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Abstract.

There is increasing interest in using dried blood spot (DBS) cards to extend the reach of global health and

disease surveillance programs to hard-to-reach populations. Conceptually, DBS offers a cost-effective solution for
multiple use cases by simplifying logistics for collecting, preserving, and transporting blood specimens in settings with
minimal infrastructure. This review describes methods to determine both the reliability of DBS-based bioanalysis for a
defined use case and the optimal conditions that minimize pre-analytical sources of data variability. Examples by the
newborn screening, drug development, and global health communities are provided in this review of published literature.
Sources of variability are linked in most cases, emphasizing the importance of field-to-laboratory standard operating
procedures that are evidence based and consider both stability and efficiency of recovery for a specified analyte in
defining the type of DBS card, accessories, handling procedures, and storage conditions. Also included in this review are
reports where DBS was determined to not be feasible because of technology limitations or physiological properties of a

targeted analyte.

INTRODUCTION

Most diagnostics and surveillance programs rely on
measurements from an individual’s blood specimen to
guide a clinical or public health decision. To minimize pre-
analytical sources of data variability, processes for veni-
puncture collection are standardized through devices such
as analyte-specific blood collection tubes and evidence-
based best practices, guidelines, and protocols."? Global
health settings often lack infrastructure for quality-assured
venipuncture,® sparking significant interest in the use of dried
blood spot (DBS) cards as a universal solution.*™"" The intent
of this review is to underscore the need to assess the re-
liability of DBS-based bioanalysis in context to a specific
biomarker and envisioned field-to-laboratory workflow, be-
fore applying this technology into a remote health or sur-
veillance program.

Compared with venipuncture, the value proposition of DBS
is simplified logistics for remote sampling through:

« Reduced workforce requirements

o Smaller volumes of blood and components (plasma and
serum)

o Direct heelprick/fingerprick-to-DBS or indirect capillary-to-
DBS deposition of blood

¢ Collection of nonblood biofluids such as saliva

« Simplified transport, shipment, and disposal

« Simplified biobanking for retrospective analysis

Commercially available DBS cards are not designed for the
minimally resourced environments typical of remote health
settings and instead are primarily used in newborn screening
and preclinical drug development by highly proficient per-
sonnel within controlled clinical and laboratory environments.
For instance, most DBS are susceptible to contamination by
the user, patient, environment, insects, equipment, or contact
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with other cards. Health-care workers also have a risk of ex-
posure to potentially infectious agents until blood is dried and
contained in secure packaging. Most of these risks can be
mitigated through standard operating procedures and ac-
cessories, but the impact of these variables on data quality
needs to be assessed through careful studies simulating the
pre-analytical workflow, starting with specimen acquisition
to DBS preparation for analysis. Readers are advised to re-
view the comprehensive review of mass spectrometry (MS)
methods'2 and the collection of reports compiled by Li and Lee
discussing various use cases, techniques, and technologies
for DBS-based bioanalysis. '3

Two primary global health applications envision that the
use of DBS can extend either health-care services or re-
search and surveillance studies into harder-to-reach pop-
ulations. The clinical scenario aims to measure health-related
diagnostic data to stratify at-risk individuals for additional
confirmatory testing or to guide individual- or population-
level treatment decisions. The other scenario aims to extend
epidemiological surveillance that monitors population-level
transmission of infection or tracks emerging or recrudescing
disease. Both scenarios rely on tools that provide high-
sensitivity analysis of individual samples to minimize the risk
of missed positive cases, particularly in geographies where
loss to follow-up remains a significant challenge. In other
words, for both scenarios, false-negative test results typi-
cally have higher consequences for these programs than
false-positive test results if there is an opportunity to further
confirm the clinical or epidemiological status of test-positive
individuals or populations.

The weakest link for sensitivity within a bioanalytical work-
flow is the quality of the specimen.? The concept of DBS is
appealing; however, these broad remote-sampling aspira-
tions should consider the extensive literature evaluating the
reliability of DBS for high-sensitivity analysis of specific bio-
markers. In most instances, quantitative studies have dem-
onstrated the feasibility of DBS if standardized collection and
laboratory protocols are followed.'2'%-'® However, there are
examples where DBS fails to provide reliable results and this
review includes a sample of these reports.
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BACKGROUND

The concept of depositing fingerprick-derived blood on
laboratory filter paper, the precursor of DBS, was first de-
scribed in the 1860s for glucose measurements'® and in the
1960s for screening metabolic disorders in hewborns using
heelprick-derived blood."® One of the popular DBS formats is
the Whatman 903 card, which is composed of cotton-based
filter paper within a rigid cardboard frame for handling and
labeling. The paper is ink-printed with five half-inch circles that
direct the user to the location for depositing a specimen.
Blood-deposited cards are typically dried in an open envi-
ronment by suspension in ambient air or under forced circu-
lation in a laboratory or hospital.2° Dried blood spots are often
stored for transport in a sealed bag with desiccant and ar-
chived under refrigerated or frozen conditions.'®'® Portions of
the dried spot are “punched” out with a regular hole puncher or
scissors, specialized DBS punchers and protocols are both
available to reduce risk of contamination by card-to-card
carryover.?'"2* The whole spot can also be used if there are no
plans to re-analyze or archive the specimen.

The panel of diseases screened by newborn programs
has significantly expanded since Guthrie’s first application of
DBS?® with interest to use this technology in global health
strategies.*%1126-3" Given the implications of test results on
treatment decisions or public health resources, published pro-
tocols and guidelines aiming to minimize the risk of pre-analytical
variability are regularly evaluated and updated.®'62%32-34 gome
assessments have found that a diagnostic cutoff determining
one decision over another may be dependent on the type of
platform used to analyze a DBS-derived specimen, such as
those using human immunodeficiency virus (HIV) viral load
measurements to determine treatment effectiveness®’3-4° or
polymerase chain reaction (PCR) analysis of malarial DNA.*'
These findings stress the importance of assessing and mitigat-
ing sources of data variability within a complete field-to-
laboratory pre-analytical workflow, starting with the type of
DBS and the platform used for downstream analysis of a specific
biomarker (Figure 1).

The drug development sector is another early adopter,
envisioning that DBS provides a simplified and cost-effective
approach for measuring drug metabolites and toxicology bio-
markers in preclinical animal studies.**** This community
published most of the quantitative evaluations in an effort to
support claims on the equivalency of DBS-based data to data
from venipuncture.'®45%" Recent efforts to evaluate the fea-
sibility of DBS for remote clinical trials have also been met with
successes and challenges.3*®% One common conclusion
from the newborn screening and drug development commu-
nities is the importance of storing DBS cards in refrigerated and
desiccated conditions as soon as the specimen is dried to re-
duce data variability. The impact of these mitigation measures
is dependent on the individual stability and physiological pro-
files of a specific analyte with frozen biobanking conditions still
failing to provide sufficient stabilization over extended periods
of time for many analytes. Some of the literature reviews sum-
marizing the feasibility of DBS in global health applications in-
clude hepatitis B and C, 82957761 H|v 8276266 5nd malaria.®°

Evaluations of discordant DBS results identified sources of
variability that include

o Interindividual differences, with a particular emphasis on
hematocrit (Hct)

PLANNING
Valid biomarker (fingerprick volume, type of DBS card)
Pre-analytical workflow (field collection to analysis)
Availability of workforce and resources

DBS COLLECTION
SOPs for collecting and drying specimen, labeling, tracking
Materialsto minimize exposure during drying
@ Packaging to prevent sample carryover between DBS cards
Field-storage duration
Storage conditions (packaging/light/temperature/humidity)

TRANSPORT
Iy Chain-of-custody between field site and laboratory
-9 Specimen documentation (patient 1D, study site ID, location)
L] Shipment duration and conditions (temperature/humidity)

LABORATORY STORAGE
Specimen tracking (chain-of-custody, conditions)
Storage duration and conditions (temperature/humidity)
Tracking freeze—thaw cycles

SAMPLE PREPARATION

Specimen tracking (storage, preparation, archive)

Size and location of punch per spot

Sample carryover on processing equipment

Validated method for biomarker extraction
Pre-analytical, post-extraction duration and conditions

O

Ficure 1. Non-exhaustive list of pre-analytical considerations
when using dried blood spot (DBS) in field settings.

Differences in analyte abundance between capillary and
venous systems

Type of DBS card

Heterogeneity within a single dried spot, particularly if only a
portion is used for analysis

Storage conditions during transport and archive

Sample preparation methods

It is important to note that sources of variability are often
interconnected. As discussed later, Hct and homogeneity of a
dried spot are linked and the impact of these variables on test
results might also depend on the type of DBS card and the
chemical and physical properties of an analyte. The possibility
of multiparametric sources of variability reinforces the need for
analyte-specific quantitative evaluations that define the con-
ditions, processes, and tools that will be locked down as de-
scribed within a standard operating procedure and reinforced
through quality assessments during and afterimplementation.

Few improvements to the paper-based backbone of DBS
have been pursued other than the development of cellulose-
based formats to enhance extraction of some classes of
analytes or addition of embedded chemicals to increase nucleic
acid stability. There are recent efforts to improve the field-
ability of DBS through accessories that reduce the risk of
cross contamination or improve desiccation of the collected
sample and Table 1 provides examples of commercially avail-
able technologies.

VARIABLES

Hematocrit. The predominant source of interindividual
variability studied in the DBS literature is Hct, a measurement
representing the percentage of red blood cells in a known
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TaBLE 1

Examples of commercially available dried blood spot cards and accessories (no endorsements should be implied by their listing in the table)

Brand name

Use case Manufacturer

GE/Whatman FTA DMPK-A (Refs. 89,149) Cellulose-based paper

GE Healthcare

DNA stabilization with smaller blood volumes (10-20 pL) compared with

FTA/DMPK-B

Impregnated with radical inhibitors [sodium dodecyl sulfate, tris
(hydroxymethyl)Jaminomethane]
Cell lysis and protein denaturation on contact

GE/Whatman FTA DMPK-B (Refs. 89,149) Cellulose-based paper

Similar to FTA DMPK-A, but

GE Healthcare
blood spot area is 20% larger

Impregnated with chaotropic agents (guanidium thiocyanate)
Cell lysis and protein denaturation on contact

GE/Whatman FTA DMPK-C (Refs. 89,149) Cotton-based paper

GE Healthcare

No impregnated stabilization chemicals, claimed to be suitable for protein-

based analysis
GE/Whatman 903 sample collection Cotton-based paper

cards (Refs. 89,149)

GE Healthcare

Manufactured in slightly acidic environment, compared with FTA DMPK-C

No impregnated stabilization chemicals

PerkinElmer/Ahlstrom 226
HemaSpot-HF blood collection device
HemaSpot-SE blood separation device
AdvanceDx100

Mitra microsampler

Cotton-based, no impregnated stabilization chemicals

Collection, storage, and aliquots of finger-stick blood

Separation of serum/plasma from finger-stick blood

Separation of serum from finger-stick blood

Fixed-volume blood collection (volumetric absorptive microsampling)

PerkinElmer

Spot on Sciences
Spot on Sciences
Advance Dx
Neoteryx

DMPK = drug metabolism and pharmacokinetics; FTA = Flinders Technology Associates.

volume of blood.3%®” These clinical measurements are used to
determine if a patient has anemia and can vary by age, gender,
health, living environment, and nutritional status. From a
chemical and materials perspective, a blood sample with an
elevated Hct would have increased viscosity because of the
higher percentage of red blood cells. As described in several
reports, a viscous blood drop would have a less homogenous
spread across a piece of filter paper compared with a sample
with lower Hct.?%67=70 These physical dynamics introduce at
least three potential interlinked sources of variability: material
composition of DBS, location of the “punch” within a heter-
ogenous spot, and extraction method. The latter is likely to be
dependent on the physical density of the dried blood as de-
termined in part by an individual’s Hct. De Kesel et al.®® pro-
vide a comprehensive review of different drug development
studies evaluating the implications of Hct on DBS-derived
data. Across these reports, the degree of variability from dif-
ferent Hct was dependent on the properties of a specific
analyte and the type of DBS used, complicating possibilities
for a simple Hct correction factor.

The impact of Hct on newborn screening results was eval-
uated by the U.S. Centers for Disease Control and Pre-
vention.”" Similar to a study conducted by a U.K. newborn
screening network,”? Hall et al. observed that the total volume
of dried blood within each spot increased with higher Hct. The
opposite effect was noted for dried serum where higher Hct
was associated with lower per-punch volumes of serum. The
physical diameter of the DBS was related to the total volume of
blood but not significantly affected by Hct. In addition, per-
punch volumes of whole blood, red blood cells, and serum
were differentially impacted by Hct level, potentially affecting
reliability of test results if targeted analytes naturally partition
between these blood components.

In addition to physical dynamics, several studies evaluated
the impact of Hct on the measurement of individual markers.
For instance, most newborn screening panels include con-
genital hypothyroidism, a condition with no visible symptoms
and without immediate treatment that could result in mental
retardation. The risk of a newborn developing this condition is

determined by quantitation of thyroid-stimulating hormone
(TSH, thyrotropin), a peptide of approximately 200 amino
acids. Butler et al.”® reported that an increase in Hct resulted in
an artificial and clinically significant decrease in TSH con-
centration, using DBS samples collected as part of a newborn
screening program. Although the opposite effect (decreased
Hct, increased TSH) was also observed, false-negative test
results caused by an Hct-influenced decrease of TSH have
greater health implications, particularly if this measurement is
the basis of a primary screen.

Unfortunately, there is no direct method to determine Hct
directly from a DBS sample. As mentioned earlier, the di-
ameter of the total blood spot has been shown to have little
change over a range of Hct”! and an endogenous or exoge-
nous marker has yet to be validated.>®74~"® One suggestion is
to control the total volume of blood deposited on a DBS using
avolumetric capillary or fixed-volume accessory.””~"° Another
possible mitigation is to ensure that the complete dried spot,
including colorless plasma, is used for analysis rather an ali-
quoted punch. If the whole DBS circle is not used, location of
punch relative to the whole spot should remain consistent
along with annotation of an individual’s Hct.227° These addi-
tional procedures and accessories to mitigate this source of
data variability increase logistical requirements in the field and
laboratory, representing one of many trade-offs that should be
assessed before scaling the use of DBS within remote health
and surveillance strategies.

Analyte abundance in venous versus capillary blood.
There are several reports describing a difference in the natural
abundance of biomarkers between capillary and venous
blood,2%-82 some of which are described in Table 2. For low-
abundant analytes, the impact of this variability on test results
is likely to be amplified, given that smaller volumes of blood
collected in DBS increase the probability of false-negative
detection.®%#4 Unlike venous blood draw, there is also a higher
risk for inconsistent volumes with static fingerprick- or
heelprick-drawn blood; “milking” the skin puncture toincrease
volume through direct pressure also increases risk for
hemoconcentration.
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TABLE 2
Examples of reports investigating physiological differences in biomarker abundance between capillary and venous blood

Difference in capillary blood, compared with venous
blood

Disease/infection Type of biomarker Ref.
Zika Viral load Higher in capillary blood 150
Anemia Hemoglobin Higher in capillary blood 151
Hematological assessments Hematocrit Higher in capillary blood 152
Erythrocytes Higher in capillary blood
Thrombocytes Lower in capillary blood
Malaria G6PD Differences attributed to type of analytical 153
platform
Malaria Drug metabolite (tafenoquine) No significant difference 154
Malaria Drug metabolite (piperaquine) Higher in capillary blood 155
HIV CD4 count Lower in capillary blood using PIMA 156
platform
HIV Viral load No significant difference 157
Hepatitis C Viral load No significant difference 158
Dengue-1 Viral load Lower in capillary blood 159

G6PD = glucose-6-phosphate dehydrogenase.

Different hemoglobin concentrations were measured when
fingerprick blood was extracted from either the left or right
hand of the same individual.®® Bond and Richards-Kortum
also reported higher degrees of variability in hemoglobin,
white blood cell, and platelet count measurements from
fingerprick-derived blood compared with venous-derived
blood.?4 In that study, collecting larger volumes of blood did
not reduce the difference in total variability between capillary-
and venous-derived blood (i.e., increased fingerprick volumes
did not align the magnitude of variability with venous-derived
blood). The authors also reported different degrees of drop-to-
drop variability between patients, sharing that these results
indicate interindividual physiological differences in the abun-
dance of these analytes between the two circulatory path-
ways. Adding to the complexity, Hct levels were reportedly
higher in capillary blood compared with venous blood in
neonatal and young infants.®®

As demonstrated by these examples, partitioning between
venous and capillary circulation is likely analyte specific and
cannot be simply rationalized by smaller diameters of pe-
ripheral capillaries or mitigated by larger volumes of collected
blood. Higher concentrations of some analytes in capillary
blood can be attributed to hemoconcentration effects or, al-
ternatively, lower concentrations may be due to the presence
of extracellular fluid.2®%” This physiological basis for bio-
marker partitioning needs to be considered in guiding the
clinical relevance of bioanalytical data, particularly if reported
clinical correlations are based on a different source or com-
ponent of blood.®® Assessments of analytical and clinical
equivalence for any biomarker measured by capillary- and
venous-derived samples should be conducted before imple-
menting DBS within a research study or clinical workflow.

Type of DBS. As shown in Table 1, different DBS formats
are commercially available with some claiming improved
extraction efficiency or stability for specific classes of ana-
lytes. The appropriate selection of the card should be based
on the analyte properties and its stabilization requirements,
extraction efficiency, and method of analysis. Basic DBS
formats include the paper-based Whatman 903 and Ahlstrom
226 cards, and specialized cards include the Flinders Tech-
nology Associates (FTA) Drug Metabolism and Pharmacoki-
netics (DMPK) cards that are impregnated with cell lysis and
analyte-stabilizing materials. Flinders Technology Asso-
ciates DMPK-A cards contain sodium dodecyl sulfate and

tris- (hydroxymethyl)Jaminomethane, and FTA DMPK-B cards
contain guanidium thiocyanate.®® Some of these chemicals
have been reported to leach from DBS during sample prep-
aration and potentially interfere with some analytical plat-
forms through a “matrix effect,” arisk that has been evaluated
extensively by the drug development community.%°-°"

Analyte- and DBS-specific data variability was found be-
tween different FTA DMPK cards used for the measurement
of small-molecule drugs in whole blood by liquid chroma-
tography/MS."2#9 |n addition to the matrix effect caused by
impregnated chemicals, the type of paper can also influence
spreading dynamics of blood across the DBS, as mentioned
earlier.892:93 Distribution of antibodies across a DBS spot
was found to be heterogenous and not predictable with au-
thors suggesting that greater than 15% variability between
different punches of the same spot.*! The impact of Het and
concentration on the recovery of small drug analytes were also
dependent on the type of DBS.%*

Of relevance to global health applications, the variability of
HIV viral load measurements was evaluated in three different
types of DBS%*% and across different RNA analysis plat-
forms.%” These studies observed variable genotyping effi-
ciencies and drug susceptibility test results from samples
derived from different DBS cards; some of the authors suggest
that storage conditions might mitigate paper-dependent bias.
Dried blood spot-based samples were also found to result in
test results that overestimate HIV incidence when compared
with test results from plasma samples.®®

The recovery and stability of malaria-related histidine-rich
protein 2 (HRP2)®*® and mRNA were also reported to be de-
pendent on the type of DBS.'"%>'®! In a report by Miguel
et al.,’®2 none of the three commercially available reagents
were able to reliably extract DNA associated with Plasmodium
falciparum or Plasmodium vivax infection from blood stored on
cotton-based filter paper, although others have shown a de-
pendence on the type of DBS.*"'%3 The use of cards designed
to preserve nucleic acids was found to provide sufficient
stability for detecting single-species malaria infection but
failed to diagnose individuals with mixed P. vivax/falci-
parum infections.'®* Addressing these limitations, a method
for the simultaneous extraction of nucleic acids indicating
P. vivax and P. falciparum infections was developed and field-
evaluated with slight differences in analytical performance
reported between two types of DBS cards. % Different sample
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preparation methods resulted in discordant results when us-
ing PCR to detect malaria parasites, particularly if only a single
aliquot/punch was used.*' These reports reinforce the need to
carefully select the type of DBS card with criteria based on the
properties of a specific biomarker, method for analysis, and
physiochemical interactions with the card materials, in context
of optimized stabilization and sample preparation.

STORAGE CONDITIONS

The impact of post-collection storage conditions on data
quality has been extensively evaluated by multiple commu-
nities, focused on the type of card, time, temperature, hu-
midity, and storage methods.?*1%6-1% These conditions
include storage in the field, conditions during transport, stor-
age before sample preparation, and longer term biobanking.
The effects of these parameters are often dependent on the
properties of the analyte and DBS, with a general recom-
mendation that many of these impacts can be mitigated by
storing dried cards in desiccated and frozen conditions as
soon as possible.'%%7112

As mentioned earlier, biobanking in frozen conditions can
fail to stabilize some analytes over extended period. For ex-
ample, standard protocol for HIV viral load measurements
calls for theimmediate storage of DBS to less than —20°C or no
longer than 14 days at ambient temperature. Even if stored
at —20°C, DBS cards are only reliable if these measurements
are made within 2 years."® Similar recommendations are also
described for storing DBS used in newborn screening and
other clinical tests, 32111113114

Temperature and humidity conditions directly affect the
ability to detect specific amino acids and metabolites routinely
measured for newborn screening."'%1"® Gene transcriptomics
analysis of newborn DBS was more consistent if samples were
stored at temperatures less than —20°C immediately after
specimen acquisition,""" with time and temperature imparting
various degrees of degradation for specific mMRNA profiling
targets and housekeeping genes.''? Lower temperatures is not
the solution for all analytes; three polyunsaturated fatty acids
used to screen newborns for neural development and visual
function were found to have significant degradation after
10 days of storage at —-28°C, with a high degree of intra-
individual variability, when measured from umbilical blood dried
on Ahlstrom 226 cards.'"~"1®

For function-based bioanalysis, DBS storage temperatures
greater than 4°C reduced the activity of all five enzymes
measured to diagnose newborns at risk of lysosomal storage
disorders, with the degree of variability dependent on the
properties of a specific enzyme.'?*"'2® Quantitative measure-
ments of glucose-6-phosphate dehydrogenase (G6PD) are
used by both malaria and newborn screening programs to
identify individuals deficient of this essential enzyme. Two
studies showed that temperature and humidity impacted
quantitative measurements of G6PD activity, a source of
variability that can be mitigated if DBS was stored under
desiccated and refrigerated conditions.'2412°

There is emerging literature describing the pre-analytical
impact of DBS storage conditions on bioanalytical test results
for other diseases of global health interest such as hepatitis B
and C?9°8-81.126-130 5nd dengue.'"'32 DNA measurements
of P. falciparum were affected by type of DBS, drying time, and
humidity, with an overall inferior sensitivity compared with
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frozen whole blood.?'"'33-137 |ncomplete drying, storage
temperature, and humidity affected measurements of malaria
gametocyte mRNA more significantly on samples derived
from FTA DBS compared with Whatman 903 cards.'%%:138
Type of DBS and storage temperature and humidity affected
stability and recovery of antibodies for malarial serological
surveys."®® For HRP2 measurements on Whatman 903 cards,
storage at temperatures less than —20°C significantly reduced
the variability of test results from archived samples.®®

For HIV drug resistance testing, HIV-1 nucleic acids were
stable in DBS if stored in desiccated conditions at tempera-
tures less than 4°C and were not recoverable if stored at 37°C
under high humidity.3814%-"44 Another report found that the
rate of nucleic acid degradation because of storage conditions
was dependent on a patient’s total viral load and preservation
as dried blood or plasma.’#®"4® Similar to the malaria studies,
drying time and handling of the specimen before biobanking
affected the stability of HIV-1 RNA,"46:147

Storage environment is not just one variable and includes
temperature, humidity, and time within field, transport, and
laboratory settings, all in context to the stability of a specific
analyte. In many instances, the type of DBS was an important
consideration. Storage procedures and conditions optimiz-
ing the stability of one biomarker are likely not optimal for a
different analyte. This consideration is important for those
developing multiplexed detection of a panel of analytes as
trade-offs in analytical performance are likely and should be
evaluated in the construction of a rigorous standard oper-
ating procedure.

DISCUSSION

Dried blood spot offers several logistical advantages for
remote health and surveillance programs, particularly for
screening and surveying hard-to-reach populations. For many
of these tests, a highly sensitive biomarker analysis is impor-
tant for reducing the risk of missed positive cases. Analytical
sensitivity not only includes the performance of a downstream
platform but also the pre-analytical workflow that starts with
the collection of a specimen from an individual. Quality as-
surance should not be the compromise of simplified logistics if
incorrect test results have significant health implications or
result in unnecessary expenditure of research and program-
matic resources.

Although this review focused on evaluations of validated
biomarkers, there is also significant interest in the use of DBS
for biomarker discovery. Given current challenges of bio-
marker validation,2 '8 DBS introduces interlinked sources of
data variability that should be considered in any experimental
design and statistical plan. As described in this review, sig-
nificant effort is required to determine optimal conditions for
specific analytes making broad standard operating proce-
dures in the absence of an identified analyte overly simplistic.
Field-collected DBS should be used sparingly in biomarker
research or, at-minimum, in parallel with quality-assured
venipuncture.

Several opportunities for improving the technology be-
hind DBS should consider trade-offs with roll-to-roll DBS
manufacturing processes,'*® lower per-card cost, and sim-
plified implementation logistics. In addition to direct mea-
surements of Hct from DBS, there still lacks methods to
determine the total volume of blood deposited on a card in the
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absence of a volumetric accessory. Simple field-appropriate
technologies are also needed to control specimen drying and
maintain desiccation of a blood spot on various types of DBS
until storage in controlled conditions. Technologies that pre-
vent contamination from other DBS cards, instrumentation, or
environment would also be beneficial for the community.

Broad lessons learned include the importance of evaluating
the physiological, chemical, and physical properties of each
analyte in context to a conceptual pre-analytical workflow that
includes DBS type, collection methods, and storage condi-
tions. The newborn screening and drug development com-
munities, in addition to an emerging community of global
health researchers, continue to build on literature evaluating
the reliability of DBS. These reports provide a foundation of
methods for validating of DBS-based bioanalysis and for de-
fining standardized procedures that ensure quality and re-
producible data.
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