average treatment estimator τ̂ defined in Section 

2.3, where the propensity is based on the dimension reduction estimation. We adopt two 

standard assumptions in causal inference, i.e., no unmeasured confounding and positivity.

Theorem 1

Under the regularity conditions (C1)–(C8), when n → ∞ the estimator π̂ from (2.9) based 

on ℬ̂2 satisfies

n(τ − τ) N(0, σ2)

in distribution, where σ2 = σeff
2 + aTE(SeffSeff

T )−1a, with

σeff
2 = var 

TiYi
π(Xi)

−
(1 − Ti)Yi
1 − π(Xi)

− τ −
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{Ti − π(Xi)} ,

a = E([Yi1{1 − π(Xi)} + Yi
∗(0)π(Xi)]η′(ℬTXi) ⊗ XiL) .

Remark 2

In the above asymptotic variance expression, σeff
2  is the optimal estimation variance (Hahn, 

1998; Hirano et al., 2003) when the propensity is completely unknown and estimated purely 

nonparametrically. The additional term is the price we pay when we use a dimension 

reduction procedure to estimate π instead of doing it fully nonparametrically. In other 

words, our estimator is in general not efficient.

Regarding the theoretical efficiency bound in estimating a treatment effect, whether the 

propensity score is completely known or completely unknown, the efficiency bound in 

estimating the average treatment effect is the same as is given in Hahn (1998). In our 

context, the propensity score is partially known, in that we know it has the dimension 

reduction structure. Thus, the efficiency bound in estimating the treatment effect should be 

in between the completely known and completely unknown cases, and hence is also the 

same as that given in Hahn (1998).
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Regarding achieving optimal efficiency, if inverse probability weighting method is used, the 

efficiency bound is only achieved if the propensity score is estimated nonparametrically, 

regardless of whether the true propensity score is known or not known (Hirano et al., 2003). 

Thus, in the setting where the propensity score is partially known, the efficiency bound is 

still only achieved if the estimator ignores the fact that the propensity score is partially 

known and is estimated nonparametrically. If instead the known knowledge about the 

propensity is used in the estimator, then the asymptotic efficiency is strictly larger than the 

efficiency bound.

However, estimating the propensity score nonparametrically is often infeasible in practice, 

especially when there are many covariates. Thus, a natural compromise is to adopt as 

flexible a model as possible, such as the dimension reduction model, to facilitate the 

propensity score estimation, which provides a trade-off between efficiency and practical 

applicability.

4. Monte Carlo studies

4.1 A simulation study on estimating the propensity score function

We first conduct a simulation study to investigate the performance of the flexible 

semiparametric estimators proposed in Section 2.2 for the propensity score.

We generate the vector of covariates X = (X1, X2, X3, X4, X5, X6)T as follows. The 

covariates X1 and X2 are generated from independent standard normal distributions. We let 

X3 = 0.2X1+0.2(X2+2.0)2, X4 = 0.1+0.2(X1+X2)+0.3(X1+1)2, and generate X5 and X6 

independently from Bernoulli distribution with success probability exp(X3)/{1 + exp(X3)} 

and exp(X4)/{1 + exp(X4)}, respectively. In (2.2), we consider the following two different 

functional forms:

• Setting (1): η(ℬTx) = sin(ℬTx),

where d = 1 and ℬ = (1.0, −1.2, 0.8, −1.7, −1.5, 0.5)T.

• Setting (2): η(ℬTx) = sin(ℬ1
Tx) + sin(ℬ2

Tx), where d = 2,

ℬ1 = (1.0, 0.0, 1.2, 0.8, −1.2, 0.8)T and ℬ2 = (0.0, 1.0, 1.3, 0.7, 1.1, −0.7)T.

For comparison purposes, we implement the oracle estimator and compare with our 

proposed semiparametric estimators ℬ̂1 and ℬ̂2. The oracle estimator assumes the functional 

form of η in (2.2) is known, although E(x| ℬTx) is still estimated through the kernel 

regression in (2.4). Even though the oracle estimator is unrealistic, it provides a benchmark 

since it is the best performance one could expect to obtain. The local estimator ℬ1̂ replaces η 
with a mis-specified function in the estimation procedure and estimates E(x| ℬTx) 

nonparametrically. We posit the models η*(ℬTx) = sin(ℬTx + 0.8) − 0.3 and 

η∗(ℬTx) = sin(ℬ1
Tx + 0.5) + cos(ℬ2

Tx − 0.5) for setting (1) and (2), respectively. The efficient 

estimator ℬ̂2 does not use any posited model for η. Instead, we estimate E(x| ℬTx), η and η′ 
through nonparametric regression, i.e. we followed the algorithm described in Section 2. The 

efficient estimator ℬ̂2 is more computationally involved since it solves estimating equations 

to obtain the nonparametric components η and η′ at n locations inside the search for ℬ 
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which does not have a closed form. To alleviate the computational burden, we performed the 

nonparametric estimation on a set of grid points and then performed a linear interpolation 

for d = 1 and a bilinear interpolation for d = 2 to obtain the values at each ℬ̂(k)T xi, where 

ℬ̂(k) represents the kth iteration of the estimated ℬ̂ during solving the estimating equation in 

Step 4 of the algorithm in Section 2.

We repeat each experiment 1000 times with sample size n = 500 and 1000, respectively. The 

results are summarized in Table 1 for setting (1) and Table 2 for setting (2). From Table 1, 

we observe that the performance of both ℬ̂1 and ℬ̂2 is close to that of the oracle estimator. All 

estimators have very small bias for both sample sizes. The results in the table also provide 

the median of the estimated standard errors using the results in Lemma 1 and Lemma 2 and 

the empirical coverage probability of the 95% confidence intervals. These results indicate 

that the asymptotic normal approximation is accurate for the sample sizes. We observe 

similar performance in Table 2. The standard errors of the ℬ̂1 and ℬ̂2 become smaller as the 

sample size grows and the confidence interval coverage probabilities become closer to the 

nominal level.

4.2 Additional Simulations

We further compare the performance of estimators for higher dimensional covariates where 

p = 10. In dimension reduction literature, p = 10 is considered to be rather high dimension. 

See Ma and Zhu (2012) for an investigation of covariate dimension issues. We 

independently generate X1, X2 from Uniform(0, 1), X3 and X7 from Normal(0, 0.52), X4 

from Normal(0, 1). Then we form X5 = X1+X2X4, X6 = −X2+X1X3, X8 = (X4−X2)X1−X7, 

X9 = X1X7−X3 and X10 = X2X8−X9. Further we explore the situation which the covariate 

dimension cannot be much reduced. We set the true propensity score function to be 

pr(T = 1|X) = 1

− [1 + exp{0.1 |X5 − X4
2| − cos(X2X8) − X1 exp(X6) − (X3 − X9)X7 + exp( − X10)}]

−1
 and the 

true outcome function to be 

Y = − T  exp( − X10) + sin(X1 + X2) − X3
2 − cos(X4) − X5 + X7log(X6

2) − cos(X8) − T | X9|. We now 

examine the performance of various method in terms of estimating the average treatment 

effect. To implement our semiparametric estimator, we set d = 1, which is certainly not the 

case in the true model, and investigated the locally efficient estimation procedure, where we 

posit a mis-specified model η*(ℬTx) = 0.4 cos(ℬTx). This η*(·) restricts the function value to 

[−0.4, 0.4] while the true value is out of this range. We summarize the estimated average 

treatment effect in Figure (1), where “true” represents the result when the true propensity 

score is used, “η*” is the from the semiparametric estimator when “η*(·)” is used in the 

local estimation of ℬ, “η̂” is when the link function η is estimated as described in the 

efficient estimator procedure. We also compare our semiparametric approach with targeted 

maximum likelihood estimation (TMLE) (van der Laan and Rubin, 2006), the biased 

reduced double robust (BRdr) estimator proposed by Vermeulen and Vansteelandt (2015), 

Tan’s improved method (Tan) (Tan, 2006, 2010), and the standard method where the 

propensity score is estimated via logistic regression (Logistic). From the data generating 

process described above, it is clear that neither the propensity score model nor the outcome 

model is a generalized linear model. In implementing the TMLE method, rather than 
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providing a model for either the propensity score or the outcome, we allow the TMLE 

algorithm to call the powerful SuperLearner to estimate these two quantities in a data 

adaptive fashion. Our implementation of BRdr estimator is also data adaptive, please see 

Vermeulen and Vansteelandt (2015) for detail. To estimate the propensity scores, a logistic 

regression model is assumed according to Tan’s description of the method. In contrast, Tan’s 

method uses generalized linar model (glm) in estimating the treatment outcome, hence the 

outcome model is misspecified since the true model here is not a glm. From Figure (1), 

although the TMLE method has the smallest variance, it is severely biased. BRdr, Tan and 

Logistic are also biased.

We further examine the situation when the covariate dimension indeed can be reduced to d = 

1. Specifically, we set ℬ = (1.0, −0.4, 0.4, −0.2, −0.2, 0.4, 0.3, −0.3, −0.6, −0.6)T and the 

true η function η(ℬTx) = exp(0.5 ℬTx) cos(ℬTx) to generate the treatment T, where x is 

generated in the same way as before. We generate the outcome from the model 

Y = exp(T + X10) + sin(X1)X2 + X3
2 − cos(X4 − X5) + log(X6

2)X7 + X8 − TX9. We implemented 

the same estimators as before, and added an oracle estimator where the true η is used in 

estimating ℬ. From the results in Figure 2, we see that the semiparametric methods still 

outperform other estimators.

4.3 Comparison of several methods in data by Kang-Schafer

Finally, we examine the efficient and locally efficient estimator on the data generated 

following Kang and Schafer (2007). Specifically, we generated (Z1, Z2, Z3, Z4)T from 

Normal(0, I4) and then form x1 = exp(z1/2), x2 = z2/{1 + exp(z1)}, x3 = (z1z3/25 + 0.6)3, x4 

= (z2 + z4 + 20)2/400. The outcome model is generated as y = 

210+27.4z1+13.7z2+13.7z3+13.7z4+ε, where ε ~ N(0, 1) and the true propensity function is 

π = expit(−z1+0.5z2−0.25z3−0.1z4). We use the observable data (Yi, Ti, Xi) for i = 1, 2, ⋯, n 
to estimate the propensity score π̂

i for i = 1, 2, ⋯, n, then calculate the average treatment 

effect τ̂. The performance of the average treatment effect can be found in Figure (3), where 

“True” refers to the average treatment effect calculated from an inverse probability weighted 

method where the true weight is used. Both the locally efficient and efficient estimators 

yield reasonable results in comparison with other methods, regardless of whether d = 1 or d 
= 2.

5. A real data example

We next apply the proposed semiparametric methods to analyze the average effect of 

maternal smoking on babies’ birth weight. The Low Birth Weight data constitute 

observations from mothers in Pennsylvania, USA and contain birth information on 4642 

infants (Cattaneo, 2010). This dataset was originally used by Almond et al. (2005). The 

outcome of interest Y is infant birth weight measured in grams. The binary variable T 
denotes the mother’s smoking status (1 = smoking, 0 = nonsmoking). The covariates include 

mother’s age, mother’s marital status, an indicator variable for alcohol consumption during 

pregnancy, an indicator for whether there was a previous birth where the newborn died, 

mother’s education, father’s education, number of prenatal care visits, mother’s race, 

indicator of first born baby and months since last birth (monthslb).
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Based on data from the 4642 infants, the naive average weight difference of the two groups 

of babies belonging to smoking and non-smoking mothers yields −275.25 grams. 

Considering that this naive result is not necessarily a valid estimator of the causal result of 

smoking on birth weight, we next studied the proposed estimators. Specifically, we compare 

three estimators of average treatment effect discussed in the Section 4: “Logistic”, τ̂1 and τ̂2. 

The estimated propensity score functions are summarized in Table 3. The estimated average 

treatment difference corresponding to “Logistic”, τ̂1 and τ̂2 are −352.08, −295.77 and 

−306.32 grams, respectively. In addition, we compare the average causal effect with Tan’s 

improved method, TMLE and BRdr. The results indicate that maternal smoking has a 

negative impact on babies’ birth weight. The estimate average treatment differences are 

summarized in Table 4 along with the mean and standard deviation from 1000 bootstrap 

samples for each method. The bootstrap average treatment effect from the seven approaches 

can be found in Figure (4). Note that the estimator using propensity score estimated by 

logistic regression is substantially different from τ̂1 and τ̂2. This suggests logistic regression 

may not provide an adequate model for the propensity score function.

6. Conclusion and discussions

In this paper, we propose a semiparametric approach to estimating the average treatment 

effect. The approach is less prone to propensity score model misspecification compared to 

the logistic regression based inverse probability weighted estimators, which have dominant 

roles in causal inference. A parametric propensity score model (e.g., logistic regression 

model) is certainly a lot more informative than a semiparametric model such as the 

dimension reduction model we propose, but it also bears a greater risk of being misspecified. 

If the parametric propensity score model is misspecified, then the resulting estimation of the 

average treatment effect is inconsistent. Furthermore, the semiparametric estimator does not 

rely on specification of the outcome regression model, and hence is attractive when a 

reliable outcome regression model is hard to obtain and/or compute, such as when studying 

treatment effects on complex diseases. We note that if one is willing to propose outcome 

models and carry more computation, then further extending our method to a doubly robust 

estimator could bring additional benefit such as efficiency gain.

It is of interest to investigate whether a dimension reduction propensity score model will 

always lead to more efficient treatment effect estimation than a parametric one, in the case 

that both models are correct. However, we find that it is not true in general. The relation can 

go either way, and it depends on the specific models. We summarize the results in Lemma 3 

in the online Supplementary Materials.

Not able to find any definitive relation between the dimension reduction model and a general 

parametric model, we further investigate the situation of nested models. For the sake of 

comparing two models that are both correct, this certainly makes much sense. To this end, 

the model will be the same as in (2.2), except that now η is a known function. Unfortunately, 

even for this case, as shown in the online Supplementary Materials, there is no definitive 

relation we can claim. Thus, even when the parametric model is a submodel of the 

dimension reduction model, there is no definitive relation between the two estimators of the 

average treatment effect based on the two models. Our intuition is that not only the model 
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makes a difference, but also the specific estimator used in the propensity score model has a 

role to play. The overall picture is unclear and is potentially very complex; much work is 

needed to fully understand these relations and can lead to interesting research results.

Finally, even though our initial intention is to overcome the potential issue of mis-

specification of both the propensity score model and the outcome regression model through 

employing a more relaxed modeling strategy of the former and giving up modeling of the 

latter, and subsequently proposing inverse property weighting, double robust estimator can 

be used in combination with our method to further gain efficiency. As it is well known in the 

original form of the double robust estimator, in combination with the semiparametric 

propensity score model, when the treatment response is modeled correctly, the method will 

be more efficient than our method. If the treatment response is modeled incorrectly, 

depending on how “wrong” the model is, the method could be less efficient than our method. 

However, if the method of Tan (2010) is adopted, in combination with the semiparametric 

propensity score model, one can always obtain a more efficient estimator than our method, 

regardless of whether the treatment response is modeled correctly or not. Thus, to achieve 

improved efficiency, one can strive to propose a “good” model for the treatment response, 

and further perform additional computation to obtain the correlation adjustment required in 

Tan (2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Derivation of the efficient score function

Taking derivative with respect to ℬ of the logarithm of the probability density function 

function, it is easy to verify that the score function with respect to ℬ is

S (Ti, xi, ℬTxi, η, η′)ℬ = vecl  xi Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T .

The efficient score is the residual after projecting the score vector with respect to ℬ onto the 

nuisance tangent space Λ (Tsiatis, 2006). The nuisance tangent space, denoted Λ, is the 

mean-squared closure of all nuisance tangent spaces of all parametric submodels. We can 

verify that

Λ = T − exp{η(ℬTX)}
1 + exp{η(ℬTX)}

a(ℬTX): ∀a(ℬTX) ∈ ℛ(p − d) × d

We then obtain its orthogonal complement

Λ⊥ = f(Y , X): ∀f ∈ R(p − d)ds . t . E{f(1, X) |T = 1, ℬTX} exp{η(ℬTX)}
1 + exp{η(ℬTX)}

= F{f(0, X) |T = 0, ℬTX} .

We now write

S (Ti, xi, ℬTxi, η, η′)ℬ

= vecl  xi Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T

= vecl  E(X |ℬTx) Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T

+ vecl  x − E(X |ℬTx) Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T .

We can readily verify that

vecl  E(X |ℬTx) Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T ∈ Λ

and
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vecl  x − E(X |ℬTx) Ti −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T ∈ Λ⊥,

hence this yields the desired result.

A.2 Proof of Theorem 1

From (2.9), we write

n1/2(τ − τ)

= 1
n ∑

i = 1

n YiTi
π(Xi)

−
Yi(1 − Ti)
1 − π(Xi)

− τ + 1
n ∑

i = 1

n YiTi
π(Xi)

−
YiTi
π(Xi)

−
Yi(1 − Ti)
1 − π(Xi)

+
Yi(1 − Ti)
1 − π(Xi)

= 1
n ∑

i = 1

n YiTi
π(Xi)

−
Yi(1 − Ti)
1 − π(Xi)

− τ

+ 1
n ∑

i = 1

n YiTi

π2(Xi)
{π(Xi) − π(Xi)} −

Yi(1 − Ti)

{1 − π(Xi)}
2{π(Xi) − π(Xi)}

+ Op
1
n ∑

i = 1

n
{π(Xi) − π(Xi)}

2

= 1
n ∑

i = 1

n YiTi
π(Xi)

−
Yi(1 − Ti)
1 − π(Xi)

− τ − 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2 {π(Xi) − π(Xi)}

+ Op(n1/2h2m + n−1/2h−d) .

Now

1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2 {π(Xi) − π(Xi)}

= 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}

= T1 + T2 + T2,

where

T1 = 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
,
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T2 = 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
,

T3 = 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}

− 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
.

It is easy to see that

T3

= 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

∂
∂ℬ

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)} ℬ = ℬ∗

(ℬ − ℬ)

= 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2 (

exp{η(ℬTXi)}η′(ℬTXi)

[1 + exp{η(ℬTXi)}]2
−

exp{η(ℬTXi)}η′(ℬTXi)

[1 + exp{η(ℬTXi)}]2
)
T

ℬ = ℬ∗

⊗ XiL
T nvecl(ℬ − ℬ)

= op(1),

where the last equality is because nvecl(ℬ − ℬ) = Op(1) based on Lemma 2, and because of 

the consistency of η̂, η̂′ established in Lemma 2.

It is also easy to see that
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T1 = 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}η′(ℬTXi)
T

[1 + exp{η(ℬTXi)}]2
⊗ XiL

T nvecl(ℬ − ℬ) + op(1)

= E
YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2 π(Xi){1 − π(Xi)}η′(ℬTXi)

T ⊗ XiL
T

× 1
n ∑

i = 1

n
E(SeffSeff)−1Seff(Xi, Ti) + op(1)

= E([Yi
∗(1){1 − π(Xi)} + Yi

∗(0)π(Xi)]η′(ℬTXi)
T ⊗ XiL

T ) 1
n ∑

i = 1

n
E(SeffSeff)−1Seff(Xi, Ti)

+ op(1)

= aT 1
n ∑

i = 1

n
E(SeffSeff

T )−1Seff(Xi, Ti) + op(1),

where Y i
∗(1) and Y i

∗(0) are potential outcomes under treatment and no treatment respectively, 

and we used the independence assumption between potential outcomes and treatment in the 

second last equality.

We now analyze T2. To this end, with the same notation as in the proof of Lemma 2 in the 

online supplement,

T2 = 1
n ∑

i = 1

n YiTi

π2(Xi)
+

Yi(1 − Ti)

{1 − π(Xi)}
2

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}
−

exp{η(ℬTXi)}

1 + exp{η(ℬTXi)}

= 1
n ∑

i = 1

n Yi
∗(1)

π(Xi)
+

Yi
∗(0)

1 − π(Xi)
H(ti) − H(ti) .

Here again we used the independence assumption in the last equality. We consider Ĥ (ti) as 

the direct kernel estimator of H(ti), i.e. H(ti) = {∑ j = 1
n Kh(t j − ti)Y j}/{∑ j = 1

n Kh(t j − ti)}.

We further obtain
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T2 = 1
n3/2 ∑

i = 1

n
∑

j = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
Kh(t j − ti)Y j

n−1∑k = 1
n Kh(tk − ti)

− H(ti)

= 1
n3/2 ∑

i = 1

n
∑

j = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
[
Kh(t j − ti)Y j

f (ti)
{1 −

n−1∑k = 1
n Kh(tk − ti) − f (ti)

f (ti)
}

− H(ti)] + Op(n1/2h2m + n−1/2h−d)

= 1
n3/2 ∑

i = 1

n
∑

j = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
Kh(t j − ti)Y j

f (ti)
− H(ti)

− 1
n3/2 ∑

i = 1

n
∑

j = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
H(ti)

Kh(t j − ti) − f (ti)
f (ti)

+ op(1)

= 1
n3/2 ∑

i = 1

n
∑

j = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
Kh(t j − ti)

f (ti)
{Y j − H(ti)} + op(1)

= n−1/2 ∑
i = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
E

Kh(t j − ti)
f (ti)

{Y j − H(ti)} | ti, Ti

+ n−1/2 ∑
j = 1

n
E

Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
Kh(t j − ti)

f (ti)
{Y j − H(ti)} | t j, Y j

− n1/2E
Yi

∗(1)
H(ti)

+
Yi

∗(0)
1 − H(ti)

Kh(t j − ti)
f (ti)

{Y j − H(ti)} + op(1)

= n−1/2 ∑
j = 1

n
E

Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
Kh(t j − ti)

f (ti)
{Y j − H(ti)} | t j, Y j + op(1)

= n−1/2 ∑
i = 1

n Yi
∗(1)

H(ti)
+

Yi
∗(0)

1 − H(ti)
{Ti − H(ti)} + op(1)

= n−1/2 ∑
i = 1

n Yi
∗(1)

π(Xi)
+

Yi
∗(0)

1 − π(Xi)
{Ti − π(Xi)} + op(1) .

Combining the above results regarding T1, T2 and T3, we obtain

n1/2(τ − τ)

= 1
n ∑

i = 1

n Y iT i
π(Xi)

−
Y i(1 − T i)
1 − π(Xi)

− τ −
Y i

∗(1)
π(Xi)

+
Y i

∗(0)
1 − π(Xi)

{T i − π(Xi)}

− aT 1
n ∑

i = 1

n
E(SeffSeff

T )−1Seff(Xi, T i) + op(1) .

(A.1)

Comparing with the results in Hirano et al. (2003), it is now clear that the component in (A.

1) is the efficient influence function, while the remaining component in the expansion of 

n1/2(τ̂ − τ) is the difference between the influence functions of our estimator and the 
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efficient estimator, hence is orthogonal to the efficient influence function. In fact the 

orthogonality is also easily checked by direct calculation.

A.3 Statement of Lemma 3

Lemma 3

Assume the treatment allocation is independent of the potential treatment outcome given the 

covariates. Assume further that the probability of treatment is bounded away from 0 and 1. 

Assume a parametric model π(Xi, γ) with true parameter value γ0. Then when n → ∞, the 

estimator τ̂ from (2.9) satisfies n(τ − τ) N(0, σ2), where σ2 = σeff
2 + E(Bi

2) where σeff
2  is the 

same as in Theorem 1, and 

Bi =
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{T i − π(Xi)} − E
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

∂π(Xi, γ)
∂γ0

ϕ(Xi, T i), where ϕ(Xi, Ti) is 

the influence function of γ̂.

A.4 Comparing average treatment effect estimators for nested propensity 

models

When η is a known function, the efficient score function for ℬ is

S∼eff(yi, xi, ℬTxi) = vecl  xi yi −
exp{η(ℬTxi)}

1 + exp{η(ℬTxi)}
η′(ℬTxi)

T

= vecl  xi{yi − π(Xi)}η′(ℬTxi)
T

= {yi − π(Xi)}η′(ℬTxi) ⊗ xiL,

and the efficient influence function is E(S∼effS
∼

eff
T )

−1
S∼eff. Using the results in Lemma 3, we 

have

Bi =
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{Ti − π(Xi)}

− E
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

π(Xi){1 − π(Xi)}η′(ℬTXi)
T ⊗ XiL

T E(S∼effS∼eff
T )

−1
S∼eff

=
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{Ti − π(Xi)}

− E([Yi
∗(1){1 − π(Xi)} + Yi

∗(0)π(Xi)]η′(ℬTXi)
T ⊗ XiL

T )E(S∼effS∼eff
T )

−1
S∼eff

=
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{Ti − π(Xi)} − aTE(S∼effS∼eff
T )

−1
{η′(ℬTXi) ⊗ XiL}{Ti − π(Xi)},

Liu et al. Page 23

Biometrics. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now let

Ci ≡ Bi + aTE(SeffSeff
T )−1Seff(Xi, Ti)

=
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

{Ti − π(Xi)} − aTE(S∼effS∼eff
T )

−1
{η′(ℬTXi) ⊗ XiL}{Ti − π(Xi)}

+ aTE(SeffSeff
T )−1{η′(ℬTXi) ⊗ {XiL − E(XiL |ℬTXi)}{Ti − π(Xi)}

=
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

− aTE(S∼effS∼eff
T )

−1
{η′(ℬTXi) ⊗ XiL}

+ aTE(SeffSeff
T )−1{η′(ℬTXi) ⊗ {XiL − E(XiL |ℬTXi)}]{Ti − π(Xi)} .

Now, following the previous notation to let ti = ℬTXi, and H(ti) = π(Xi),

E{Cia
TE(SeffSeff

T )−1Seff(Xi, Ti)}

= E
Yi

∗(1)
π(Xi)

+
Yi

∗(0)
1 − π(Xi)

− aTE(S∼effS∼eff
T )

−1
{η′(ℬTXi) ⊗ XiL}

+ aTE(SeffSeff
T )−1{η′(ℬTXi) ⊗ {XiL − E(XiL |ℬTXi)}]{Ti − π(Xi)}

2

× aTE(SeffSeff
T )−1{η′(ℬTXi) ⊗ {XiL − E(XiL |ℬTXi)})

= E
Yi

∗(1)
H(ti)

+
Yi

∗(0)
1 − H(ti)

− aTE(S∼effS∼eff
T )

−1
{η′(ti) ⊗ XiL}

+ aTE(SeffSeff
T )−1

η′(ti) ⊗ {XiL − E(XiL | ti)}]H(ti){1 − H(ti)}

× aTE(SeffSeff
T )−1

η′(ti) ⊗ {XiL − E(XiL | ti)})

= E
Yi

∗(1)
H(ti)

+
Yi

∗(0)
1 − H(ti)

− aT{E(S∼effS∼eff
T )

−1
− E(SeffSeff

T )−1}η′(ti) ⊗ {XiL − E(XiL | ti)}

× H(ti){1 − H(ti)}aTE(SeffSeff
T )−1

η′(ti) ⊗ {XiL − E(XiL | ti)}),

which is not necessarily zero. Thus, there is no definitive relation we can say even when the 

parametric model is a submodel of the dimension reduction model.
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Figure 1. 
Average treatment effect when p = 10, no dimension reduction is possible and the outcome 

is Y = − T  exp( − X10) + sin(X1 + X2) − X3
2 − cos(X4) − X5 + X7log(X6

2) − cos(X8) − T | X9|. 

Dimension reduction model is used by setting d = 1. The dashed line is the true average 

treatment effect.
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Figure 2. 
Average treatment effect when p = 10, dimension reduction structure valid for d = 1 and the 

outcome is Y = exp(T + X10) + sin(X1)X2 + X3
2 − cos(X4 − X5) + log(X6

2)X7 + X8 − TX9. The 

dashed line is the true average treatment effect.
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Figure 3. 

Average treatment effect on Kang and Schafer data. η1
∗ and η̂

1 are for d = 1. η2
∗ and η̂2 are for 

d = 2. The dashed line is the true average treatment effect.
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Figure 4. 
Bootstrap Average Treatment Effect. The dashed line is the mean of the average treatment 

effect calculated from the efficient estimation procedure.
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