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Abstract

Background: Accurate survival stratification in early-stage non–small cell lung cancer (NSCLC) could inform the 
use of adjuvant therapy. We developed a clinically implementable mortality risk score incorporating distinct tumor 
microenvironmental gene expression signatures and clinical variables.

Methods: Gene expression profiles from 1106 nonsquamous NSCLCs were used for generation and internal validation of 
a nine-gene molecular prognostic index (MPI). A quantitative polymerase chain reaction (qPCR) assay was developed and 
validated on an independent cohort of formalin-fixed paraffin-embedded (FFPE) tissues (n = 98). A prognostic score using 
clinical variables was generated using Surveillance, Epidemiology, and End Results data and combined with the MPI. All 
statistical tests for survival were two-sided.

Results: The MPI stratified stage I patients into prognostic categories in three microarray and one FFPE qPCR validation 
cohorts (HR = 2.99, 95% CI = 1.55 to 5.76, P < .001 in stage IA patients of the largest microarray validation cohort; HR = 3.95, 
95% CI = 1.24 to 12.64, P = .01 in stage IA of the qPCR cohort). Prognostic genes were expressed in distinct tumor cell 
subpopulations, and genes implicated in proliferation and stem cells portended poor outcomes, while genes involved 
in normal lung differentiation and immune infiltration were associated with superior survival. Integrating the MPI with 
clinical variables conferred greatest prognostic power (HR = 3.43, 95% CI = 2.18 to 5.39, P < .001 in stage I patients of the 
largest microarray cohort; HR = 3.99, 95% CI = 1.67 to 9.56, P < .001 in stage I patients of the qPCR cohort). Finally, the MPI 
was prognostic irrespective of somatic alterations in EGFR, KRAS, TP53, and ALK.
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Conclusion: The MPI incorporates genes expressed in the tumor and its microenvironment and can be implemented 
clinically using qPCR assays on FFPE tissues. A composite model integrating the MPI with clinical variables provides the 
most accurate risk stratification.

Lung cancer is the leading global cause of cancer death, and non–
small cell lung cancer (NSCLC) accounts for approximately 85% of 
all lung cancers (1). Even when diagnosed in early stages, surgical 
resection cures only approximately 60% of patients, with the pre-
dominant mode of failure being distant recurrence (2,3). Currently, 
most patients with stage I NSCLC do not receive adjuvant sys-
temic treatment after local therapy because several randomized 
studies have failed to show a benefit in unselected patients (4–6). 
Adjuvant treatment would ideally be administered to groups at 
highest risk of disease recurrence and death (5). While a variety of 
clinical (7–9), pathological (10–13), and molecular/biological (14–
19) features have been proposed for risk stratification, no method 
has been incorporated into routine clinical practice.

Gene expression profiles have been shown to provide prognos-
tic information in a variety of cancers (20–22). Successful appli-
cations of expression profiling have yielded clinical tools with 
potential value for oncologists, for example for breast cancer 
(23,24), colon cancer (25,26), prostate cancer (27), and non-Hodg-
kin’s lymphoma (21,28). Various studies have proposed tools for 
prognostication in early-stage NSCLC (16–18). However, efforts to 
translate gene expression–based methods into clinical use have 
met a number of pitfalls, including overfitting, lack of sufficient 
validation, interpatient histological heterogeneity, intratumoral 
heterogeneity, and lack of accounting for existing clinical variables 
(17,18). The use of expression profiles to identify high-risk groups 
has proven especially challenging within stage I NSCLC (17).

An influx of publicly available expression profiles of lung 
cancer tissues has accelerated biomarker identification and 
validation (17,29,30). Integration across studies can identify 
robust pan-cancer and cancer-specific prognostic expression 

markers and identify cell subsets influencing outcomes (31). 
Here, we pooled multiple datasets to derive a molecular prog-
nostic index (MPI) for stage I nonsquamous NSCLC that reflects 
multiple distinct aspects of tumor heterogeneity, including the 
tumor microenvironment. To facilitate clinical implementation, 
we developed and validated a quantitative real-time polymer-
ase chain reaction (qPCR) assay readily applicable to routinely 
obtained formalin-fixed, paraffin-embedded (FFPE) tumor speci-
mens. We integrated the MPI with clinical and pathological 
variables to determine a composite risk model (CRM), enabling 
individualized risk prediction that leverages both molecular and 
clinical characteristics.

Methods

Patients

Four cohorts of nonsquamous NSCLC patients were included: a 
cohort of merged, publicly available tumor gene expression pro-
files; a cohort of archived FFPE tumor specimens; a cohort with 
fresh tumor samples for cell sorting and whole transcriptome 
sequencing; and a Surveillance, Epidemiology, and End Results 
(SEER) database cohort. All aspects of this study were institu-
tional review board approved prior to its initiation in accordance 
with the Declaration of Helsinki guidelines for the ethical con-
duct of research. All patients gave written, informed consent. 
Our study followed the Institute of Medicine report on transla-
tional omics and the Reporting Recommendations for Tumour 
Marker Prognostic Studies (REMARK) checklist (Supplementary 
Table 1, available online) (32,33).

Table 1. Clinical features of the cohorts of NSCLC patients included for training, testing, and validation of the molecular prognostic index

Variable

Meta-cohort
microarray
training set

No. (%)

Meta-cohort
microarray

validation set
No. (%)

GSE50081 microarray 
validation set

No. (%)

GSE30219 microarray 
validation set

No. (%)

qPCR
validation set

No. (%)

Tissue type Fresh/frozen Fresh/frozen Fresh/frozen Fresh/frozen FFPE
Platform Microarrays Microarrays Microarrays Microarrays qPCR
No. of samples 563 543 138 216 98
Median age, y (range) 63 (22–87) 62 (34–88) 70 (40–86) 61 (15–84) 71 (44–87)
Male 261 (49.4) 259 (51.5) 73 (52.9) 181 (83.8) 34 (34.7)
Female 267 (50.6) 244 (49.5) 65 (47.1) 35 (16.2) 64 (65.3)
Stage IA 169 (34.7) 175 (37.1) 40 (28.9) 106 (49.8) 63 (64.3)
Stage IB 188 (38.7) 166 (35.2) 60 (43.5) 34 (16.0) 23 (23.5)
Stage IIA 21 (4.3) 15 (3.2) 7 (5.1) 9 (4.2) 7 (7.1)
Stage IIB 51 (10.5) 61 (12.9) 31 (22.5) 19 (8.9) 5 (5.1)
Stage IIIA 43 (8.8) 40 (8.5) 0 27 (12.7) 0
Stage IIIB 9 (1.9) 10 (2.1) 0 12 (5.6) 0
Stage IV 5 (1.0) 5 (1.1) 0 6 (2.8) 0
Current smoker 35 (11.5) 33 (10.4) 42 (33.6) 134 (46.7) -
Ever smoker* 52 (17.1) 59 (18.7) - - -
Former smoker 135 (44.4) 141 (44.6) 60 (48.0) 128 (44.6) -
Never smoker 82 (27.0) 83 (26.3) 23 (18.4) 25 (8.7) -
Median follow-up, mo (range) 49 (1.5–169) 51 (1.3–204) 52 (1–131) 43 (0.2–112) 44 (0.1–176)
No. of deaths 191 182 58 138 33

* Patients who have smoked in the past, but whose current smoking status is unknown. FFPE = formalin-fixed, paraffin-embedded; NSCLC = non–small cell lung 

cancer; qPCR = quantitative polymerase chain reaction.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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Lung Cancer Gene Expression Datasets

We identified seven datasets (Supplementary Table 2, available 
online) comprising gene expression profiles of NSCLC patients 
for which survival data were annotated, from the Prediction 
of Clinical Outcomes from Genomics (PRECOG) database (31). 
Measurements from different platforms were combined into 
one meta-cohort (n = 1106) for analysis using the correlation 
structure of the underlying microarray data for normaliza-
tion and standardization (Supplementary Methods, available 
online; deposited in Gene Expression Omnibus under acces-
sion GSE67639 with clinical annotations) and split into train-
ing/validation sets balanced for size and risk profiles (Table 1). 
Data were obtained from two additional external microarray 

cohorts not included in the meta-cohort (GSE30219, GSE50081) 
(Table 1) (34,35). Mutational statuses of ALK, KRAS, EGFR, and 
TP53 were obtained from the original studies where available.

Statistical Analysis

All statistical tests performed were two-sided, except for hypergeo-
metric tests (one-sided), with P values under .05 as the threshold 
for significance, unless otherwise stated. Statistical significance of 
correlations was assessed by Pearson test. Detailed data preproc-
essing steps are described in the Supplementary Methods (availa-
ble online). Prognostic genes were identified using Cox proportional 
hazards regression, and those with P values under .01 (likelihood  
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Figure 1. Identification and selection of prognostic genes from nonsquamous non–small cell lung cancer (NSCLC) gene expression datasets. A) Schematic representa-

tion of the study design for prognostic gene discovery and validation. B) Clustering of the top 1012 prognostic genes (rows) in the training set of 563 patients (columns) 

by AutoSOME (36) revealed four dominant clusters comprising 71% (n = 716) of the genes; statistically significant cluster annotations are indicated in Supplementary 

Table 4 (available online). The heatmap reflects relative mRNA expression levels. The number of genes in each cluster is indicated (white text within colored bars to 
left), with univariate estimates of prognostic value for each gene depicted as likelihood ratio P values from Cox regression in the training set on the right of the panel. 
C) Kaplan-Meier survival analysis in the microarray training set; cases were split into “high” and “low” sets according the median of the integrated expression of the 

genes in each of the four largest clusters from (B). The top five most robustly prognostic genes are indicated below each cluster. P values in KM plots are from log-rank 

test (two-sided). NSCLC = non–small cell lung cancer; qPCR = quantitative polymerase chain reaction; SEER = Surveillance, Epidemiology, and End Results.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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Figure 2. Construction of a molecular prognostic index (MPI) based on nine genes expressed in distinct non–small cell lung cancer (NSCLC) tumor subpopulations 

allows survival stratification independently of clinical risk factors. A) Univariate prognostic value for each of the nine most statistically significantly prognostic 

genes in the microarray training set, and corresponding weightings in a linear model used to calculate the MPI risk score. Color codes reflect cluster membership as 

designated in Figure 1. B-D) Whole transcriptome sequencing (RNA-Seq) of sorted lung adenocarcinoma cell populations representing epithelial cells (EpCAM+CD45-

CD31-), immune cells (CD45+), endothelial cells (CD31+CD45-), and stromal cells (CD10+CD45-CD31-EpCAM-). Expression levels (fragments per kilobase of exon 

per million fragments mapped [FPKM]) are shown for the distinct cell populations. B) Average FPKM of the nine genes comprising the MPI (n = 4 tumors; error 
bars = standard deviation). C) Average FPKM of genes in each cluster. D) Tumor epithelial cells and infiltrating immune cells account for most of the total expression 

for the MPI genes. The average fraction of the total gene expression within NSCLC tumors (n = 4) that is contributed by each of the sorted cell types is shown. E) 
Univariate prognostic value of the MPI is depicted as the hazard ratio (HR ± 95% confidence interval) for death in the meta-cohort microarray validation set within 

each of the indicated categories of age, sex, stage, differentiation (grade), and smoking status. The MPI was dichotomized relative to its median value in the training 

set to define ‘high’ vs ‘low’ risk and applied to the meta-cohort microarray validation set for the forest plot (two-sided log-rank test). FFKM = fragments per kilobase 

of exon per million fragments mapped; MPI = molecular prognostic index.
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ratio test) were assessed for robustness by resampling the data 
1000 times. Deviations from the proportional hazards assumption 
were examined using the cox.zph function in R. Gene expression 
data for prognostic genes in the training set were clustered using 
AutoSOME (36). Cluster memberships were assessed for enrich-
ment of gene sets by hypergeometric test with an empirical  false 
discovery rate correction for multiple hypothesis testing. The top 
five prognostic genes from each of four large clusters were inte-
grated into a molecular prognostic index (MPI). A prognostic model 
based on age, sex, and stage was fit to SEER data (Supplementary 
Methods, available online). A  composite risk model (CRM) score 
was defined as the combination of these indicators weighted by 
their coefficient in the multivariable Cox model. The relative prog-
nostic value of models was compared using Net Reclassification 
Improvement (NRI) and Integrated Discrimination Improvement 
(IDI) (37,38). Receiver operating characteristic curves were pro-
duced using the survivalROC package (39).

Cell Sorting, Whole Transcriptome Sequencing, 
and PCR

Fresh human lung tumor samples (n = 4) were dissociated into 
single-cell suspensions for flow cytometry analysis and cell sort-
ing. Total RNA extracted from sorted cell populations was reverse 
transcribed, amplified, and used to construct DNA libraries for 
sequencing. Additional details are provided in the Supplementary 
Methods (available online). RNA was purified from lung tumor tis-
sue obtained from FFPE blocks (n = 98). Synthesis of cDNA was 
performed from 1 µg of total RNA using the High Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Foster City, CA), 
and qPCR was performed using TaqMan Gene Expression Assays 
(Applied Biosystems) (Supplementary Table  3, available online). 
Relative gene expression was determined by the ∆∆Ct method (40).

Results

We assembled a compendium of nonsquamous lung NSCLC 
datasets from the literature, combining them into a meta-cohort 
containing 1106 patients (Figure 1A). We investigated the impact 
of training set size on prognostic power for two genes, SLC2A1 
and LAMC2, which have been identified as prognostic in lung 
cancer previously (41,42). Three hundred fifty to 400 patients 
were required for reliable assessment of prognostic power 

(Supplementary Figure 1, available online). Accordingly, we split 
the meta-cohort into training (n = 563) and validation (n = 543) 
sets balanced for clinical risk (Table 1). We then identified 1012 
genes whose expression was associated (P < .01) with survival in 
the training set. We included all stages of NSCLC because molec-
ular determinants of outcome are likely shared across stages.

Identification and Functional Annotation of 
Prognostic Genes

NSCLC tumor specimens contain multiple cell types including 
malignant epithelial cells, stromal mesenchymal, endothelial, and 
infiltrating leukocytes (Supplementary Figure  2, available online). 
Because individual prognostic genes might reflect distinct pro-
cesses related to this complex tumor microenvironment, we clus-
tered the gene expression profiles of the 1012 prognostic genes 
within the training cohort (Figure 1B). The four largest clusters were 
enriched for genes reflecting: 1) proliferation, 2) normal lung epithe-
lial differentiation and luminal cell fate, 3) basal epithelial and stem 
cell fate, and 4) immune-related functions. Kaplan-Meier analysis 
based on the average expression levels of genes in these clusters 
revealed statistically significant patterns of favorable (Clusters 2 
and 4) and adverse (Clusters 1 and 3) association (Figure 1C).

We compared the four clusters to gene sets to assess enrich-
ment of biological processes and pathways (Supplementary 
Table 4, available online). Cluster 1 contained proliferation/cell 
cycle–related genes and was enriched for genes expressed in 
embryonic stem cells relative to differentiated cell types (43) and 
genes highly expressed in poorly differentiated cancer histolo-
gies (44). Conversely, Cluster 2 shared genes expressed highly in 
differentiated cancer subtypes and in tracheal luminal cells (45). 
Its expression was inversely associated with smoking history (P 
< .001, Fisher’s exact test; data not shown). Cluster 3 contained 
genes highly expressed in airway basal stem cells and genes pre-
viously found to distinguish basal-like from luminal-like breast 
tumors (46). Cluster 4 strongly overlapped with signature genes 
of immune effector cells and genes expressed in lymph nodes.

A Nine-Gene Molecular Prognostic Index for 
Nonsquamous NSCLC

Traditional feature selection of prognostic genes may result in a 
model based on a single aspect of tumor biology (eg, proliferation) 

Table 2. Univariate and multivariable analysis of molecular, clinical, and composite scores in validation cohorts

Variable

Meta-cohort microarray
validation set qPCR validation set

HR (95% CI) P* HR (95% CI) P*

Univariate
 MPI (stage I only) 1.02 (1.01 to 1.03) <.001 1.02 (1.00 to 1.03) .03
 CPI (age, stage, sex) 3.04 (2.32 to 3.97) <.001 4.24 (2.15 to 8.36) <.001
Multivariate (all stages)
 MPI 1.02 (1.01 to 1.03) <.001 1.02 (1.00 to 1.03) .009
 CPI (age, stage, sex) 2.72 (2.07 to 3.57) <.001 4.12 (2.12 to 8.00) <.001
CRM (all stages) 2.43 (2.05 to 2.88) <.001 2.93 (1.84 to 4.66) <.001
CRM (high vs low, all stages) 3.49 (2.50 to 4.88) <.001 4.16 (1.86 to 9.27) <.001
CRM (stage I) 2.40 (1.79 to 3.22) <.001 3.15 (1.72 to 5.77) <.001
CRM (high vs low, stage I) 3.43 (2.18 to 5.39) <.001 3.99 (1.67 to 9.56) <.001
CRM (stage IA) 2.86 (1.69 to 4.82) <.001 4.76 (1.89 to 12.01) <.001
CRM (high vs low, stage IA) 3.16 (1.54 to 6.49) <.001 3.84 (1.28 to 11.47) .009

* Two-sided likelihood-ratio test. CI = confidence interval; CPI = clinical prognostic index; CRM = composite risk model; HR = hazard ratio; MPI = molecular prognostic 

index; qPCR = quantitative polymerase chain reaction.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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that does not reflect other important tumor features that impact 
survival. To combat this, we built a molecular prognostic index 
that incorporates distinct biological themes. We selected the 
most statistically significant prognostic genes from the four 
biologically defined clusters above using a penalized regression 

approach to assess prognostic value and robustness (47). The 
resulting model (Figure  2A) comprised nine genes, includ-
ing four whose expression was associated with adverse risk—
MAD2L1 (mitotic arrest deficient 2–like 1), GINS1 (GINS complex 
subunit 1), SLC2A1 (solute carrier family 2 facilitated glucose 
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Figure  3. A nine-gene expression-based molecular prognostic index (MPI) predicts risk of death in stage I  nonsquamous non–small cell lung cancer (NSCLC). A) 
Distribution of the MPI and its relationship to survival in the training set, with survival modeled as a continuous function of the score. Scores for individual patients 

are depicted as a “rung” above the x-axis for the meta-cohort microarray training and test sets. Sigmoidal lines depict mean mortality rates (darker green, blue, and 
red lines) and corresponding 95% confidence interval (lighter colored lines), based on Kaplan-Meier estimates of one, two, and five years, respectively. Dichotomous 

patient stratification of the MPI relative to the training set (median MPI = 2.96, vertical dotted line) define two mortality risk strata as depicted in panels (B-E). B and C) 
Kaplan-Meier analysis of overall survival in the meta-cohort microarray validation set with stratification of risk groups based on the median value of the MPI from the 

training set. D and E) Kaplan-Meier survival analysis of the quantitative polymerase chain reaction validation set with risk groups defined by the median MPI value in 

the training set. P values for the MPI are calculated by log-rank test (two-sided). Numbers at risk are indicated below axes, and tick marks on curves indicate censoring. 

MPI = molecular prognostic index.
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transporter, member 1 [GLUT-1]), KRT6A (keratin 6A)—and five 
genes associated with favorable outcomes—TNIK (TRAF2 and 
NCK interacting kinase), BCAM (basal cell adhesion molecule), 
KDM6A (lysine-specific demethylase 6A), FCGRT (Fc fragment of 
IgG receptor, alpha), FAIM3 (Fas apoptotic inhibitory molecule 3). 
The MPI was defined in terms of the expression levels of these 
nine genes as MPI = 5*SLC2A1 + 4*(MAD2L1 + GINS1 + KRT6A) - 5
*(FCGRT + TNIK+BCAM + KDM6A) - 6*FAIM3 (Figure 2A).

To characterize expression of these genes in tumor sub-
populations, we performed RNA-seq on freshly sorted tumor 
cell subsets from stage I adenocarcinomas (n = 4) (Figure 2, B-D). 
The nine MPI genes demonstrated cell type–specific expression 
profiles (Figure  2B) consistent with the average profiles of the 
clusters from which they derived (Figure  2C). The majority of 
transcripts for the MPI genes derived from epithelial or immune 
cells (Figure  2D). Adversely prognostic genes from Clusters 1 
(GINS1 and MAD2L1) and 3 (SLC2A1 and KRT6A) displayed high-
est expression within EpCAM+ malignant epithelial cells. In 
contrast, FAIM3 (Cluster 4)  was expressed predominantly in 
tumor-infiltrating leukocytes. The four genes from Cluster 2 
were variably expressed within tumor subpopulations, consist-
ent with existing knowledge regarding their expression patterns 
(eg, BCAM expression in epithelial and endothelial cells [48]). 
Thus, expression of the genes comprising the MPI integrates 
processes involving both tumor and stromal cells.

Internal Validation and Independent Prognostic 
Value of the MPI

The MPI was strongly associated with overall survival as a con-
tinuous score in the meta-cohort microarray validation set 
(Table 2 and Figure 3A). When patients were stratified into high 
vs low risk groups (relative to the training-cohort median), the 
MPI was statistically significantly associated with survival in the 
meta-cohort microarray validation set (HR = 2.42, 95% CI = 1.78 
to 3.29, P ≤ .001, log-rank test) sets. It remained prognostically 
significant when considering only stage I nonsquamous NSCLC 
(HR = 2.28, 95% CI = 1.48 to 3.53, P < .001, log-rank test) (Figure 3B) 
of the validation set, and even within stage IA (HR = 2.99, 95% 
CI = 1.55t o 5.76, P < .001, log-rank test) (Figure 3C). The MPI was 
prognostic in the validation set within age, sex, stage, and grade 
subgroups (Figure  2E) and remained statistically significant in 
multivariate analyses (Supplementary Table 5, available online). 
Furthermore, where sufficient data were available for assess-
ment, it was prognostic within subsets of patients harboring 
both wild-type or mutant versions of KRAS, EGFR, ALK, or TP53, 

in both the microarray training and validation sets (Table  3). 
Importantly, the MPI was also prognostically significant in 
multivariate analysis with the proliferation marker MKI67  
(P < .001 for the MPI, and P = 0.23 for MKI67; data not shown), 
supporting that it captures proliferation as well as other aspects 
of tumor biology impacting survival. Finally, it was prognostic 
in two additional external cohorts published after its derivation  
(P = .003 in stage I patients of Rousseaux et al. [35], and P = .034 in 
Der et al. [34]) (Supplementary Figure 3, available online).

External qPCR Validation of the MPI

We sought to implement the MPI as a qPCR assay that could 
be readily performed in clinical laboratories on FFPE speci-
mens. We selected TaqMan real-time reverse transcription qPCR 
assays for the nine MPI genes, and for two control housekeeping 
genes (AGPAT1 and PRPF40A) that lacked prognostic association, 
and displayed stable expression relative to transcriptome-wide 
normalization measures (49). We validated the qPCR-based MPI 
in an independent cohort of 98 patients treated at Stanford 
Cancer Institute (Table 1). All specimens were obtained by surgi-
cal resection and contained 50% or more tumor cells. RNA was 
successfully purified from FFPE specimens up to 14  years old 
(median = 6 years). The MPI was prognostic within stage I and 
stage IA patients in the qPCR validation set (Table 2). Using cut-
off values for high and low risk defined in the microarray train-
ing set, it stratified patients across stage I (Figure 3D) and within 
stage IA (HR = 3.95, 95% CI = 1.24 to 12.64, P = .01, log-rank test) 
(Figure 3E). The MPI remained statistically significant in multi-
variate analysis with key clinical and pathological variables (age, 
sex, stage, and grade) (Supplementary Table 5, available online). 
To further evaluate the performance in qPCR data, we randomly 
selected 86 samples from the stage I patients of the microarray 
validation meta-cohort (equal to the number of stage I patients 
in the qPCR cohort) and tested the prognostic association of 
the MPI as a high vs low dichotomous variable. In 10 000 such 
simulations, the mean z-score for association of the MPI with 
survival was 2.2 (corresponding to P = .045) (Supplementary 
Figure 4, available online), while in the qPCR cohort the actual 
z-score was 2.1 (P = .03). Hence, the statistical significance of the 
MPI was consistent with what would be expected in a cohort of 
this size given its effect size. These results confirm the perfor-
mance of the nine-gene MPI as a prognostic tool in early-stage 
nonsquamous NSCLC and its applicability to FFPE samples.

One of the most adversely prognostic genes in the MPI, 
SLC2A1, encodes a major glucose transporter (GLUT-1) whose 

Table 3. Prognostic utility of the MPI within mutational subgroups of NSCLC in the microarray training and validation meta-cohorts

Gene Status

Meta-cohort microarray training set Meta-cohort microarray validation set

n HR (95% CI) P* n HR P*

KRAS wt 187 1.02 (1.01 to 1.04) <.001 167 1.03 (1.02 to 1.05) <.001
mut 33 1.04 (1.01 to 1.08) .019 41 1.01 (0.99 to 1.04) .26

EGFR wt 90 1.02 (1.01 to 1.04) .014 81 1.03 (1.01 to 1.04) <.001
mut 85 1.02 (1.00 to 1.04) .023 87 1.02 (1.00 to 1.05) .041

TP53 wt 43 1.04 (1.01 to 1.06) .002 35 1.04 (1.01 to 1.07) .004
mut 21 1.02 (0.99 to 1.05) .120 17 1.03 (1.00 to 1.06) .033

ALK fusion yes† 9 - - 2 - -
no 101 1.02 (1.00 to 1.04) .031 114 1.03 (1.01 to 1.04) .001

* Two-sided likelihood ratio test. CI = confidence interval; HR = hazard ratio; MPI = molecular prognostic index; mut = mutant; NSCLC = non–small cell lung cancer; 

wt = wild-type.

† Too few samples for assessment.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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protein expression has previously been shown to correlate with 
uptake of fluorodeoxyglucose (FDG) by NSCLCs on positron 
emission tomography (PET) scans (50, 51). We therefore com-
pared how measurement of SLC2A1 mRNA using our method 
compared with measurement of GLUT-1 protein by immunohis-
tochemistry (IHC) and FDG uptake on pretreatment PET imaging 
(Supplementary Figure 5, available online). Expression of SLC2A1 
from qPCR correlated with both GLUT-1 protein levels (P < .001) 
and with maximal tumor standardized uptake value (SUVmax;  

P < .01). Thus, SLC2A1 transcript levels are correlated with 
expression and function of its protein, two tumor characteristics 
previously shown to predict outcome (52–54).

Comparison With Other NSCLC Gene Expression 
Signatures

We compared the performance of the MPI with three other pub-
lished signatures developed as potentially clinically applicable 
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Figure 4. A composite risk model (CRM) incorporating molecular and clinical risk factors predicts risk of death from stage I nonsquamous non–small cell lung cancer 

(NSCLC). A) Distribution of the CRM and its relationship to survival in the training set, with survival modeled as a continuous function of the score. Data for CRM 

are presented as described for MPI in Figure 3, using the corresponding CRM threshold in the microarray training set (median CRM = 1.92). The scale of the CRM was 

adjusted to range from 0 to 5 to simplify interpretation in the clinical setting. B and C) Kaplan-Meier analysis of overall survival in the meta-cohort microarray valida-

tion set with stratification of risk groups based on the median value of the CRM defined in the training set. D and E) Kaplan-Meier survival analysis of the quantitative 

polymerase chain reaction validation set with risk groups defined by the median CRM value in the training set. P values for the CRM were calculated by log-rank test 

(two-sided). Numbers at risk are indicated below axes, and tick marks on curves indicate censoring. CRM = composite risk model; PCR = polymerase chain reaction.

http://jnci.oxfordjournals.org/lookup/suppl/doi:10.1093/jnci/djv211/-/DC1
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qPCR assays (16,55,56) by applying them to our training and 
testing meta-cohorts. All three were statistically significantly 
prognostic (all P < .001 in test cohort; data not shown). The MPI 
contained no genes in common with the other prognostic sig-
natures. Because P values cannot be used to compare models, 
we computed net reclassification index (NRI) and integrated 
discrimination improvement (IDI) statistics for the MPI vs each 
of the three alternative prognostic signatures. The MPI out-
performed all other signatures according to both NRI and IDI  
(P < .001 in each case) (Supplementary Table 6, available online).

A Composite Molecular/Clinical Model for Predicting 
Survival in NSCLC

The MPI provided independent prognostic information when 
compared with standard clinical and pathologic covariates 
(Figure  2E; Supplementary Table  5, available online), suggest-
ing that combining them could create an even more robust risk 
index (17,18). For lung adenocarcinoma, previously proposed 
prognostic factors include age, sex, and stage (7,9,57–60). We uti-
lized the SEER database to determine hazard ratios for death for 
these variables across a large, diverse population of over 28 000 
patients (61). As expected, advanced age, male sex, and higher 
stage at diagnosis were associated with worse outcomes. These 
factors were combined into a clinical prognostic index (CPI), 
defined as 0.024*Age(years) – 0.34 (if sex female) + stage, where 
the value for stage is 0.43 (stage IB), 0.81 (IIA), 1.10 (IIB), 1.20 (IIIA), 
or 1.20 (IIIB) (Methods). The CPI was statistically significant in 
univariate analyses of all validation sets as well as in multivari-
able analysis incorporating the MPI (Table 2). We therefore com-
bined the CPI and MPI to form a composite risk model (CRM), 
defined in the training set as (1.1*CPI+0.022*MPI), which strati-
fied patients by risk of death in all microarray validation sets as 
well as the qPCR validation set (Figure 4, Tables 2 and 3).

The CRM identified patients at higher risk of death across all 
stages (Figure 4A), when restricted to stage I patients (HR = 3.43, 
95% CI = 2.18 to 5.39, P < .001 by log-rank test in stage I patients 
of the largest microarray cohort HR; HR  =  3.99, 95% CI  =  1.67 
to 9.56, P < .001 by log-rank test in stage I of the qPCR cohort) 
(Figure 4, B and D, and Table 2; Supplementary Figure 7, C and D) 
and even stage IA (Figure 4, C and E). The CRM outperformed the 
MPI as assessed by NRI and IDI for assignment of risk of death 
by five years (Supplementary Table 7, available online), as well 
as by survival ROC curves (Supplementary Figure  6, available 
online) (38). These data indicate that integration of molecular 
and clinical risk-associated variables using the CRM provides 
more robust assessment of prognosis than either index alone.

Discussion

Despite over a decade of effort, few prognostic gene expression 
signatures have made it to the clinic (62). We developed a nine-
gene qPCR-based expression predictor for survival outcome in 
early-stage nonsquamous NSCLC, validated it on FFPE tissues, and 
developed a composite risk index (CRM) that integrates it with 
other clinical variables. Both the MPI and CRM identify early-stage 
NSCLC patients at high risk for death, with patients in the high-risk 
group having an approximately 50% chance of death by five years.

We took deliberate steps to ensure robustness of the MPI. 
First, we utilized gene expression data from multiple techno-
logical platforms in the model training process, which encour-
aged selection of genes whose measurement is consistent and 
reproducibly associated with survival. Second, we performed 
internal and cross-platform external validation of the MPI. Third, 

we included genes from distinct clusters of survival-associated 
genes representing biological features of both tumor and stroma. 
We believe the latter to be a novel approach to prognostic model 
building with wide applicability. Finally, although applied to stage 
I NSCLC, we included all stages of tumors in the model training 
procedure to take advantage of prognostic information encoded 
in the gene expression profiles of higher stages that may have 
subtle but important effects within stage I disease.

Prior studies have proposed gene expression prognostic sig-
natures for NSCLC (16,17,55,63–84) but have been limited by vari-
ous shortcomings precluding independent validation (18). Our 
approach aimed to overcome these hurdles, and we found that 
the MPI outperforms other signatures that satisfy key character-
istics of clinical applicability (ie, qPCR assays validated on FFPE 
tissues), as assessed by NRI and IDI (16,38,55,56). As far as we are 
aware, our study is the first to provide a composite model that 
incorporates both gene expression and clinical data from a large, 
population-based database to leverage the independent prognos-
tic content of these two types of data. The CRM provides greater 
predictive power than the MPI alone, underscoring the utility of 
this approach. Patients are increasingly being managed on the 
basis of targetable driver mutations, and it is therefore notewor-
thy that the MPI is prognostic within subsets of patients harboring 
either mutated or wild-type forms of EGFR, KRAS, TP53, and ALK.

Limitations of our study are similar to other gene expres-
sion–based prognostic models. NSCLC is known to harbor tumor 
heterogeneity, and samples from spatially distinct areas of a 
tumor can have inconsistent gene signatures (85). While we vali-
dated the MPI and CRM in four independent validation sets, they 
were all retrospective in nature. In the future, it would be valu-
able to develop a signature that can also be applied to squamous 
cell carcinoma (SCC). However, similar to previous reports, we 
found that prognostic signatures for SCC are not robust; possibly 
because of the smaller sample sizes available for model building 
or because of intrinsic biological differences between SCC and 
non-SCC NSCLC (18,59,69).

In conclusion, we envision that the MPI and CRM will be 
useful for assessing recurrence risk for patients with nonsqua-
mous NSCLC. For clinical implementation, these results must 
be validated on additional cohorts using a Clinical Laboratory 
Improvement Amendments-certified assay and it would be 
interesting to compare alternative methods for RNA quanti-
fication to qPCR. Ultimately, prospective clinical trials will be 
required to determine whether the use of the MPI and CRM could 
guide decisions regarding adjuvant treatment and improve out-
comes for high-risk patients.
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