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Abstract. The cost-effectiveness of the standard of care for snakebite treatment, antivenom, and supportive care has
been established in various settings. In this study, based on data from South Indian private health-care providers, we
address an additional question: “For what cost and effectiveness values would adding adjunct-based treatment strat-
egies to the standard of care for venomous snakebites be cost-effective?” We modeled the cost and performance of
potential interventions (e.g., pharmacologic or preventive) used adjunctively with antivenom and supportive care for the
treatment of snakebite. Because these potential interventions are theoretical, we used a threshold cost-effectiveness
approach to explore this forward-looking concept. We examined economic parameters at which these interventions
could be cost-effective or even cost saving. A threshold analysis was used to examine the addition of new interventions to
the standard of care. Incremental cost-effectiveness ratios were used to compare treatment strategies. One-way, sce-
nario, and probabilistic sensitivity analyses were conducted to analyze parameter uncertainty and define cost and
effectiveness thresholds. Our results suggest that even a 3% reduction in severe cases due to an adjunct strategy is likely
to reduce the cost of overall treatment and have the greatest impact on cost-effectiveness. In this model, for example, an
investment of $10 of intervention that reduces the incidence of severe cases by 3%, even without changing antivenom
usage patterns, creates cost savings of $75 per individual. These findings illustrate the striking degree to which an adjunct

intervention could improve patient outcomes and be cost-effective or even cost saving.

INTRODUCTION

The burden of disease due to snakebite in developing
countries is high and poorly recognized."™ Globally, an
estimated 125,000 deaths per year are attributable to
snakebite.>® The Million Deaths Study in India estimated
45,900 deaths attributable to snakebite in India in 2005, which
translates to one in 200 deaths (even though governmental
reporting is much lower).” There is a strong negative correla-
tion across countries between gross domestic product per
capita and incidence of snakebite.® Rural farmers are at the
greatest risk because of time spent in the fields, where they
often incur snakebites on the feet, legs, or hands.2~"° The limb
deformities and amputations caused by snakebite lead to life-
altering disabilities, which in turn contribute to the cycle of
poverty."! Adding to these factors are the prohibitively high
costs of the current treatments for snakebite—advanced
hospital care and antivenom.®'° To address these issues,
the World Health Organization (WHO) included snakebite
on its list of neglected tropical diseases in 2017."2

Patients who receive antivenom in the presence of sup-
portive care are not likely to die of snakebite, but currently,
such treatments can only be given in a clinic or hospital setting
and it can be prohibitively expensive. Many victims of
snakebite do not survive long enough to reach definitive
treatment, either because of geographical or economic con-
straints that can cause morbidity and mortality through delays
in care. InIndia and Nepal, more than 75% of snakebite deaths
occur outside the hospital setting.®'® A household survey in
Tamil Nadu, India, reported a 9% case fatality rate due to
snakebites—and none of these fatalities occurred after the
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administration of antivenom.® Although still being the most
cost-effective treatment available, antivenom remains ex-
pensive because the methods for producing antivenom in-
volve snake handling, animal husbandry, and other high-cost
steps.’® Antivenom costs vary regionally, with total direct
costs for treatment as high as $5,700 U.S. Dollars (USD) in
India and costs per antivenom vial ranging from $18 to $200
USD in sub-Saharan Africa.>'® Indeed, according to the WHO
definition, snakebite treatment is almost always considered a
“catastrophic health expenditure.”®*

Several laboratories are working to reduce the cost of
antivenom production and develop adjunct therapeutics.#2°
Ideally, adjunct treatments could be used outside of the hos-
pital setting, where most deaths occur. The benefits of adjunct
pharmacological and/or preventive interventions such as
shoes and pressure immobilizations might also be similarly
effective. These types of strategies could result in increased
health benefits and ultimately decrease overall costs by de-
creasing the severity of snakebite.

Only two cost-effectiveness analyses on snakebite treatments
were identified at the time of our study.3%3" These studies have
determined that antivenom (administered alongside supportive
care) is cost-effective in a variety of West African settings. Our
study seeks to answer the following additional question, “For
what cost and efficacy values would a combination antivenom/
adjunct-based treatment strategy for venomous snakebites be
cost-effective when compared with using antivenom alone?”

METHODS

Overview and setting. A decision tree model was con-
structed in Microsoft Excel Version 15 (Microsoft Corp.,
Redmond, WA) to understand the health and cost con-
sequences of different treatment strategies for venomous
shakebite in southern India. The model was used to analyze
and compare the cost-effectiveness of two intervention arms:
1) antivenom and supportive care and 2) an antivenom/adjunct
combination strategy with supportive care. A cohort of 100
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individuals was modeled from the time of envenomation at age
30 for a time horizon of 43 years (according to the age-
adjusted regional life-expectancy for a 30-year-old in India).
Envenomation was modeled at age 30 because research has
shown that snakebites are most likely to affect individuals
between the ages of 20-40.2 Cost of treatment parameters for
the model were modeled and validated from primary research
at two private hospitals in Tamil Nadu, India. Private hospitals
were chosen as the research focus because it is estimated that
80% of India’s outpatient care and 60% of India’s inpatient
care is provided in the private sector.32 In Tamil Nadu, patients
have a notable preference for private facilities, with as many as
90% of patients choosing private care for certain conditions.>*
Probabilities were gathered from literature searches and in-
formed by expert opinion in some cases. Health outcomes
were measured in disability-adjusted life years (DALY), which
is acomposite measure that accounts for both years lived with
a disability and early death. Disability-adjusted life years were
discounted at 3%. Cost-effectiveness comparisons and de-
terminations were made by calculating an incremental cost-
effectiveness ratio (ICER), which is aratio of net cost per DALY
averted.

Cost parameters were derived from primary investigation at
a rural private hospital. Costs were modeled for three case
presentations: severe envenomation, mild envenomation, and
no envenomation. For each case presentation, expert inter-
views and literature searches were conducted to identify re-
quired services, and the hospital fee structures were used to
value the services and arrive at modeled cost parameters for
the decision tree. Service fees were used as a proxy for
treatment cost.

To validate the modeled cost data, empirical cost data were
collected at a second private facility: an urban teaching hos-
pital. At the urban hospital, financial records were available.
Records were searched for all patients presenting with a
snakebite diagnosis from 2008 to present. Seventy-one re-
cords were identified, and cost data were recorded as the
direct cost to the patient, categorized by service provided. All
costs were collected in Indian rupees and converted to 2015
USD using the commercial market conversion rate in May
2015.%* No corresponding medical outcomes were available.
These data were used to calculate a mean cost of snakebite
treatment, which was inflated to account for a 20.4% deficit
between patient payments and total costs at the urban
hospital.

The modeled and empirical cost averages differed by less
than 1.5%. Because of this similarity, modeled costs were
used as model parameters, because they allowed for disag-
gregation by severity (Supplemental Appendix 1). Sensitivity
analyses were used to analyze uncertainty in cost parameters.

Analytic approach. The model was constructed to com-
pare the two treatment strategies: 1) antivenom and sup-
portive care and 2) an antivenom/adjunct combination
strategy with supportive care. To account for potential in-
tervention opportunities in a prehospital setting, the model
begins at the time of snakebite. All subsequent costs and
health outcomes were ascribed to the terminal branches of the
tree and used for calculating outcome measures.

The decision tree, shown simplified in Figure 1 and in full in
Supplemental Appendix 2, was designed to categorize
snakebite patients in one of three outcome branches: no en-
venomation, mild envenomation, and severe envenomation.

Treatment Decision Access Modern Treatment Envenomation Severity Mortality Amputation Outcome
Nonvenomous Full recovery
0.35
Death Premature death
Reach modern facility C 0.1
0.886
Severe Finger/toe amputation
0.52 ~ Amputation 0.725
0.25
Below-knee amputation
Antivenom + adjunc Venomous Survival 0.275
b 0.65 O 0.9 O
No amputation Full recovery
0.75
Mild Full recovery
0.48
Premature death
Do not reach modern facilitb 0.08
0.114

Full recovery

0.92

This simplified decision tree shows the chance nodes and probabilities following one of the treatment arms (antivenom only).
Chance nodes for the antivenom + adjunct only arm are identical. See S2 Appendix for full tree with costs and DALYS.

Ficure 1. Simplified decision tree model. One treatment arm (antivenom + adjunct) with all subsequent chance nodes and probabilities.
Amputation was chosen for this example because direct costs were known. Please see Supplemental Appendix 2 for the full decision tree.
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Cases of “no envenomation” occur after a bite from a non-
venomous snake or after a “dry bite” from a venomous
snake—when no clinically significant amount of venom is
injected—and are treated with overnight hospitalization to rule
out envenomation. Mild envenomation is characterized by
clinical signs of envenomation, such as local tissue necrosis
and pain, and requires treatment with antivenom, antibiotics,
and several days of hospitalization. Severe envenomation is
characterized by either kidney failure or the loss of breathing
function due to paralysis. Severe envenomation is treated with
large doses of antivenom, intensive care unit (ICU) supportive
care, kidney dialysis and/or mechanical ventilation, and hos-
pitalization for more than 1 week. Only severe envenomation
carries the potential for lifelong disability due to limb ampu-
tation. Mortality and disability are most closely associated
with 1) accessing treatment at a modern health facility, and 2)
complications of supportive care in severe cases.®'® There-
fore, two corresponding parameters were varied between
treatment branches: the percent of patients reaching a mod-
ern health facility and the percent of cases that are severe.
Early treatment has a well-established effect on both of these
outcomes,®'° and any new treatment strategy should reduce
prehospital mortality and the severity of cases once patients
have reached the hospital.

TaBLE 1

Model parameters. Epidemiological parameters were
derived from existing research on snakebite epidemiology
(Table 1). This group of parameters does not depend on
treatment strategy and was therefore held constant across
each branch of the decision tree. It was important to model the
percent of snakebites that are venomous because a large
proportion of snakebites do not result in envenomation.
Posthospital mortality and incidence of amputation were held
constant across treatment branches because these proba-
bilities are conditional on first being classified as a severe
case.

The base-case scenario is the combination of the most
likely probabilities assigned to each parameter. For all pa-
rameters, base-case probabilities were assigned values within
the range reported in literature. For probabilities associated
with the new treatment strategy, informed assumptions were
used in the base-case scenario. These assumptions were
designed to be realistic and conservative. A combination
treatment strategy was assumed to yield modest improve-
ments in outcomes over antivenom alone. In the base-case
scenario, we hypothesize that the percent of patients reaching
a modern health facility in the combination therapy arm in-
creases from 89% to 96% (7% increase compared with
standard of care), and the percent of cases classified as

Model parameters

Parameter Low Base case High Sources
Cohort size - 100 - -
Discount rate - 3% - -
Epidemiological parameters
% Venomous shakes 32.5% 65% 97.5% 35*
Mortality following treatment (in severe 5% 10% 15% 3,35-38
cases)
Incidence of any amputation (in severe 12.5% 25% 37.5% 1,2,21,37,39
cases)
Incidence of finger/toe amputation (if 50.75% 72.5% 94.25% 38,39
any amputation)
Mortality without treatment 0.8% 7% 15.2% 3,36
Intervention effectiveness
% Accessing modern health facility 79% 88.6% 96% 3
(antivenom only)
% Increase in accessing modern health 1% 7% 11% Assumption
facility (antivenom/adjunct)
% Severe cases (antivenom only) 50.4% 63% 75.6% 33,40*
Absolute % Reduction in severe cases 3.9% 13% 221% Assumption
(antivenom + adjunct)
Costs
Supportive treatment cost of severe $1,077 $2,153 $3,230 Primary investigation
envenomation (not including AV)
Supportive treatment cost of mild $253 $506 $760 Primary investigation
envenomation (not including
antivenom)
Supportive treatment cost of no $50 $101 $151 Primary investigation
envenomation
Cost of finger/toe amputation - $174 - Primary investigation
Cost of below-knee amputation - $522 - Primary investigation
Cost of antivenom (antivenom only) $144 $287 $431 Primary investigation
Cost of antivenom (antivenom + $144 $287 $431 Primary investigation
adjunct)
Cost of adjunct $157 $313 $470 Assumption
Cost of adjunct distribution/storage $1.31 $2.61 $3.92 Assumption
(per patient treated)
Disability weights
Below-knee amputation 0.064 0.164 0.264 41,42
Finger/toe amputation 0.005 0.02 0.035 41,42

Base-case values, data sources, and ranges used in the probabilistic sensitivity analysis.

*These base-case values took various expert opinions into account in addition to published literature.
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severe versus mild in the combination therapy arm decreases
from 63% to 50% (13% decrease compared with standard of
care).

Because the actual price of individual adjunct strategies is
not known, the base-case was purposely set at an extremely
high estimate and varied from 50% to 150% in the probabi-
listic sensitivity analysis (PSA). To set up the base-case sce-
nario, hypothetical new adjunct therapeutic strategies were
chosen at the randomly generated cost of $313—higher than
the cost of antivenom in the study setting (Tamil Nadu). Al-
though we expect the cost of adjunct therapeutic or preventive
strategies to be significantly less than the current cost of
antivenom, we purposely chose a high cost because low cost
of adjunct therapeutic strategies are likely to be realized only
after scale-up in production and dissemination. It is yet un-
known which, and how many, types of adjunct strategies will
be required to reduce envenomation severity. See also
Supplemental Appendix 1 for more details of cost parameters.

Disability weights for chronic disabilities due to amputation
were taken from the Global Burden of Disease (GBD) study,
but we did not include analysis of loss-of-function of limbs in
this analysis—we included only amputation because the cost
of amputation is more predictable for an exploratory study
such as this one. Because of the large differences between the
WHO disability weight update in 2004 and the GBD 2010, a
range was used to account for both numbers in the sensitivity
analysis. The base-case disability weight for below-knee
amputation (0.164) was taken from the GBD 2010, and the
base-case disability weight for finger/toe amputation (0.02)
was an assumption informed by several related disability
weights reported in the 2004 update and the GBD 2010.4"42

Outcome measures. The primary outcome measures are
the thresholds for treatment effectiveness and cost. These
thresholds are defined as the increase in effectiveness and
net cost at which a combination strategy becomes the more

cost-effective option. As a secondary outcome measure, we
report the ICER, which is the ratio of incremental costs per
DALY averted. To compare an antivenom/adjunct com-
bination strategy with antivenom alone, the ICER was cal-
culated based on the difference of costs and DALY between
these two strategies.

Sensitivity analysis. To analyze the uncertainty in model
parameters and identify which parameters have the greatest
effect on the outcome measure, several types of sensitivity
analysis were used in this study. First, one-way sensitivity
analyses were used to identify thresholds of interest. For ex-
ample, the percent of cases classified as severe was varied
while holding all other variables constant at base-case values
to identify thresholds for both cost-effectiveness and cost
savings. The same analysis was carried out for the cost and
effectiveness of an adjunct therapeutic.

Next, two scenario analyses were conducted. The first
scenario examined the cost-effectiveness of the combination
strategy compared with antivenom alone, assuming the ad-
ditional adjunct has no effect on the severity of envenomation
and only affects prehospital mortality. The second scenario
analysis varied the cost of the adjunct across a range of po-
tential values and recorded the corresponding ICER (versus
antivenom only) of each cost estimate.

Finally, a PSA was conducted using @Risk, Version 7 (Pal-
isade, Ithaca, NY). This analysis used prior distributions for
each model parameter. During model simulation, values were
randomly chosen from each prior distribution and used to
calculate ICER values. The simulation was conducted for
10,000 iterations.

For all parameters, prior distributions were defined by the
beta distribution, with minimum and maximum values re-
ported in Table 1. This is in accordance with ISPOR recom-
mendations for parameters from scarce or unverified sources
(such as expert opinion).*® Because costs were modeled from

Threshold analysis of severe cases due to adjunct
strategy (base case assumptions)
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Ficure 2. Threshold analysis of severe cases (primary result) on the ICER using an antivenom/adjunct approach. The cost-effectiveness
threshold ($1,500 per DALY averted) is reached with a 3% absolute reduction and is indicated by a red point. The antivenom/adjunct strategy
averted an additional 0.28 DALY per person compared with antivenom only. The ICER of interest to this study (antivenom/adjunct combination
strategy vs. antivenom alone) had a value of $68 per DALY averted. DALY = disability-adjusted life year; ICER = incremental cost-effectiveness ratio.

This figure appears in color at www.ajtmh.org.
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TaBLE 2
Results of base-case analysis (secondary results)

Intervention DALYs per person

DALYs averted per person

Net cost per person Costs added per person ICER vs. prior table entry

Antivenom + supportive care 1.23

Antivenom/adjunct + supportive care 0.95 0.28

$1,046 -
$1,065 $19 $68

DALY = disability-adjusted life year; ICER = incremental cost-effectiveness ratio. At base-case values, the antivenom only strategy resulted in a total cost per person of $1,046 and the antivenom/
adjunct strategy resulted in a total cost per person of $1,065 (an increased investment of $19 per person).

hospital fee schedules, they were subject to the same degree
of uncertainty as health parameters. Beta distributions are
feasible and conservative estimates of both health and cost
parameters.

RESULTS

Threshold analysis. Two deterministic threshold analyses
were conducted on the parameters associated with adjunct
effectiveness: percent of patients reaching hospital treat-
ment and percent of patients with severe envenomation.
These analyses were conducted at base-case values by
varying each parameter independently of the others.
Threshold analysis showed that the combination strategy
would be cost-effective (defined as averting one DALY per
$1,500 investment—equivalent to India’s per capita GDP at
the time of study)** if any strategy costs less than $1,608 per
treatment regimen, assuming base-case effectiveness
(13% reduction in severe cases versus mild cases and 7%
increase in patients reaching the hospital). The threshold for
cost savings was reached when adjunct therapy costs
dropped below $252 per regimen. Analysis indicated
cost-effectiveness if combination treatment could reduce
the percent of severe cases by 3% (Figure 2).

For results disaggregated by health and cost contributions,
see Table 2. Note that all costs are incurred and saved in the
first 2 weeks of the time horizon, while health effects continue
to contribute to the analysis throughout the 43-year time ho-
rizon (due to chronic condition).

Scenario analysis. Our first scenario analysis was con-
ducted to determine 1) the cost-effectiveness threshold for
reduced severity, assuming no increase in patients reaching
treatment, and 2) the cost-effectiveness threshold for in-
creased numbers of patients reaching treatment, assuming no
reduction in severe cases. Assuming no increase in patients
reaching treatment, an absolute reduction in severe cases by
3% would achieve cost-effectiveness (Figure 2, above). As-
suming no decrease in the proportion of severe cases, in-
creasing the percent of patients reaching treatment improves
the cost-effectiveness of the treatment; however, because of
the high cost of that treatment, varying this parameter alone
does not cause the ICER to reach the cost-effectiveness
threshold even when the percent of patients reaching treat-
ment is set to 100. The results of this analysis are shown in
Figure 3.

Theresults of the second scenario analysis, which varies the
cost of the adjunct strategy through several possible values,
are presented in Table 3.

Threshold analysis of patients reaching treatment
due to adjunct strategy

14,000
12,000
—10,000
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4,000

(S / DALY Averted

2,000

0

ICER, antivenom/adjunct vs. antivenom only

(assuming no effect on severity)

1% 3% 5% 7% 9%

11% 13% 15% 17% 19 21% 23%
Increase in patients reaching treatment (absolute % increase)

Threshold (51,500/DALY averted) not achieved

Fiaure 3. Threshold analysis of patients reaching treatment (assuming no decrease in severe cases). The effect on the incremental cost-
effectiveness ratio (ICER) resulting from varying the percent of patients reaching treatment because of the addition of an adjunct. This analysis
assumes an adjunct has no effect on the percent of cases that are severe. As patients reaching treatment increases, the cost-effectiveness
improves; however, this does not permit the strategy to reach $1,500 per disability-adjusted life year (DALY) averted even when 100% of patients
reach treatment (23% absolute increase).
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TaBLE 3

Results of scenario analysis (cost to individuals of adjunct per regi-
men) cost savings per person are average savings for an individual
treated with antivenom and an adjunct strategy, vs. antivenom
alone

Cost of adjunct Cost savings per person

$1 $78
$5 $77
$10 $75
$15 $74
$20 $72
$30 $69
$100 $47
$252 $0

In this model, all costs and savings are incurred in the first 2 weeks following snakebite.

Probabilistic sensitivity analysis. The PSA resulted in
1.2% non-cost-effective iterations, 60% cost-effective itera-
tions, and 38.8% dominant iterations (simultaneously savings
costs and increasing health benefits) (Figure 4). Although
negative ICERs are not always dominant, in this analysis,
negative ICERs could only be produced by increasing health
benefits and decreasing costs.

Probabilistic sensitivity analysis indicated that reducing the
severity of envenomation has the greatest effect on the
overall cost-effectiveness of any additional intervention. See

Figure 5 for a tornado graph showing the 10 parameters with
the greatest effect on the ICER.

DISCUSSION

Our analyses suggest that an absolute reduction of severe
cases by just 3% resulting from implementation of any adjunct
strategy to antivenom for snakebite treatment could be highly
cost-effective or even cost saving, regardless of whether there
was an increase in the number of patients reaching treatment.
We used the “very cost-effective” threshold recommended by
the WHO, even though there are alternative models for this
type of determination.*® At mid-range cost, even if an adjunct
preventative or treatment strategy shows moderate effec-
tiveness, its implementation would be cost saving when less
than $252 and even an investment of $10 will result in $75
savings per patient with only a 3% reduction in the incidence
severe cases.

Our sensitivity analysis indicates that a reduction in severe
cases is likely to have the greatest impact on cost-
effectiveness. The high costs associated with hospitalization
in the ICU, combined with additional costs of dialysis, me-
chanical ventilation, and other intensive management, are
greater determinants of cost-effectiveness than the direct
cost of antivenom or any proposed adjunct (e.g., a field

ICER acceptibility curve (AV + adjunct vs. AV only)
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Tornado Chart

Inputs ranked by effect on median ICER

% of cases that are severe (AV + adjunct decrease)

Cost of severe envenomation

% of patients reaching treatment (AV + adjunct increase)
Cost of adjunct/regimen

Cost of AV

% of cases that are severe (AV only) - -$8

% of patients reaching treatment (AV only)

% of snakebites that are venomous

Mortailty without treatment

Cost of distribution/dose

-$223.78
-$39.02

M Input high

$157 M Inpul low

$52-$109
357-5112

$56-$103

| Baseline = $78

$145.73
$330.49
$515.24
$700.00

ICER

Figure 5. Tornado chart: the effect of the 10 model parameters that have the greatest effect on the median incremental cost-effectiveness ratios
(ICER). Results are based on probabilistic sensitivity analysis with 10,000 iterations. This figure appears in color at www.ajtmh.org.

antidote, bite-mitigating outerwear, or pressure immobiliza-
tion). If an adjunctive therapeutic could even modestly avert
respiratory paralysis, tissue damage, or acute kidney injury, a
large portion of treatment costs could be averted while si-
multaneously averting mortality and lifelong disability.

Though actual bills and treatment packages from two
hospitals in Tamil Nadu were reviewed, this study is limited
by sufficient access to a broader sample of real-world data. In
addition, elements of this analysis are implicitly speculative.
Also, hospitals where data were collected did not have long-
term health outcomes for the same patients, so it was not
possible to associate costs with health outcomes without
elements of cost modeling. Supplemental Appendix 1 shows
how the cost scenarios were modeled, along with weighted
averages using probabilities in the decision tree. Although
the possibility of significant estimation error still exists and
was accounted for in the sensitivity analysis, the similarity
between the two cost estimates suggests the reliability of
the results.

Incidence of snakebite and bite severity, as well as the
quality, delivery, and timeliness of medical care varies sig-
nificantly by region. This study’s real-world data are specific
to one area of southern India, and the base-case scenario
may not be generalizable to other regions. We focused on
private health-care providers, which comprise most treat-
ment delivery in India.*® Nevertheless, parameter ranges
were wide enough to encompass a range of possible real-
world scenarios, and estimates were generally conservative,
even for southern India. Thus, the main outcomes of this
study, including the cost-effectiveness of an adjunct-based
approach and the importance of averting hospitalization in
the ICU, should be generalizable to any region with a signif-
icant burden of snakebites.

This model showed a relatively weak relationship be-
tween the proportion of patients reaching a hospital and the

cost-effectiveness of an intervention. This is because pa-
tients seeking treatment following a bite incur much greater
costs than patients who do not receive any modern treat-
ment, regardless of whether their prognosis was improved
by implementation of effective adjunctive strategies.

Further epidemiological studies should seek to adopt a
community-based approach to understand the true burden
of snakebites in rural regions. Economic research should
seek to estimate costs using a prospective micro-costing
approach when feasible. Otherwise, retrospective eco-
nomic studies should attempt to gather health outcome
datain combination with patient expenditures and collateral
losses.

This study suggests that decreasing the severity of
snakebite cases has the greatest effect on overall cost-
effectiveness and that investment in prevention and pre-
referral treatments should be considered in programmatic
responses to this neglected tropical disease. Although the
theoretical implementation of adjunct strategies appears to
be highly cost-effective, many questions still need to be
answered to reduce the global burden of snakebites. We did
not assess whether and how different interventions would
be accepted by key stakeholders (e.g., individual citizens,
physicians as well as local, regional, and national govern-
ments and governing organizations) in terms of concept and
cost. For example, if an efficacious, reasonably priced ad-
junct therapeutic were made available in rural settings,
would it be adopted by affected populations and by health-
care providers? At what price would it be commercially vi-
able while achieving the goal of wide accessibility? How
would it be implemented in a prehospital setting? These and
many other questions require further qualitative, quantita-
tive, and mixed-method investigations. Answers are more
likely to be achieved with a coordinated response to the
global burden of snakebite.
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