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Abstract. A quantifiable, stool-based, Mycobacterium tuberculosis (Mtb) test has potential complementary value to
respiratory specimens. Limit of detection (LOD) was determined by spiking control stool. Clinical test performance was
evaluated in acohortwithpulmonary tuberculosis (TB) (N=166) andasymptomatic householdTBchild contacts (N=105).
Stool-quantitative polymerase chain reaction (qPCR) results were compared with sputum acid-fast bacilli (AFB) mi-
croscopy, GeneXpert MTB/RIF (Xpert MTB/RIF), and cultures. In Mtb stool-spiking studies, the LOD was 96 colony-
forming units/50 mg of stool (95% confidence interval [CI]: 84.8–105.6). Among specimens collected within 72 hours of
antituberculosis treatment (ATT) initiation, stool qPCRdetected 22 of 23 (95%) of culture-positive cases. Among clinically
diagnosed cases that were Xpert MTB/RIF and culture negative, stool qPCR detected an additional 8% (3/37). Among
asymptomatic, recently TB-exposed participants, stool PCR detected Mtb in two of 105 (1.9%) patients. Two months
after ATT, the Mtb quantitative burden in femtogram per microliters decreased (Wilcoxon signed-rank P < 0.001) and
persistent positive stool PCR was associated with treatment failure or drug resistance (relative risk 2.8, CI: 1.2–6.5; P =
0.012). Stool-based qPCR is a promising complementary technique to sputum-based diagnosis. It detects andquantifies
low levels of stool Mtb DNA, thereby supporting adjunct diagnosis and treatment monitoring in pulmonary TB.

INTRODUCTION

Despite recent advances, the diagnosis of pulmonary tu-
berculosis (TB) in certainpopulations, particularlyHIV-positive
individuals and children, remains challenging. In 2016, 39%of
the estimated 10.4 million new cases of TB went un-
diagnosed.1 Diagnosis of HIV-associated or childhood TB is
hindered by presentation with nonspecific clinical signs and
symptoms, the paucibacillary nature of the disease, and dif-
ficulty in obtaining induced or expectorated sputum. Mis-
diagnosis and delays in treatment contribute significantly to
increased morbidity and mortality among these groups.2–5 A
quarter of HIV-related deaths in adults are secondary to TB,
rising to 40% in TB high-burden settings.6,7 The culture re-
mains the reference standard despite its suboptimal sensi-
tivity and lengthy wait time of 2–6 weeks for results.8

Although polymerase chain reaction (PCR) techniques,
such as Gene Xpert® MTB/RIF (Xpert; Cepheid, Sunnyvale,
CA), commercial PCR tests, and in-house PCR tests, have
improved sensitivity for HIV-associated and childhood TB
diagnosis compared with smear microscopy, diagnostic
yield in paucibacillary and smear-negative TB is still
suboptimal.8–12 For example, among children with culture-
confirmedTB, the sensitivity of XpertMTB/RIF todetectMtb in
respiratory and gastric samples ranges from 62% to 66%.9

However, of the 50–80% of children with negative cultures
who are clinically diagnosedwith TB, XpertMTB/RIF positivity
decreases to 2%.9 Similarly, the sensitivity of Xpert MTB/RIF
drops from 89% to 76% in HIV-associated TB in adults
compared with non-HIV-associated TB.13 There remains a

dire need for adjunct means to bacteriologically confirm HIV-
associated, childhood, and other paucibacillary forms of TB.
Respiratory secretions are swallowed and enter the gas-

trointestinal (GI) track as part of the normal mucociliary es-
calator function.14,15 Thus, the use of gastric aspirates and
stool to detect Mycobacterium tuberculosis (Mtb) is bi-
ologically plausible but has varying degrees of success with
diagnostic yields of stool Xpert MTB/RIF ranging widely from
38% to 100%.16–18 Thus far, performance of stool Xpert MTB/
RIF in children is less sensitive than sputum Xpert MTB/
RIF,19–21 which may be related to Xpert MTB/RIF’s limit of
detection (LOD) in sputum being (131 colony-forming units
[CFU]/mL) compared with its stool LOD (6,800 CFU/mL).22

Improved stool processing has been shown to decrease the
LOD for stool to∼1,000CFU/gmstool.23 Further improvement
in stool DNA extraction could increase test sensitivity and
consistency, making stool PCR a more feasible, noninvasive,
highly sensitive technique for diagnosing pulmonary TB.
Currently, there are noaccurate or precisemeans tomonitor

TB treatment. About 80% of individuals with acid-fast bacilli
(AFB) sputum smear-positive TB will become smear negative
by2monthsof effective treatment,makingAFBsputumsmear
status the current surrogate measure of treatment effective-
ness.24 Hence, for the 40% of HIV-associated TB and 76% of
pediatric TB that are AFB sputum smear negative, only
symptomatic and radiographic treatment monitoring are
useful, although imprecise.1,13,25 Although the World Health
Organization (WHO) recommends against using Xpert MTB/
RIF for treatment monitoring, recent reports show that the
semiquantitative measure provided by Xpert MTB/RIF is able
to predict treatment failure and offers promise in predicting
therapeutic response.26,27 Accurate and precise longitudinal
quantification of the Mtb burden during antituberculosis
treatment (ATT) could support earlier detection of treatment
failures and thereby improve patient outcomes.
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By applying a soil DNA isolation kit to stool and using the
Mtb insertion sequence 6110 (IS6110),28 we report an im-
proved LOD of a PCR diagnostic test for TB. We tested this
novel method using clinical samples from adults and children
with culture-confirmed and clinically diagnosed TB and
asymptomatic healthy child household contacts (age < 15
years) who were enrolled in a concurrent immunology study.

METHODS

Stool-spiking study. Stool from a healthy, asymptomatic,
QuantiFERON TBGold–negative, noninfected control subject
was spiked with serial 10-log dilutions of strain H37Rv,
HN3465, and HN3522 Mtb in a certified BSL-3 facility. My-
cobacterium tuberculosis strains were grown at 37�Cwith 5%
CO2 in Middlebrook 7H9 liquid media that had reached log-
phase growth. The quantification of Mycobacteria was de-
termined by spectrometry (Thermo Scientific Genesys 10S;
Thermo Scientific, Waltham, MA) with an optical density of 1
equating to 3 × 108 CFU/mL as established by an in-house
reference standard. Each dilution of H37Rv Mtb was spiked
into six separate stool samples. Mycobacterium tuberculosis
strains HN3465 and HN3522 were spiked into three separate
stool samples per dilution. DNA was isolated and quantitative
PCR (qPCR) was performed with quantification of DNA.
Study setting and population.BetweenOctober 2014 and

May 2017, participants were consecutively enrolled from the
Baylor-Swaziland Children’s Foundation TB Clinical Center of
Excellence in Mbabane, Swaziland (Figure 1). As part of an
ongoing immunology study, participants were enrolled up to
6weeks after initiating ATT. Individualswith clinical symptoms
(e.g., fever, lethargy, and cough) and signs (e.g., wheezing,
rales, failure to gain weight, and radiographic findings) con-
sistent with TB were evaluated by a clinician and categorized
in accordance with internationally accepted case definitions
for research.29 Depending on age, pulmonary TB evaluation

included expectorated or induced sputum for adults and older
children and induced sputum with nasopharyngeal aspiration
or gastric lavage for young children. Radiographic findings
were documented at baseline and repeated on follow-up if
clinically warranted. Based on a combination of clinical his-
tory, exposure to a known TB contact, and radiographic
findings, a clinician diagnosed clinical TB and recommended
ATT. Diagnosis and treatment decisions were made irre-
spective of a negative Xpert result and before culture results
were available. Individuals were excluded from participation if
they had received ATT in the past year or if unable to provide
consent. The participants were followed prospectively for a
minimum of 6 months after ATT initiation with repeat stool
collected at 2 months. Asymptomatic, household contacts of
microbiologically confirmed pulmonary TB patients were en-
rolled to test specificity.
Sample collection and processing. Participants provided

both stool and respiratory samples. Fecal samples were col-
lected and within 12 hours, stored without preservatives in
a −80�C freezer until batch DNA isolation was performed in
Mbabane, Swaziland, as previously described.30 In brief,
50 mg of stool was processed using the MP Fast DNA kit for
soil (MP Biochemicals, Solon, OH) with a 6-minute homoge-
nization via bead-beating disruption on the SI-D238 Disruptor
Genie (Scientific Industries, Inc., Bohemia, NY) and with
100 μL final volume used to elute DNA. Based on Swaziland
National Guidelines, the first respiratory sample was analyzed
by Xpert and a second respiratory sample was sent for culture
at a later date if the Xpert was positive or if a clinician made a
clinical diagnosis of TB despite a negative Xpert. In children,
because of difficulty collecting samples, often the respiratory
culture was obtained at a later date. Sputum and gastric la-
vage samples were processed for Xpert as previously de-
scribed.31 Sputum was collected at time of diagnosis and
before ATT initiation, whereas stool was collected at time of
study enrollment.

FIGURE 1. Cohort enrollment. TB = tuberculosis; PCR = polymerase chain reaction.
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Quantitative PCR (qPCR). Mycobacterium tuberculosis–
specific primers and black hole quencher Fluorescein
amidite–labeled minor groove binder probes were selected
from previously described Mtb-specific sequences (Table 1)
(Integrated DNA Technologies, Coralville, IA). Prior research
has demonstrated that this sequence has no cross-reactivity
to 35 different nontuberculous mycobacterial strains.28 In this
study, spiked, Mycobacterium avium, and Mycobacterium
marinum (a kind gift from Dr. Jeffrey Cirillo) DNA were used to
confirm the Mtb specificity. Primers were designed using
Primer Express Software (Applied Biosytems, Foster City, CA)
using IS6110 and purchased from Integrated DNA Technol-
ogies. Quantitative PCRwas performed using aQuantStudio3
Real-time PCR System (Thermo Fischer, Waltham, MA) using
fast chemistry, 40 cycles of 95�C for 3 seconds and 60�C for
30 seconds. Each assay was performed using a total volume
of 7 μL consisting of 2 μL of isolated DNA, 900 nM of each
primer, 250 nM probe, and 3.5 μL of TaqMan Advanced Fast
MasterMix 2X (Applied Biosystems, Foster City, CA). DNA
isolated fromH37RvMtbwas logarithmically serially diluted to
create a 7-point standard curveperformed in triplicate for each
plate. The quantitative value, in femtogram per microliters,
was determined by comparing the cycle threshold (Ct) value of
unknown samples with this 7-point standard curve. ACt value
of 38 was set as the cutoff point for positivity based on the
known LOD from our H37Rv DNA standards. Quantitative
PCR performed on isolated DNA from clinical samples were
run in adjacent duplicate wells. If the two wells were discor-
dant, the sampleswereagain tested induplicatewith the result
considered negative if repeat testing remained discordant.
The samples were also repeatedly tested if discordant or du-
plicate results had a Ct difference more than 30%. All plates
contained a “No Template Control” consisting of master mix
and PCR-grade water as a negative control. Individuals
implementing and analyzing qPCR results were blind to Xpert
and culture results.
Statistical analysis. Statistical analysis was performed

using Prism version 6.0 (GraphPad, LaJolla, CA). Correlation
of Mtb-spiked stool with quantified DNA was evaluated us-
ing Pearson correlation coefficient. Spearman’s rank corre-
lation was used to evaluate the relationship between time
on ATT and quantity of isolated DNA. Wilcoxon matched
signed-rank test was used to evaluate an individual’s pair-
matched Mtb DNA levels before and after ATT initiation.
Fisher’s exact test (two tailed) was performed to evaluate
detection ofMtb from stool PCR compared with culture and
Gene Xpert.
Ethics Statement. The Baylor-Swaziland Children’s Foun-

dation, Baylor College of Medicine Institutional Review Board,
and the Swaziland Scientific and Ethics Council approved this
study. All participants underwent written informed consent in
compliance with the guidelines for the Protection of Human
Subjects and the Declaration of Helsinki.

RESULTS

Limit of detection in stool. To evaluate the LOD of the
qPCR assay in stool, H37Rv Mtb was spiked into 50 mg of
healthy control stool and theDNAsubsequently isolated using
the MP Fast kits.30 The quantity of Mtb, as determined by
spectrometer, obtained from spiking 106–10−4 CFU of Mtb
into 50 mg of healthy stool had a high correlation with known
femtogram per microliters quantities of control H37Rv DNA
(Figure 2A; Pearson’s r = 0.998; 95% confidence interval [CI]:
0.9961–0.9992; P < 0.0001). When 1 CFU of H37Rv Mtb was
spiked into 50mgof stool, the assay detectedMtb in five of six
occurrences. Ten colony-forming units spiked into 50 mg of
stool were detected four of six times, whereas 100–100,000
CFUofH37Rvweredetected sixof six times (Figure 2B).When
0.1 and 0.01 CFU was spiked into 50 mg of stool, the assay
detected Mtb one of six times, whereas zero of six was de-
tected when 0.0001 CFU was spiked into 50 mg of stool. By
logistic regression, there was a 95% probability of detecting
H37Rv Mtb in spiked stool in samples containing at least 96
CFU/50 mg of stool (Figure 2B; 95% CI: 84.87–105.6).
IS6110, although specific to theMtb complex, can be found

in up to 25 copies per strain with H37Rv having 16 copies.28

We, therefore, tested two clinical strains (HN3465 and
HN3522) of Mtb that contain seven and 11 copies, re-
spectively, with similar correlation (Figure 2A). There was no
cross-reactivity when the assay was performed withM. avium
or M. marinum DNA. In previous experiments, there was no
amplification of the IS6110 sequence when evaluated against
84 samples of 35 non-tuberculosis mycobacteria strains.28

Clinical validation. To evaluate the assay’s performance in
clinical samples,wecompared resultsofqPCRofMtb fromstool
against results from the Xpert and culture of sputum or gastric
lavage samples.Within 6 weeks of ATT initiation, 107 adults and
38 children (less than 15 years of age) were consecutively en-
rolled and provided stool (Figure 1). Forty-six individuals (19
adults and 27 children) had probable TB (Table 2), as defined by
consensus definitions and clinical guidelines,1,29 and initiated
ATT without Xpert or culture confirmation. Sixty-six percent (96/
145) were HIV-infected with 67% (98/145) having TB microbio-
logically confirmed either by Xpert and/or culture.
To evaluate the method’s diagnostic utility, in adults and

children, the stool qPCR result was compared with the di-
agnostic reference standard of sputum culture. Stool was
collected as part of an immunology study and was, therefore,
collected a median of 4 days (interquartile range: 0–14 days)
after ATT initiation. Among individuals with a positive culture
who provided stool within 72 hours of ATT initiation, the di-
agnostic yield from stool qPCR was 22/23 comparable to 19/
23 for sputum Xpert (Fisher’s exact P = 0.34). In culture-
positive individuals in whom the stool was collected greater
than 72 hours since ATT initiation (obtained at a median of
4 days; interquartile 1–interquartile 3 0–14 days after ATT ini-
tiation), stool qPCRyielddetected47/57 comparedwith 52/57
for sputum Xpert (Fisher’s exact P = 0.26). Of note, sputum for
Xpert was collected before ATT. In comparison, smear AFB
microscopy was positive in 34 of 92 culture-positive samples.
Supplemental Tables 1 and 2 and Supplemental Figure 1 depict
the performance of sputum AFB smear with stool Mtb
microscopy.
There were 47 individuals (19 adults and 28 children) with

clinically diagnosed TB. Sputum Xpert was performed on

TABLE 1
Sequence of the primers and probe

FWR primer CCTGAAAGACGTTATCCACCATAC
RVS primer CGGCTAGTGCATTGTCATAGGAG
FAM/ZEN probe TCTCAGTAC/ZEN/ACATCGATCC

GGTTCAGC
FAM = fluorescein amidite; FWR = forward; RVS = reverse.
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all 47, and in 37 individuals, a second specimen was able
to be collected for culture. Stool qPCR was positive in 6/47
(12%) individuals with negative sputum Xpert (Fisher’s
exact, P = 0.02) and in 3/37 (8%) individuals with nega-
tive sputum Xpert and negative culture (Fisher’s exact,
P = 0.23).
Stool qPCR was also performed for 105 asymptomatic,

non-diseased individuals with recent (< 6 months) household
TB contact. Of these, two contacts were positive for Mtb, in-
dicating a specificity of 98.2 (95% CI: 93.8–99.7%).
Participants were longitudinally evaluated with comparison

of baseline and 2-month follow-up stool qPCR results. Of 73
participantswith stool-positive qPCRat baseline, 83% (60/73)
provided stool at the 2-month study follow-up (four deceased,
one too sick to provide stool, and eight lost to follow-up or
transferred to another facility). Individual levels of Mtb DNA
significantly declined following initiation of ATT (Figure 3;
median difference: 319 fg/μL of DNA, P < 0.0001 Wilcoxon
signed-rank test). Among individuals with treatment failure or
drug resistance, four of nine (44%) had persistent stool qPCR
at 2 months compared with 22 of 119 (18%) with cure or
treatment completion (relative risk [RR] 2.8 CI: 1.2–6.5, P =
0.012; Figure 3). In comparison, AFB smear status at 2months
was positive in three of 12 (25%) individuals with treatment
failureordrug resistance, comparedwithoneof 78withcureor
treatment completion (RR 15.8; CI: 1.7–141.8; P = 0.013).
Sputum AFB smear and stool Mtb PCR had complementary
value with AFB smear detecting two positive follow-up sam-
ples not detected by stool PCR, whereas stool PCR detected
five follow-up–positive cases that were not detected by AFB
smear (Supplemental Table 2). In 52 individuals with micro-
biologically confirmed TB and baseline-negative AFB smear,
stool PCR was detected in 31, a 59% increased yield of

individuals who would have lacked a test of treatment moni-
toring (Supplemental Figure 1).
Stool Mtb DNA detection levels did not vary by HIV in-

fection status (Kruskal–Wallis test, P value = 0.493; Figure 4)
and were not correlated with CD4 counts (Spearman
r = −0.08 P = 0.65). After controlling for time on ATT, the
quantity of Mtb DNA detected in stool was similar for indi-
viduals with and without HIV infection (Mann–Whitney test,
P value 0.527, two tailed).

DISCUSSION

The success of Xpert has driven WHO’s rapid rollout of the
technology to replace AFB smear microscopy as the initial
diagnostic test of choice.32 Despite these significant ad-
vances, aspects of TB diagnosis remain challenging as Xpert
fails to detect a third of smear-negative, culture-positive adult
TB and is positive in only 2% of culture-negative, clinically
diagnosed childhood TB.9 Furthermore, sputum is challeng-
ing to obtain in young children in resource-limited settings and
often inadequate in children and HIV-infected adults with
paucibacillary disease, limiting the use of traditional sputum-
based diagnostics.
By adapting a DNA isolation method originally designed for

soil and modified to increase the yield of GI parasite de-
tection,30 we have refined a qPCRmethod that affords a stool
Mtb LOD of 105 CFU/50 mg of stool. These spiking study
results were validated in our clinical cohort showing similar
and complementary diagnostic yield among stool samples
and respiratory samples collected at similar time points. Ad-
dition of this method improved bacteriologic confirmation by
8% in Xpert-negative, culture-negative individuals with a
clinical diagnosis of TB. The mycobacteriology marker,

FIGURE 2. Quantity of Mycobacterium tuberculosis (Mtb) DNA detected by polymerase chain reaction (PCR) correlates with known colony-
forming units (CFUs) of Mtb. Stool from a healthy control without tuberculosis was spiked with 10-fold dilutions of H37Rv Mtb (N = 6 per
concentration,N = 60 total). (A) Stool DNAwas isolated andMtb qPCR quantified (Pearson’s r = 0.998,P value < 0.0001). (B) The percent of assays that
detectedMtbwas plotted for each concentration. Using logistic regression, there was a 95%probability of detectingMtb in samples containing at least
95.24 CFU/50 mg of stool (95% confidence interval [CI]: 84.87–105.6) (95% CI shown in pink). This figure appears in color at www.ajtmh.org.
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IS6110, has demonstrated good specificity with regard to
NTM species in our data and others’ data.28,33 This is con-
firmed in our cohort, with a specificity of 98% among
asymptomatic household contacts of TB cases. Although
HIV-associated TB is often described as paucibacillary, nei-
ther the CD4+ count nor HIV status impacted the burden of
Mtb found in stool (Figure 4). This preliminarily suggests that
despite HIV-associated TB being characterized by pauciba-
cillary sputum, theMtb burden, as quantified by stool,may not
be lower in HIV-infected individuals compared with HIV-
uninfected individuals. Larger studies should, therefore,
evaluate if quantitative stool Mtb DNA monitoring has

improved treatment monitoring capacity compared with
sputum-based techniques.
Currently, TB treatment monitoring is evaluated by AFB

sputum smear microscopy, precluding the ability to monitor
treatment among smear-negative individuals. Here, we
show a quantitative measure of Mtb burden that, at
2 months, correlated with treatment outcome or drug re-
sistance status. Recent evidence suggests that a decrease
in sputum Mtb DNA burden at 1 week reliably predicts
conversion to culture negativity.27 Despite the modest size
of this pilot study and relatively late follow-up measure at
2 months, our method shows promise to detect individuals

FIGURE3. Mycobacteriumtuberculosis (Mtb) burdendecreasesduringantituberculosis treatment (ATT). Individualswith tuberculosisprovidedstool
samples at time of enrollment and again at the 2-month follow-up visit. (A) In most participants with treatment success, quantifiedMtb polymerase
chain reaction (PCR) onpaired samples demonstrated adecrease in time asATT increases (inverse correlation). (B) Individualswith treatment failure or
drug resistance had an increased risk of persistent stoolMtbPCRat 2months (relative risk 2.8 confidence interval: 1.2–6.5P = 0.012). Rx = treatment.

TABLE 2
Cohort characteristics and test performance

Micro-confirmed TB (N = 98) Probable TB (N = 47) Asymptomatic household contacts (N = 105)

Age (median and IQR) 30 (21–37) 9 (4–31) 7 (4–11)
Gender (%F) 53/98 (54%) 26/47 (55%) 65%
HIV status (%+) 65/98 (66%) 31/47 (65%) 22%
Median CD4 count (IQR) 114 (31–324) 152 (31–378) 1,030 (603–1,195)
Sputum Xpert results 93/98 (94%) 0/33 (0%) NA
Sputum culture results* 57/73 (78%) 0/21 (0%) NA
Median time stool collected after ATT
initiation in days (IQR)

6 (1–14) 1 (0–13) NA

Stool PCR results 67/98 (68%) 6/47 (12%) 2/105 (1.9%)

Adults

Micro-confirmed TB (N = 87) Probable TB (N = 19)

Age (median) 32 (25–41) 32 (25–41)
HIV status (%+) 60/87 (68%) 18/19 (94%)
Median CD4 count (IQR) 116 (30–323) 115 (29–320)
Sputum Xpert results 82/87 (94%) 0/19 (0%)
Sputum culture results* 50/65 (77%) 0/14 (0%)
Median time stool collected after ATT
initiation in days

5 (0–14) 6 (1–14)

Stool PCR results 61/87 (70%) 4/19 (21%)

Children

Micro-confirmed TB (N = 10) Probable TB (N = 28)

Age (median and IQR) 7 (3–10) 6 (2–9)
HIV status (%+) 5/10 (50%) 15/27 (55%)
Median CD4 count (IQR) 181 (28–543) 214 (27–598)
Sputum Xpert results 10/10 (100%) 0/27 (0%)
Sputum culture results* 6/7 (87%) 0/23 (0%)
Median time stool collected after ATT
initiation in days

1 (0–14) 1 (1–13)

Stool PCR results 5/10 (50%) 2/27 (7%)
ATT = antituberculosis treatment; PCR = polymerase chain reaction; TB = tuberculosis.
* According to National Guidelines, respiratory samples for culture are sent only if Xpert is positive or an individual is started on ATT. Therefore, the samples are not sent at the same time.
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at increased risk of treatment failure. Earlier application of
thismethod could afford a powerful prognostic tool to detect
treatment failure.
Collection of GI tract samples to diagnose TB is a long-

standing practice with the first report of gastric lavage de-
scribed in 1898.34 As physiologic mucociliary escalator
function empties respiratory secretions into the GI system,
multiple studies have evaluated the ability of stool to diagnose
TB. Using manual mixing,35 centrifugation,19 or a sugar flo-
tation method,16,20,22 diagnostic yield of stool using in-house
PCR or Xpert have yielded variable results. In contrast, our
method uses mechanical homogenization, DNA isolation and
purification, and adapted Mtb-specific primers and probes
with a resultant improved LOD compared with previous stool
methods.22 Except for the BSL-3 spiking studies, all Xpert,
DNA extraction, and qPCR were performed in Mbabane,
Swaziland, in a peripheral laboratory adjoining a HIV primary
care clinic, demonstrating feasibility in a resource-constrained
environment. Consistent with WHO guidelines for processing
sputum, special care was given in our BSL-2 laboratory to
avoid aerosolization.
Although these preliminary results are promising, there are

several inherent limitations of this evaluation. Despite the im-
provement in the LOD, these methods are laborious, and
transition to a test with widespread clinical feasibility will re-
quire a conversion to point-of-caremethods. Furthermore, the
clinical cohort was from an immunology study and stool
sampleswere collected amedian of 6 days after ATT initiation.
Similarly, the stool was not collected at the same time as the
respiratory sample evaluated by Xpert. In addition, there are
some rare Mtb strains that lack the IS6110 region and,
therefore, would test negative by this method.36 Finally, mul-
tiple studies have shown increased diagnostic yield of culture
with additional sputum samples sent. This study had a real
world approach sending a single stool and single sputum for
Xpert and culture. Future studies should evaluate the addi-
tional yield ofmultiple stools in comparison tomultiple sputum
Xperts and culture tests.
In summary, we show that coupled with improved DNA

extraction, stoolMtb qPCR has a LOD comparable to culture

and increased diagnostic yieldwhen usedas an add-on test to
existing sputum examinations. In addition to diagnostic po-
tential, the quantitative nature of this method may afford
detection of treatment failure earlier than sputum smear mi-
croscopy. As highlighted by the widespread rollout of Gene
Xpert, PCR capacity is becoming more available to peripheral
health-care systems. This method’s diagnostic advantages,
useof aneasily attained specimen, andeaseof application in a
peripheral laboratory lacking specialized equipment collec-
tively suggest promise to improve TBdiagnosis and treatment
among at risk populations in TB high-burden settings.
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