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Abstract

Objective

The triggering receptor expressed on myeloid cells 2 (TREM2) p.R47H substitution
(rs75932628) is a risk factor for Alzheimer disease (AD) but has not been well studied in
relation to the risk of multiple system atrophy (MSA); the aim of this study was to evaluate the
association between the TREM2 p.R47H variant and the risk of MSA.

Methods

A total of 168 patients with pathologically confirmed MSA, 89 patients with clinically diagnosed
MSA, and 1,695 controls were included. TREM2 p.R47H was genotyped and assessed for
association with MSA. Positive results in the Tagman genotyping assay were confirmed by
Sanger sequencing. The primary comparison involved patients with pathologically confirmed
MSA and controls due to the definitive MSA diagnosis in the pathologically confirmed series.

Results

We identified TREM2 p.R47H in 3 patients with pathologically confirmed MSA (1.79%), 1
patient with clinically diagnosed MSA (1.12%), and 7 controls (0.41%). Minimal AD pathology
was observed for the pathologically confirmed MSA p.R47H carriers. For the primary com-
parison of patients with pathologically confirmed MSA and controls, risk of disease was sig-
nificantly higher for p.R47H carriers (odds ratio [OR]: 4.39, p = 0.033). When supplementing
the 168 pathologically confirmed patients with the 89 clinically diagnosed and examining the
combined MSA series, the association with TREM2 p.R47H remained significant (OR: 3.81, p
=0.034).

Conclusions

Our preliminary results suggest that the TREM2 p.R47H substitution may be a risk factor for
MSA, implying a link to neuroinflammatory processes, especially microglial activation. Vali-
dation of this finding will be important, given our relatively small sample size; meta-analytic
approaches will be needed to better define the role of this variant in MSA.
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Glossary

AD = Alzheimer disease; FTD = frontotemporal dementia; MSA = multiple system atrophy; MSA-C = MSA with predominant
olivopontocerebellar involvement; MSA-P = MSA with predominant striatonigral involvement; OR = odds ratio; PD =
Parkinson disease; TREM2 = triggering receptor expressed on myeloid cells 2.

Multiple system atrophy (MSA) is a rare, rapidly progressing,
adult-onset neurodegenerative disease that is clinically charac-
terized by parkinsonism, autonomic failure, pyramidal symp-
toms, and cerebellar ataxia and pathologically defined by the
presence of a-synuclein-positive glial cytoplasmic inclusions.
Uncovering genetic risk factors for MSA has proven difficult
because of the challenge of accumulating a reasonable sample
size and potential for clinical misdiagnosis. Nonetheless, studies
have nominated several genes that may be associated with the
risk of MSA."* The first genome-wide association study of MSA
was recently completed, and although no genome-wide signifi-
cant associations were identified, suggestive associations were
identified involving variants in MAPT, FBX047, ELOVL7, and
EDNI.? Clearly, much remains to be understood regarding the
genetics of MSA, and replication of previously nominated MSA
susceptibility loci remains crucial.

A relatively rare substitution p.R47H (rs75932628) in the
triggering receptor expressed on myeloid cells 2 (TREM2)
protein is now a well-established risk factor for Alzheimer
disease (AD) and has been suggested to play a role in other
neurodegenerative disorders such as frontotemporal de-
mentia (FTD) and Parkinson disease (PD).* Of interest,
mutations in the TREM2 gene were originally reported as
a genetic cause of Nasu-Hakola disease, a rare leukodystrophy
characterized by progressive presenile dementia and bone
cysts.* Given the important role of microglia in neuro-
inflammation, we evaluated the association between the
TREM?2 p.R47H variant and the risk of MSA using a pre-
dominantly neuropathologically confirmed MSA series.

Methods

Study participants

This study included 168 patients with pathologically con-
firmed MSA, 89 patients with clinically diagnosed MSA, and
1,695 healthy controls. The pathologically confirmed MSA
series consisted of all cases obtained from the Mayo Clinic
brain bank for neurodegenerative disorders in Jacksonville,
FL, between 1998 and 2017. Pathologically confirmed MSA
was diagnosed by a single neuropathologist (D.W.D.) as
previously described.® Immunohistochemistry for a-synuclein
(NACP, 1:3,000 rabbit polyclonal) was performed on sec-
tions of the basal forebrain, striatum, midbrain, pons, medulla,
and cerebellum to establish a neuropathologic diagnosis. MSA
cases were pathologically subclassified as MSA with pre-
dominant striatonigral involvement (MSA-P), MSA with
predominant olivopontocerebellar involvement (MSA-C),
and MSA with equally severe involvement of striatonigral and
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olivopontocerebellar systems (MSA-mixed).” One case was
not assigned pathologic subtype because only the pons was

available for histology.

The clinically diagnosed patients (N = 81 probable MSA, N = 8
possible MSA) were seen at the Mayo Clinic in Rochester, MN
(N = 35), or Jacksonville, FL (N = 54), where diagnosis was
made according to the criteria of Gilman et al.’ Clinically di-
agnosed MSA cases were free of notable cognitive symptoms
that might suggest the presence of an overlapping dementia or
other neurodegenerative conditions. Pathologic assessment
and clinical diagnoses were made without the knowledge of the
TREM2 p.R47H genotype. Controls were also from the Mayo
Clinic in Rochester, MN (N = 991), or Jacksonville, FL (N =
704). Controls were free of neurologic symptoms and without
a family history of movement disorders. All participants were
unrelated non-Hispanic Caucasians. The primary comparison
of TREM2 p.R47H involved the patients with pathologically
confirmed MSA and controls. In secondary analysis, we com-
bined the patients with pathologically confirmed MSA and
patients with clinically diagnosed MSA and compared this
combined MSA series with the controls. Table 1 shows char-
acteristics of patients with MSA and controls.

Standard protocol approvals, registrations,
and patient consents

The Mayo Clinic IRB approved the use of human participants
in this study.

Genetic analysis

Genomic DNA was extracted from brain tissue or peripheral
blood monocytes using standard protocols. Genotyping of
TREM2 exon 2 variant rs75932628 (NM_018965.3:
c.140G>A, p.R47H) was performed using a custom TaqMan
Allelic Discrimination Assay on an ABI 7900HT Fast Real-
Time PCR system (Applied Bio-systems, Foster City, CA)
according to the manufacturer’s instructions (sequences
available upon request). Genotype calls were made using SDS
2.2.2 software. Positive or ambiguous results in the TagMan
assay were also confirmed and resolved via Sanger sequencing.
There was no evidence of a departure from Hardy-Weinberg
equilibrium in controls (p = 0.93).

Statistical analysis

We evaluated the association between TREM2 p.R47H and
MSA using logistic regression models. Unadjusted models were
first examined. Subsequently, although it is uncertain whether
adjusting for any variable is reasonable, given the rare nature of
this variant, we did also adjust our logistic regression models for
age and sex in a sensitivity analysis. Odds ratios (ORs) and 95%
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Table 1 Characteristics of patients with MSA and controls

Patients
with
Patients with clinically
pathologically diagnosed
confirmed MSA Controls
Variable MSA (N = 168) (N =89) (N = 1,695)
Age atonsetin patients 58 (39, 88) 64 (46, 83) 76 (30, 88)
with MSA or age at
blood draw in controls
(y)
Age at death (y) 66 (47, 91) NA NA
Sex
Male 96 (57.1%) 53 (59.6%) 786
(46.4%)
Female 72 (42.9%) 36 (40.4%) 909
(53.6%)
MSA subtype
MSA-P 73 (43.5%) 62 (69.7%) NA
MSA-C 27 (16.1%) 26 (29.2%) NA
Mixed? 67 (39.9%) 1(1.1%) NA
Unclassified® 1 (0.6%) 0 (0.0%) NA
Braak NFT stage
(1] 29 (17.8%) NA NA
1 61 (37.4%) NA NA
1} 49 (30.1%) NA NA
m 16 (9.8%) NA NA
v 5(3.1%) NA NA
Vv 2 (1.2%) NA NA
'l 1(0.6%) NA NA
Thal amyloid phase
0 88 (55.7%) NA NA
1 33(20.9%) NA NA
2 18 (11.4%) NA NA
3 9 (5.7%) NA NA
4 8 (5.1%) NA NA
5 2 (1.3%) NA NA

Abbreviations: MSA = multiple system atrophy; MSA-C = MSA with pre-
dominant olivopontocerebellar involvement; MSA-P = MSA with predominant
striatonigral involvement; NA = not applicable.

The sample median (minimum, maximum) is given for age. Information was
unavailable regarding age at onset (N = 49), Braak NFT stage (N =5), and Thal
amyloid phase (N = 10) for the patients with pathologically confirmed MSA.
2 MSA with equally severe involvement of striatonigral and olivopontocer-
ebellar systems was classified as MSA-mixed.”

® One patient with MSA was considered to be “unclassified” because only the
pons was available for histologic assessment; therefore, we could not di-
agnose this patient as MSA-C or MSA-mixed.

confidence intervals were estimated. p < 0.05 was considered
statistically significant. All statistical analyses were performed
using SAS (version 9.4; SAS Institute, Inc., Cary, NC).
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Results

An evaluation of the association between TREM2 p.R47H and
MSA is shown in table 2. The p.R47H variant was observed in 3
patients with pathologically confirmed MSA (1.79%). Of these 3
p-R47H carriers, neuropathologic examination was available for
2 and revealed MSA subtypes of MSA-P and MSA-C, Braak
neurofibrillary tangle stages of I and III, and Thal amyloid phases
of 0 and 0. For the 89 patients with clinically diagnosed MSA,
there was 1 p.R47H carrier (1.12%, from Mayo Jacksonville),
and this patient’s MSA subtype was probable MSA-P. There
were 7 carriers of p.R47H in the controls (0.41%, N = 4 Mayo
Jacksonville, N = 3 Mayo Rochester), corresponding to a minor
allele frequency of 0.21%, which is similar to the frequency
reported in the ExAC database (Cambridge, MA [exac.broad-
institute.org]) for this population (0.26%).” For the primary
comparison of patients with pathologically confirmed MSA and
controls, risk of MSA was significantly higher for p.R47H carriers
(OR = 4.39, p = 0.033). When combining the pathologically
confirmed and clinically diagnosed MSA series, the risk of MSA
(vs controls) was also significantly higher (OR = 3.81, p =
0.034). In a sensitivity analysis adjusting for age and sex, the
findings regarding the patients with pathologically confirmed
MSA (OR = 3.55, p = 0.076) and the combined MSA series (OR
= 3.17, p = 0.078) remained relatively consistent though weak-
ened slightly and were no longer quite significant.

Discussion

TREM?2 p.R47H is a well-established risk factor for AD* how-
ever, results have been mixed for FTD and PD,* while studies
involving amyotrophic lateral sclerosis and dementia with Lewy
bodies mostly point to a lack of association.* Of interest, the
results of our current study suggest that the TREM2 p.R47H
variant may be associated with an increased risk of MSA. With
a notably higher frequency in our combined MSA series (1.6%)
compared with controls (0.4%), we observed a nearly 4-fold
increased risk of MSA in p.R47H carriers. It is important that this
finding was strongest in our pathologically confirmed MSA se-
ries. The absence of notable AD pathology in pathologically
confirmed MSA p.R47H carriers indicates that the observed
association was not driven by such pathology. The association
was attenuated slightly when adjusting for age and sex; however,
those results should not be overinterpreted because it is un-
certain whether attempting any adjustment is reasonable, given
the low frequency of p.R47H. These preliminary findings suggest
that TREM2 p.R47H may play a role in susceptibility to MSA
and that further study is warranted.

To the best of our knowledge, only 1 association study be-
tween TREM2 p.R47H and MSA has been conducted to date.
In a study of 407 Chinese patients with clinically diagnosed
MSA and 869 controls, the p.R47H substitution was observed
in 1 MSA patient and no controls (p = 0.14).® This negative
result is not surprising because TREM2 p.R47H is extremely
rare in East Asians.
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Table 2 Association between TREM2 p.R47H and MSA

No. (%) with TREM2

Unadjusted analysis Adjusting for age and sex

Disease group N p.R47H OR (95% Cl) p Value OR (95% CI) p Value
Controls 1,695 7 (0.41) 1.00 (reference) NA 1.00 (reference) NA
Patients with 168 3(1.79) 4.39(1.12-17.12) 0.033 3.55(0.88-14.38) 0.076
pathologically

confirmed MSA

All patients with 257 4(1.56) 3.81(1.11-13.12) 0.034 3.17(0.88-11.45) 0.078

MSA (pathologically
confirmed and
clinically diagnosed)

Abbreviations: Cl = confidence interval; MSA = multiple system atrophy; NA = not applicable; OR = odds ratio; TREM2 = triggering receptor expressed on

myeloid cells.
ORs, 95% Cls, and p values result from logistic regression models.

For age, the age that was adjusted for was age at death for patients with pathologically confirmed MSA, age at MSA onset for patients with clinically diagnosed

MSA, and age at blood draw for controls.

How the TREM2 p.R47H variant could increase risk of MSA
is an important topic for further study. MSA is regarded as an
oligodendrogliopathy, but the mechanism of demyelination
remains unclear. While demyelination depends primarily on
oligodendrocytes, microglia also contribute to myelination
and myelin homeostasis.” In the CNS, TREM2 is pre-
dominantly expressed in microglia, and it has been shown to
play critical roles in phagocytic clearance of apoptotic cells
and disease-associated molecules and modulating microglial
immune response.'® A recent study showed that TREM2 is
required for myelin debris removal and remyelination after
cuprizone-induced demyelination."' We hypothesize that
TREM2 p.R47H, a loss-of-function mutation, leads to im-
paired clearance of myelin debris and aberrant microglial ac-
tivation, which result in increased risk of MSA.

Our results provide evidence that the TREM2 p.R47H sub-
stitution may be a genetic susceptibility factor for MSA. Our
study is limited by the relatively small number of patients with
pathologically confirmed MSA, and therefore, validation will be
crucial. Recently, the clinical diagnostic accuracy of MSA was
reported to be 62%, further underscoring the importance of
using neuropathologically confirmed MSA cases in research
studies.'> We hope that these initial promising results will form
the basis for future examinations of TREM2 p.R47H in MSA.
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