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Abstract

The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the 

initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles 

with other bacteria or the immune system greatly depend on the structure and composition of the 

bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known 

as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the 

initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune 

system, for which the glycolipid was commonly known as endotoxin. It was later discovered that 

LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate 

resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these 

important properties of LPS have driven a vast and still prolific body of literature for more than a 

hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis 

and physiology mostly using Escherichia coli and Salmonella as model systems. In this chapter, 

we will focus on the fundamental knowledge we have gained from studies of the complex 

structure of the LPS molecule, the biochemical pathways for its synthesis, as well as the transport 

of LPS across the bacterial envelope and its assembly at the cell surface.

Introduction

Gram-negative bacteria are characterized by an envelope that contains two membranes: an 

inner membrane (IM) that surrounds cytoplasmic components, and an outer membrane (OM) 

that separates the cell from its environment. These two membranes surround an aqueous 

cellular compartment termed the periplasm, which contains the peptidoglycan cell wall (Fig 

1A) (1). Thus, in Gram-negative bacteria, the OM serves as the first line of defense against 

environmental threats. Notably, in contrast to many biological membranes, the OM of most 

Gram-negative bacteria is not a phospholipid bilayer. Instead, it is a highly asymmetric 

bilayer that contains phospholipids in the inner leaflet and lipopolysaccharide (LPS) 

molecules in the outer leaflet (1-3). The glycolipid LPS is the focus of this chapter.

LPS performs several functions in Gram-negative bacteria. The most fundamental function 

of LPS is to serve as a major structural component of the OM. Perhaps not surprisingly, LPS 

is an essential component of the cell envelope in most, though interestingly not all, Gram-

negative bacteria (4). In addition, LPS molecules transform the OM into an effective 

permeability barrier against small, hydrophobic molecules that can otherwise cross 
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phospholipid bilayers, making Gram-negative bacteria innately resistant to many 

antimicrobial compounds (5, 6). LPS can also play a crucial role in bacteria-host interactions 

by modulating responses by the host immune system.

There are three main areas of LPS biology that are covered in this chapter. We will first 

discuss the overall structure of LPS and its function from the bacterial and human point of 

view. We will then review LPS biosynthesis in Escherichia coli and Salmonella, and discuss 

how bacteria can regulate LPS synthesis and modify its chemical structure in response to 

environmental stressors. Lastly, in the 1970s, Mary Jane Osborn and collaborators posed a 

question that has dominated a great part of LPS biogenesis research in the last two decades: 

since LPS is synthesized in the IM but displayed at the cell surface, how is it transported 

across the cell envelope (7, 8)? Here, we will summarize the work that has uncovered a 

novel inter-membrane transport system that solves the challenges of shuttling this complex 

glycolipid across diverse cellular compartments.

Structure and function of LPS

Main features of the structure of LPS

LPS is a large glycolipid composed of three structural domains: lipid A, the core 

oligosaccharide, and the O antigen (Fig. 1B) (9). Lipid A, the hydrophobic portion of the 

molecule, is an acylated β-1‘-6-linked glucosamine disaccharide that forms the outer leaflet 

of the OM (9). In E. coli and Salmonella, the glucosamines are phosphorylated at the 1 and 

4’ positions and acylated at the 2, 3, 2’ and 3’ positions (9). Two additional secondary acyl 

chains are also typically present in the distal glucosamine so that mature lipid A is mostly 

hexa-acylated (9). The core oligosaccharide is a non-repeating oligosaccharide that is linked 

to the glucosamines of lipid A (9, 10). The core structure usually contains 3-deoxy-D-

manno-oct-2-ulosonic acid (Kdo) residues, heptoses, and various hexoses, which can be 

modified with phosphates and other substituents such as phosphoethanolamine (9-12). The 

O antigen is an extended polysaccharide that is attached to the core oligosaccharide. It is 

composed of a repeating oligosaccharide made of two to eight sugars (13-15).

The overall structure of LPS is conserved, but there are many variations that can occur at the 

species and strain level (9-12, 16, 17). Similarly, the lipid A structure is conserved at the 

species level; however, as described below, it can undergo regulated modifications in 

response to environmental conditions (12, 18-20). The core oligosaccharides vary among 

species and even between some strains of one species (9-12). However, the most diverse 

component of LPS is the O antigen (13, 17). Not only can the structure and composition of 

the O antigen differ within a species at the strain level, but, in addition, some Gram-negative 

bacteria do not synthesize this component of LPS (13, 21). In such cases, molecules 

composed of only lipid A and the core oligosaccharide are typically referred to as 

lipooligosaccharides, or LOS (9). Classically, LOS has been referred to as “rough” LPS, as 

opposed to “smooth” LPS, which includes the O antigen (9).
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The function of LPS

While the structure of LPS (or LOS) may vary among bacteria, in all cases this glycolipid 

populates much of the cell surface and establishes a permeability barrier that protects the 

cell from the entry of toxic molecules such as antibiotics and bile salts (5, 22). Additionally, 

because LPS is the primary bacterial component encountered by the host immune system, 

LPS often plays a major role in bacterial pathogenicity (20, 23).

The barrier function of LPS stems in part from its strong amphipathic nature. As in other 

lipid bilayers, the acyl portion of lipid A provides hydrophobic character that inhibits the 

passage of hydrophilic molecules through the OM. However, in contrast to other bilayers, 

the core oligosaccharide and O antigen additionally provide extensive hydrophilic character 

to LPS that makes the OM particularly impermeable to hydrophobic compounds as well (5, 

22). The effectiveness of the barrier posed by LPS is also heavily reliant on the ability of 

LPS to pack densely within the outer leaflet of the OM. This dense packing is mediated in 

part by hydrophobicity-driven association of the acyl chains of lipid A. As lipid A molecules 

typically bear a large number (that is, 4-7) of saturated fatty acid moieties, the extensive 

interactions between these acyl chains result in low fluidity within the membrane bilayer (5). 

However, packing of LPS is complicated by the presence of negatively charged phosphate 

groups throughout its structure. Most salient and conserved are the phosphates of the 1 and 

4’ positions of the glucosamines in lipid A, which lie at the exterior surface of the OM, but 

phosphates can also be found in the core oligosaccharide (9, 12). To prevent repulsion 

between these negatively charged phosphates, divalent cations such as Mg2+ intercalate 

between LPS molecules, forming polyionic interactions that greatly enhance LPS packing 

and, consequently, promote the barrier function of the OM (5, 22).

As LPS decorates the surface of many bacterial pathogens, the host immune system has 

evolved to respond dramatically to its presence, making LPS a PAMP, or pathogen-

associated molecular pattern (20, 23, 24). In fact, this response can be so dramatic as to 

prove toxic to the host. For this reason, LPS has been classically termed “endotoxin” in 

reference to the cell-associated (endo) toxicity observed for many Gram-negative organisms. 

Understandably, the immune system has evolved to respond primarily to the most conserved 

feature of LPS, the lipid A structure, for which host TLR4 (toll-like receptor 4) is the 

primary receptor (20, 23, 24). However, as mentioned above, there is considerable diversity 

in LPS structures, even within lipid A. A consequence of this diversity is that different LPS 

structures have varying ability to trigger the host immune response (20). Thus, while the 

classical, hexacylated, bisphosphorylated lipid A molecule produced by E. coli and 

Salmonella is highly immunogenic, other forms of lipid A are less so. Some forms of lipid A 

not only elicit no response themselves, but inhibit the host response to more immunogenic 

varieties (20, 25-27). In fact, production of less immunogenic lipid A is a strategy used by 

certain pathogens to evade the host immune response. For example, Yersinia pestis, the 

causative agent of the bubonic plague, modulates the acylation of its lipid A at mammalian 

body temperature to produce less immunogenic lipid A (28). Alternatively, some organisms 

evade the host immune response by masking the more conserved aspects of their LPS with a 

highly variable O antigen (23). Although the O antigen induces the production of antibodies, 

the length of the O-antigen chain prevents the antibody-mediated deposition of complement 
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at the bacterial cell surface (13, 29, 30). Consequently, the O-antigen structure protects 

bacteria from lysis by complement. Possession of an O antigen has also been shown to 

contribute to pathogen evasion of phagocytosis by immune cells (13, 31).

We should also mention that the combination of the antigenicity and great structural 

diversity of O antigens have been exploited in the clinic to identify and classify pathogens. 

This application relies on the fact that the immune system produces specific antibodies that 

recognize one type of O antigen. Collections of O-antigen-specific antisera have been 

classically utilized to categorize Gram-negative organisms by serotype, that is, antigenicity 

in serological testing, of their O antigen (17).

LPS synthesis pathway

Kdo2-lipid A biosynthesis: the Raetz pathway

Lipid A was first identified as the lipid component that could be released from the rest of the 

LPS molecules by mild-acid hydrolysis (32-34). Historically, this degradation product was 

marked as one of the three structural components of LPS. However, it is worth noting that 

cells synthesize lipid A together with the Kdo moieties of the core oligosaccharide using a 

biosynthetic pathway that is the most conserved aspect of LPS synthesis (9). This pathway 

has been extensively characterized in E. coli and Salmonella (9, 35) and is referred to as the 

Raetz pathway because much of the research describing it was led by Christian Raetz and 

his team (Fig. 2).

The process of lipid A synthesis begins in the cytoplasm with the precursor molecule N-

acetyl glucosamine linked to a nucleotide carrier (UDP-GlcNAc). This UDP-GlcNAc 

precursor is initially acylated by the enzyme LpxA to yield UDP-3-O-(acyl)-GlcNAc 

(36-38). LpxA is selective for the 14-carbon acyl group β-hydroxymyristate carried by the 

acyl carrier protein (ACP) (37). This selectivity is based on the LpxA active site functioning 

as a hydrocarbon ruler that most readily incorporates 14-carbon substrates (39, 40). The 

acylation of UDP-GlcNAc is unfavorable, however, and thus the first committed step of lipid 

A synthesis is the second reaction in the pathway, which is the irreversible deacetylation of 

UDP-3-O-(acyl)-GlcNAc to UDP-3-O-(acyl)-GlcN by the Zn2+-dependent metalloenzyme 

LpxC (41-43). As LpxC catalyzes the first committed step in the synthesis of LPS, much of 

the regulation of this pathway, which will be discussed below, appears to center around this 

enzyme. Following the action of LpxC, UDP-3-O-(acyl)-GlcN is subsequently acylated a 

second time by LpxD to yield UDP-2,3-diacylglucosamine (44, 45). Like its earlier 

homologous counterpart LpxA, LpxD is selective for β-hydroxymyristate-ACP as a donor 

(44). In fact, it has been suggested that LpxD could, to some extent, be capable of 

substituting for LpxA in the first acylation step. However, since both enzymes are essential 

(44, 46, 47), it appears any cross-specificity between LpxA and LpxD is insufficient to 

support growth. After the second acylation by LpxD, LpxH removes the sugar nucleotide 

carrier from UDP-2,3-diacylglucosamine to generate 2,3-diacylglucosamine-1-phosphate, 

otherwise known as lipid X (48-50). Lipid X is subsequently added by LpxB to a molecule 

of UDP-2,3-diacylglucosamine (the product of the LpxD reaction) through a β 1’-6 linkage 

that releases the UDP nucleotide carrier. The resulting product is a tetraacylated 

glucosamine disaccharide that is inserted in the inner leaflet of the IM and is sometimes 
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referred to as lipid A disaccharide (51, 52). Following this condensation step, lipid A 

disaccharide is phosphorylated at the 4’ position by the kinase LpxK, becoming the 

bisphosphorylated lipid IVA (53, 54). As noted above, while not strictly part of lipid A 

synthesis, the next step is the addition of two Kdo sugar groups of the core oligosaccharide 

to lipid IVA (55-57). This step is mediated by the enzyme WaaA, previously known as 

KdtA, which sequentially adds Kdo groups to lipid IVA from activated Kdo (CMP-Kdo) (56, 

57). Finally, two additional acylation events catalyzed by the LpxL and LpxM 

acyltransferases occur in sequence (58-60). LpxL adds a lauroyl group to the hydroxyl of the 

2’-hydroxymyristoyl group and, subsequently, LpxM transfers a myristoyl group to the 

hydroxyl of the 3’-hydroxymyristoyl group (58-60). Like their earlier counterparts LpxA 

and LpxD, LpxL and LpxM only utilize substrates carried by ACP (58-60). LpxM functions 

best after the lauroyl group has already been added by LpxL but it is capable of functioning 

to some extent in the absence of LpxL activity (60). After the sequential action of LpxL and 

LpxM, mature, hexacylated lipid A, which also contains the first two Kdo residues of the 

inner core, is ready to serve as an acceptor for the sugar groups composing the core 

oligosaccharide.

An important note is the fact that, under normal laboratory growth conditions, about one 

third of LPS molecules are modified by LpxT, which adds a second phosphate group to the 

1-phosphate of lipid A, utilizing Und-PP as the donor (discussed below in the 

“Modifications of lipid A” section and shown in Fig. 6) (61, 62). This reaction is not part of 

the Raetz pathway and occurs after the core-lipid A molecule is flipped across the IM. In 

addition, as discussed below, LpxT activity is subject to regulation by environmental 

conditions.

Biosynthesis of the core oligosaccharide

The core oligosaccharide can be sub-divided into an inner core, which is proximal to lipid A, 

and an outer core, which becomes the attachment site for the O antigen (9). The inner core is 

generally well conserved and is composed of Kdo and L-glycero-D-manno-heptose 

(heptose) groups (9, 63, 64). The outer core constituents are less conserved, and will vary 

depending on the type of core oligosaccharide, but in general consists of a series of hexoses 

(9, 63, 64). For the sake of simplicity, we will focus on the synthesis pathway for the K-12 

core type from E. coli (Fig. 3), though various types of core oligosaccharide structures of E. 
coli and Salmonella can be found in Fig. 4 (9, 11).

The first step of core oligosaccharide synthesis is the sequential addition by the WaaA 

enzyme of the first two Kdo groups to the glucosamines of lipid A, which, as discussed 

above, occurs before the final acylation steps that conclude lipid A synthesis (Fig. 2) 

(56-60). Next, following completion of lipid A synthesis by LpxL and LpxM, the inner core 

is extended with two heptose residues by the sequential action of WaaC and WaaF (11, 65). 

ADP-L-glycero-D-manno-heptose generally serves as the donor substrate for these inner-

core glycosylation reactions (65). After the addition of the heptoses by WaaC and WaaF, the 

final three steps that complete inner core synthesis must be catalyzed in order by the 

enzymes WaaP, WaaQ, and WaaY, respectively (66). WaaP is a kinase that phosphorylates 

the first heptose of the inner core, which was added by WaaC (66, 67). WaaQ then transfers 
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an additional heptose to the second heptose of the inner core, which was added by WaaF. 

This third heptose added by WaaQ is then phosphorylated by the WaaY kinase (66). 

Interestingly, while loss of inner core phosphorylation inhibits outer core extension, the loss 

of the enzymes that extend the outer core also inhibits inner core phosphorylation, implying 

complexities in the synthesis pathway that have not been fully explored (68).

Synthesis of the outer core begins with the addition of a glucose group to the second 

heptose, not only in the K-12 core type, but in all E. coli and Salmonella LPS structures (11, 

64). This addition is mediated by WaaG (and its homologs), which utilizes UDP-glucose as 

its donor substrate (11, 64). The glucose added by WaaG is acted on by the 

glycosyltransferases WaaO and WaaB, which independently add a glucose and a galactose 

group, respectively, from UDP-bound donors (11, 64). Additionally, it has been shown that 

WaaO activity is dependent on divalent cations (64). Next, the penultimate glucose residue is 

added by the enzyme WaaJ (alternatively known as WaaR), whose activity depends on that 

of WaaB (11, 69). The final step of core synthesis, the addition of a heptose group to the 

penultimate glucose, is mediated by the WaaU glycosyltransferase (10, 11). This final 

heptose group serves as the acceptor of the O antigen after this core-lipid A precursor is 

translocated to the outer leaflet of the IM.

Biosynthesis of the O antigen

As might be expected for the outermost, and therefore most exposed, component of LPS, O-

antigen structures are highly diverse, with roughly 200 different serogroups identified to date 

in E. coli alone (9, 17). Because of the great diversity of O antigens, the following 

discussion will focus on the more conserved aspects of O-antigen biosynthesis and its 

subsequent ligation to the core-lipid A molecule. We should also note that E. coli K-12 

strains, which are often used in research, do not produce O antigen as the result of an 

ancestral mutation that inactivates its synthesis in that lineage (21).

The O antigen consists of a variable number of repeating oligosaccharide units, and as such 

can vary in size from molecule to molecule quite dramatically (9, 70). Additionally, rather 

than being synthesized directly on the core-lipid A molecule, the O antigen is fully 

synthesized independently from the rest of the LPS molecule. The O antigen is first built 

stepwise on a lipid carrier molecule, undecaprenyl phosphate (Und-P), and is then 

transferred to the core oligosaccharide of the nascent LPS molecule in the periplasmic face 

of the IM (71, 72). Despite the polymorphic nature of O antigens as a whole, the first step in 

their synthesis is well conserved, and consists of the transfer of a sugar monophosphate to 

the carrier molecule Und-P at the inner leaflet of the IM. The resulting sugar-pyrophosphate-

undecaprenol (sugar-Und-PP) serves as an acceptor for additional glycosylation reactions 

(13). Aside from this conserved feature, the routes taken to complete the O antigen vary 

amongst different organisms and even strains, but generally fall into three categories: the so-

called Wzy-dependent pathway, named for the polymerase which founded the group; the 

ABC-dependent pathway, which, as the name suggests, relies on an ATP-binding cassette 

(ABC) transporter to translocate the completed O antigen across the IM; and, the synthase-

dependent pathway, which is poorly characterized and has only been identified in a single 

species of Salmonella (9, 13). A summary of these different routes can be found in Fig 5.
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The Wzy-dependent pathway entails the synthesis of single O units on Und-P, requiring 

initiation for each O-antigen subunit, and the subsequent flipping of these Und-P-linked O 

units to the periplasmic face of the IM by the Wzx flippase (9, 13, 73, 74). These O units are 

then polymerized on a single Und-P carrier molecule through the activity of Wzy. Polymer 

length is controlled by a partner protein, Wzz, and exhibits a modal distribution of polymer 

sizes (9, 13, 75-77). Recent structural studies using cryoelectron microscopy have proposed 

a new model for how Wzz controls polymer length through a synergistic interaction with 

Wzy (78). Specifically, this model proposes that association between Wzz and Wzy serves to 

trigger polymerization, with polymer length being controlled by both a molecular ruler 

mechanism based on Wzz’s polysaccharide-binding capacity, and a molecular stopwatch 

mechanism based on the time of association between Wzz and Wzy. Finally, the 

polymerized O antigen is ligated to the core-lipid A acceptor at the outer leaflet of the IM by 

the ligase WaaL, and the Und-PP carrier is recycled (9). It is worth noting that this 

biosynthetic strategy of generating O antigen by initiating the synthesis of each subunit on 

an Und-P molecule places substantial demand on the Und-P carrier pool (9). Indeed, 

interrupting O-antigen biosynthesis at certain steps in this pathway can lead to the 

sequestration of Und-P by O-antigen precursors, which causes severe growth defects 

because Und-P also functions in the synthesis of several envelope glycopolymers, including 

the essential peptidoglycan cell wall (79, 80).

In contrast to the Wzx-dependent pathway, the ABC-dependent pathway only requires a 

single initiation event per molecule of polymerized O antigen and carries out the entirety of 

its polymerization in the cytoplasm (9, 13). Glycosyltransferases first polymerize the 

completed O antigen on a single Und-P carrier molecule in the inner leaflet of the IM 

utilizing nucleotide-activated sugar donors. The completely polymerized O-antigen-Und-PP 

molecule is subsequently flipped to the periplasmic face of the IM by an ABC transporter, 

where the O-antigen portion is then added to the core-lipid A molecule by the WaaL ligase 

(13, 81).

The synthase-dependent pathway is peculiar to S. enterica serovar Borreze (rfbO:54) (13, 

82). The mechanistic details for this mechanism of O-antigen synthesis are unclear, but the 

titular synthase (WbbF) of the pathway is presumed to simultaneously polymerize and 

translocate the O antigen across the IM (13, 82). As in the other two biosynthetic pathways, 

the resulting O-antigen-Und-PP molecule is then used as a donor by the WaaL ligase, which 

transfers the O-antigen polymer to the outer-core oligosaccharide of nascent LPS molecules 

and releases the lipid carrier, which is then recycled.

Regulation of LPS biosynthesis

The pathways for the biosynthesis of phospholipids and LPS share a common precursor, β-

hydroxymyristate-ACP, the substrate of the FabZ and LpxA enzymes, respectively. As a 

result, proper balance in lipid biosynthesis, and thereby balanced growth of the IM and OM, 

requires regulation of LPS synthesis. As stated earlier, LpxC mediates the first committed 

step in LPS synthesis (9). Consequently, this step becomes a logical control point for the 

pathway, and indeed, much of our understanding of the regulation of LPS synthesis centers 

around LpxC. It was noted as early as 1996 that LpxC activity was upregulated when the 
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early steps of LPS synthesis were inhibited, while many other enzymes of the pathway were 

nonresponsive (83). This response was later shown to be due to regulation of LpxC protein 

levels by the essential, AAA+ metalloprotease FtsH [for a recent review regarding FtsH, the 

reader is directed to (84)] (85). Interestingly, FtsH has also been shown to degrade WaaA, 

which adds Kdo groups to lipid IVA (86). Proteolysis of LpxC by FtsH is dependent on a 

sequence present at the carboxyl terminus of LpxC, and is controlled by the cellular growth 

state and levels of the alarmone (p)ppGpp. Specifically, LpxC is stable during fast growth 

but degraded by FtsH during slow growth; this relationship is inverted with the loss of 

(p)ppGpp synthesis (87, 88). The precise signal(s) that directly controls FtsH proteolysis of 

LpxC has not been elucidated, though feedback through lipid A disaccharide has been 

proposed as a candidate (46). Nonetheless, a protein that regulates the FtsH-dependent 

proteolysis of LpxC has also been discovered. The bitopic IM protein LapB (formerly 

YciM) functions as a negative regulator of LpxC levels in an FtsH-dependent manner 

(89-91). LapB has also been reported to co-purify with, in addition to FtsH and LPS, several 

LPS synthesis and transport proteins, including WaaC and the entirety of the LPS transport 

(Lpt) complex (described below). These copurification results imply that LapB may serve a 

larger role in coordinating disparate aspects of LPS biogenesis. However, the precise nature 

and mechanism of that role and the relevance of some of those interactions are not clear 

(91). Furthermore, additional proteolytic control of LpxC by an unknown protease has also 

been proposed (92). Clearly, more research is needed to understand regulation of LPS 

synthesis.

Modification of LPS structure

To better adapt to their varying environments, Gram-negative bacteria will often deviate 

from the LPS biosynthesis pathways described above. The most frequent modifications 

include: changes in the number and type of acyl chains, as well as the number of phosphates 

in lipid A; the addition of covalent modifications to lipid A, generally at the 1 and 4’ 

phosphates, and the core oligosaccharide; and the conversion of the type of O antigen 

whenever the genomic locus responsible for O-antigen synthesis is exchanged through 

horizontal gene transfer (18-20). Additionally, due to the incorporation of nonstoichiometric 

modifications, LPS synthesized by a single strain is not entirely uniform under any growth 

condition. The most relevant modifications in E. coli and Salmonella are discussed in detail 

below, and those in the lipid A and core oligosaccharide regions are summarized in Figures 

6 and 7.

Modifications of lipid A

Bacteria adapt to different temperatures by modulating the fluidity of their membranes 

through alterations of the type of acyl chains of their membrane lipids (93). LPS is no 

exception. Under low temperature conditions (~12°C), E. coli will express an alternate 

acyltransferase homologous to LpxL, termed LpxP, that adds a 16-carbor palmitoyl group in 

place of the 12-carbon lauroyl group normally added by LpxL (18, 94, 95). Presumably, this 

modification serves to offset the decrease in membrane fluidity resultant from lower 

temperatures (18). Like its counterpart LpxL, LpxP requires ACP-bound substrates for 

activity (94).
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However, most of the changes to lipid A structure occur in response to the amount of cations 

and positively charged antimicrobials in the environment. A number of enzymes that 

catalyze those modifications are under control of the PhoQP two-component regulatory 

system (96, 97). In Salmonella, the PhoQP system is primarily implicated in responding to 

low-levels of divalent cations, namely Mg2+, the presence cationic antimicrobial peptides 

(CAMPs), and host interactions (97-99). When the kinase PhoQ is activated by these signals, 

it phosphorylates its cognate response regulatoi PhoP. Once phosphorylated, PhoP activates 

the transcription of several genes encoding LPS-modifying enzymes. Among them, PagP is 

an enzyme that resides in the OM and transfers a palmitoyl group to LPS, resulting in 

heptacylated LPS species that are implicated in CAMP resistance (18, 100, 101). In this 

transfer, PagP uses the 16-carbon acyl chains of phospholipids that are mislocalized to the 

outer leaflet of the OIV as donors (18, 100, 101). Additionally controlled by PhoQP are 

LpxR and PagL (the latter is absent in E. coli), which also reside in the OM and modify the 

acyl chain content in lipid A. LpxR and PagL, respectively, mediate the removal of the 3’ 

acyl groups and the 3-hydroxymyristoyl group, which modulate the immunogenicity of lipid 

A (102, 103).

The PhoQP system also controls modification to the glucosamine disaccharide portion of 

lipid A, albeit indirectly through another two-component regulatory system. These 

modifications are directly regulated by the PmrBA (alternatively BasSR for E. coli) two-

component system. The PmrBA system is positively regulated by PhoQP through the 

adapter protein PmrD, which protects the phosphorylated response regulator PmrA (BasR) 

from dephosphorylation (104-107). In addition, the sensor kinase PmrB (BasS) directly 

responds to acidic pH and elevated concentrations of certain metals such as Fe3+, Al3+ and 

Zn2+ (12, 107-109). When phosphorylated, PmrA upregulates the covalent modification of 

lipid A with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine (PEtN) 

(18). L-Ara4N modification is mediated by the enzyme ArnT, which transfers L-Ara4N from 

Und-P to lipid A primarily at the 4’ phosphate, though it can also act on the 1-phosphate 

(110, 111). PEtN modification is mediated by the enzyme EptA, which transfers PEtN from 

phosphatidylethanolamine to lipid A primarily at the 1-phosphate, though it can also act on 

the 4’-phosphate (112, 113). Activation of PmrBA also inhibits modification of lipid A by 

LpxT, the kinase that adds a second phosphate group to the 1-phosphate from Und-PP to 

~33% of LPS molecules under standard laboratory growth conditions (61, 62). Both the 

addition of positively charged moieties to lipid A by ArnT and EptA, and the loss of the 

negatively charged modification catalyzed by LpxT are associated with increased resistance 

to CAMPs, presumably due to the masking of negative charges (i. e. phosphates) in LPS to 

which CAMPs bind (62, 107).

In addition, Salmonella can alter lipid A through the action of LpxO, which is absent in E. 
coli. LpxO is not regulated by PhoQP and mediates the oxygen dependent hydroxylation of 

the secondary 3’ acyl group immediately after the carboxyl group in the cytoplasm (114, 

115).

It is worth noting that, while these are the primary well-characterized modifications to lipid 

A carried out by Salmonella and E. coli species, other species employ similar strategies with 

alternate modifying groups. For example, certain isolates of V. cholerae modify the acyl 
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chains of their lipid A with amino acid moieties (116, 117). Additionally, some Bordetella 
isolates modify the phosphates of their lipid A with glucosamine (118, 119). Both of these 

modifications promote CAMP resistance, much like many of their Salmonella and E. coli 
counterparts.

Modifications to the core oligosaccharide

Given that the outer core is relatively variable, well-characterized modifications tend to be 

confined to the inner core region. Modifications to the core oligosaccharide include the 

addition of various sugar groups as well as other moieties, such as PEtN. What types of 

modifications occur will also depend to some extent on the core type. The best characterized 

modifications will be discussed in detail below, and are also summarized in figure 7.

Starting from the lipid A-proximal sugars and working up the sugar chain of the core, the 

second Kdo residue can be modified with additional Kdo, PEtN, rhamnose, or galactose 

groups (11, 12). Kdo addition is mediated by the WaaZ transferase. Modification of the 

second Kdo with PEtN is mediated by EptB and confers resistance to polymyxin B and high 

levels of Ca2+ (12, 120-122). Rhamnose addition is mediated by WaaS, and can occur to 

either the second Kdo or the third Kdo added by WaaZ, but both activities are dependent 

upon prior addition of the third Kdo (12, 123, 124). When PEtN is present on the second 

Kdo group, WaaS can only act on the third Kdo (added by WaaZ), whereas it otherwise acts 

on the second Kdo (12, 124). At least in E. coli K-12, these modifications are associated 

with induction of the envelope stress response effector σE [for a review on the function and 

induction of σE, the reader is directed to (125)], as well as with the truncation of the outer 

core caused by downregulation of WaaJ (WaaR), which leads to the loss of the terminal 

glucose and heptose groups (12, 124). In addition, EptB is negatively regulated by PhoQP, 

but induced by high levels of Ca2+ (12, 120, 121). Lastly, addition of galactose to the second 

Kdo group is mediated by WabA, which is absent in E. coli K-12 and was instead 

characterized in E. coli with the R2 core type (11).

The first heptose of the inner core may be modified with PEtN, specifically at the phosphate 

added by WaaP, which confers resistance to CAMPs (126). This addition is mediated by 

EptC, which is induced by PhoBR, a two-component system responsive to phosphate-

limiting conditions (126-128). The third heptose of the inner core (added by WaaQ) may be 

modified with several different glucose derivatives, including GlcNAc, GlcN, and glucuronic 

acid (GlcUA) (11, 126). The former two modifications were characterized in E. coli with the 

R3 and R1 core types, respectively, whereas the latter is found in E. coli K-12 (11, 126). 

Modification of the third heptose with GlcUA is mediated by the enzyme WaaH, which like 

EptC, is induced by the PhoBR system (12, 126). Consistent with its response to phosphate 

limiting conditions, the GlcUA addition mediated by WaaH proceeds more efficiently in the 

absence of the phosphate group added by WaaY (12, 126).

O-antigen modification

While modifications to basic O-antigen structures have been reported, they will not be 

discussed in detail here due to the sheer breadth of O-antigen synthesis (13, 129). More 

striking than minor additions or replacements of individual sugars is that the O antigen may 
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be replaced entirely. In some cases, a serotype of O antigen is replaced by another through 

the genetic exchange of part or the entire biosynthetic locus resulting from horizontal gene 

transfer (16, 130). In addition, the O antigen can be replaced altogether by a different type of 

polysaccharide. Specifically, in E. coli K-12, it has been shown that induction of capsular 

colanic acid synthesis results in replacement of the O antigen in LPS with colanic acid 

repeats in a WaaL-dependent manner (131, 132). A similar phenomenon has been observed 

with the enterobacterial common antigen (ECA) (133, 134). Curiously, a missense mutation 

in waaL that broadens the substrate specificity of the ligase led to the discovery that this 

WaaL variant can modify the LPS core with the peptidoglycan building block by utilizing 

lipid II as a donor as well (135).

LPS Transport

Overview

In 1972, Mary Jane Osborn and collaborators published seminal studies demonstrating that 

LPS is synthesized at the IM and, therefore, must be transported across the envelope to the 

OM. Furthermore, the authors demonstrated that this intermembrane transport is 

unidirectional (7, 8). That body of work opened a new area of research that eventually led to 

the discovery of the factors required for LPS transport during the 1990s and 2000s. We now 

know that, as described in sections above, the core-lipid A and Und-P-linked O-antigen 

components of the LPS structure are independently synthesized at the cytoplasmic face of 

the IM. Using different transporters, these two subunits are separately flipped to the 

periplasmic leaflet of the IM. Once there, the O antigen can be ligated onto the core 

oligosaccharide moiety by the WaaL ligase. The resulting newly synthesized LPS molecules 

must then be extracted from the IM, cross the aqueous periplasm, and traverse the OM to 

ultimately be assembled at the cell surface. We describe in the next sections our current 

knowledge of these steps in LPS transport.

Crossing the IM: MsbA

Transport of the core-lipid A molecule from the inner leaflet to the outer leaflet of the IM is 

mediated by a homodimer of MsbA, a flippase that belongs to the ABC transporter 

superfamily (Fig 8) (33, 136-138). MsbA was first characterized as a multicopy suppressor 

of the loss of LpxL (previously known as HtrB) activity, and was named accordingly 

(multicopy suppressor of htrB A) (136). It would not be until years later that the flippase 

activity of MsbA was demonstrated, both by the accumulation of LPS in the cytoplasmic 

side of the IM upon MsbA depletion and the in vitro reconstitution of functional MsbA (139, 

140). Recent structural studies of MsbA have put forth a model in which LPS directly enters 

a largely hydrophobic cavity within the MsbA homodimer (141, 142). Interestingly, this 

cavity is localized in the outer leaflet of the IM, indicating that LPS traverses the IM before 

being flipped (141, 142). Interactions between this cavity and the lipid A moiety of LPS, 

together with ATP hydrolysis by MsbA, cause conformational changes in MsbA that lead to 

the exposure of this cavity to the aqueous periplasmic environment to drive LPS into the 

outer leaflet of the IM in concert with the closing of the cavity (141). These studies suggest 

that interaction between positively charged residues within the cavity and the phosphates of 

lipid A serve as recognition determinants for LPS by MsbA (141, 142). Moreover, the 
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placement of these interactions has been proposed to favor accommodation of shorter acyl 

chains within the cavity, which may serve to discriminate against flipping of phospholipids 

(142). It has also been revealed that MsbA’s substrate specificity likely drives the 

requirement for Kdo2-lipid A as the minimal LPS structure. Flipping of LPS by MsbA is 

most efficient when the glycolipid contains the late-stage acyl chains, which are added by 

LpxL and LpxM after the addition of the first two Kdo residues (143-145). The requirement 

for Kdo2-lipid A as the minimal LPS structure is thus primarily a reflection of the preference 

of MsbA for hexacylated substrates (142).

From the IM to the OM: the Lpt system

After its translocation across the IM by MsbA, and possibly undergoing the addition of the 

O antigen and other chemical modifications (e. g. by the addition of L-Ara4N and PEtN) at 

the outer leaflet of the IM, LPS must be transported across the periplasm and OM. This 

transport necessitates the extraction of LPS from the IM, the sheltering of its acyl moieties 

as it traverses the aqueous periplasm, and finally, its translocation across the OM to arrive at 

its final destination in the outer leaflet of the OM. All of these processes are mediated by a 

protein complex, termed the Lpt complex (Fig 8) (1). The Lpt complex is composed of seven 

different proteins that span all compartments of the cell: LptB in the cytoplasm; LptF, LptG, 

and LptC in the IM; LptA in the periplasm, and LptD and LptE in the OM (1, 146). A dimer 

of LptB proteins together with LptF and LptG form the ABC transporter LptB2FG. LptB 

constitutes the nucleotide-binding domains (NBDs) that bind and hydrolyze cytoplasmic 

ATP to power the transport of LPS from the IM to the OM (147, 148). Recent structural 

studies have revealed that LptF and LptG, the transmembrane domains of the LptB2FG ABC 

transporter, form a cavity that is predicted to accommodate LPS during its extraction from 

the IM (149-151). Whether or not the bitopic IM protein LptC is involved in the extraction 

process is still somewhat unclear, though it is worth noting that its single transmembrane 

domain is dispensable for function (152). While the precise mechanism of extraction of LPS 

from the IM remains to be elucidated, it is known that, eventually, LPS makes its way to the 

periplasmic domain of LptC (146, 148). The periplasmic domain of LptC consists of a series 

of antiparallel β-strands arranged to form a β-jellyroll domain that contains a hydrophobic 

groove that is thought to shelter the acyl chains of LPS during its transit across the periplasm 

(153, 154). LptA and the periplasmic domain of LptD, LptF, and LptG possess similar β-

jellyroll folds. Moreover, the β-jellyroll domains of LptC, LptA, and LptD have been shown 

to associate in a head-to-tail manner to extend the hydrophobic groove across the periplasm 

(154-156). These domains in LptCAD are thus thought to form a bridge extending across the 

periplasm through which LPS can travel to reach the OM. In support of this model, LPS has 

been covalently cross-linked to each individual member of this bridge, and the in vitro 
reconstitution of LPS transport requires the formation of a bridge composed of the Lpt 

periplasmic components (148, 157, 158). It is worth noting that in addition to its ability to 

associate with LptC and LptD at either end of the bridge, LptA can also form homo-

oligomeric complexes (154, 159). As such, it is possible that more than one LptA protein 

may be incorporated into the Lpt complex. However, the ability of an LptA variant deficient 

in homo-oligomerization to complement the deletion of the native IptA gene in E. coli may 

suggest that one subunit of LptA per complex is sufficient under normal growth conditions 

(160). Nevertheless, a recent study has demonstrated that, in Salmonella, the width of the 
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periplasm (i. e. the distance between the IM and OM) can be modulated by altering the 

length of Lpp, the OM lipoprotein that covalently tethers the OM to the peptidoglycan layer 

(161). It is therefore tempting to suggest that the number of LptA proteins per Lpt bridge 

might change depending on the width of the periplasm.

Upon arrival at the OM, LPS must be specifically inserted into the outer leaflet, a process 

mediated by LptD and LptE (146). The membrane-associated portion of LptD is a large, 

crenellated β-barrel, in which hydrogen bonding between strands is disrupted along the first 

and last β strands, creating a crenellation, or small gap (146, 156). LptE is a lipoprotein that 

resides in the lumen of the barrel portion of LptD (162). Together LptD and LptE are 

proposed to form the OM translocon responsible for the insertion of LPS into the outer 

leaflet of the OM. Based on structural studies, it has been proposed that when LPS arrives at 

the periplasmic β-jellyroll domain of LptD, its acyl chains are directly deposited into the 

hydrophobic environment of the OM through a gap that exists between this periplasmic 

domain and the β-barrel domain of LptD; the crenellation of LptD may then provide for a 

means by which the barrel might open enough to allow lateral passage of the hydrophilic 

portion of LPS through the lumen of LptD and out into the OM (156). The role of LptE is 

unclear, but its high affinity for LPS suggests that it is more than simply a plug for the LptD 

barrel (163, 164). It has also been demonstrated that LptE plays a critical role in the proper 

assembly of LptD in the OM (162, 165).

Together, these data have led to the so-called “PEZ Model” of Lpt-mediated LPS transport 

(146). This model likens LPS to the originally Austrian PEZ candies, and the Lpt transport 

machinery to the mechanical PEZ candy dispenser invented by Oskar Uxa. Such a dispenser 

works by way of a spring-loaded platform at the base of the dispenser, which pushes a stack 

of PEZ candies up through the central channel of the dispenser, so that a candy is always 

present at the exit of the dispenser and ready to be taken and consumed by the user. 

Likewise, this model predicts that LPS travels as a stream of molecules, and that the driving 

force of LPS transport by the Lpt machinery is derived from the LptB2FG transporter at the 

base of the periplasmic channel formed by LptCAD. Accordingly, the LptB2FG transporter 

acts much like the spring-loaded platform of a PEZ dispenser by providing constant pressure 

to the base of the traveling LPS stream by constantly loading new LPS molecules into the 

channel. Thus, in this model, the channel formed by LptCAD is largely passive in transport, 

simply providing a compatible route by which LPS molecules might traverse the aqueous 

periplasm prior to their assembly at the cell surface through the action of the LptDE 

translocon, which, like the top of the PEZ dispenser, opens up to deliver its cargo. 

Importantly, the recent in vitro reconstitution of LPS transport supports the PEZ model for 

LPS transport (146, 158). This great technical achievement has demonstrated that transport 

of LPS can occur in an ATP-dependent manner between IM-like (i..e. containing 

LptB2FGC) and OM-like (containing LptDE) proteoliposomes only when they are 

physically connected by soluble LptA.

Concluding remarks

Although much is known about the complex structure, synthesis, regulation, and transport of 

LPS, fundamental questions remain unanswered. In particular, the mechanism of transport 
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for this complex glycolipid, as well as the regulation of LPS biosynthesis are highly active 

fields of investigation. Additionally, as the means for culturing different organisms and 

characterizing LPS modifications become more sophisticated and available, the various 

strategies employed by Gram-negative bacteria to adapt their cell surfaces to their 

environment through nonstoichiometric modification of LPS are coming under heavy 

scrutiny.

In addition, the rather curious fact that LPS is essential in most, but not all, Gram-negative 

bacteria has recently received considerable attention. Efforts to elucidate why that is have 

primarily centered around those organisms in which LPS is not essential, which include 

Neisseria meningitidis, Acinetobacter Baumannii, and Moraxella catarrhalis (35, 166-168). 

The best studied of these cases is that of A. baumannii, for which LPS essentiality has been 

linked to the activity of the peptidoglycan cell wall polymerase PBP1A (169). However, the 

precise mechanisms underlying the essentiality of LPS for A. baumannii, as well as other 

organisms, remain to be clarified. For a more in-depth review of the topic, the reader is 

directed to (170).

LPS biogenesis has also received attention as a potential drug target to treat infections 

caused by Gram-negative bacteria. Inhibitors of LPS biogenesis could kill organisms in 

which the glycolipid is essential, but they could also render all LPS producers highly 

permeable to other antibiotics. Several compounds that inhibit LPS biosynthesis and 

transport have been developed, and some are undergoing clinical trials, but no compound has 

been approved yet for clinical use (171-174). We can only hope that enhancing our 

understanding of LPS biogenesis will in turn bolster our ability to produce clinically relevant 

inhibitors, as well as facilitate our understanding of bacterial lifestyles as a whole.
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Fig. 1: Architecture of the Gram-negative cell envelope.
A) Depiction of the Gram-negative cell envelope and its components. The inner membrane 

(IM) contains phospholipids, while the outer membrane (OM) contains phospholipids in the 

inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. B) Structure of prototypical 

LPS produced by E. coli (shown is the core structure associated with core type K-12).
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Fig. 2: Lipid A biosynthesis pathway.
Modifications to the preceding structure made by each enzyme in the pathway are marked in 

red, with the exception of the last step, where the modifications made by LpxL and LpxM 

are colored in red and blue, respectively. Donor molecules are not shown. At low 

temperatures, LpxP acts instead of LpxL to add a C16:1 palmitoleoyl group instead of a 

lauroyl group.
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Fig. 3: Structure and biosynthetic enzymes of the E. coli K-12 core oligosaccharide.
Numbers represent bond positions between sugars. Note that nonstoichiometric 

modifications are not shown. All linkages are α-anomeric unless preceded by the β symbol, 

which specifies the β-anomeric state. Enzyme names are boxed, with arrows indicating the 

linkages they catalyze. It is worth noting that, while the O-antigen ligation site is indicated, 

E. coli K-12 does not typically produce O antigen due to an ancestral mutation that 

inactivates its synthesis.
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Fig. 4: Structure of various core oligosaccharides.
Shown are the known core types in E. coli (R1-R4, K-12) and S. enterica (serovar 

typhimurium, Arizonae III A). Numbers represent bond positions between sugars. Note that 

nonstoichiometric modifications are not shown. All linkages are α-anomeric unless preceded 

by the β symbol, which specifies the β-anomeric state.
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Fig. 5: Summary of different O-antigen synthesis pathways.
GT stands for glycosyltransferase, and for the purposes of illustration represents all GTs 

required to generate the O-antigen. [O] represents a repeating unit of the O-antigen, while 

the subscript represents the number of repeats present (n being an arbitrary integer). 

Individual sugar units are represented by “S” inside a hexagon, and are shown bound to an 

arbitrary nucleotide carrier NDP. The lipid carrier is Und-P.
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Fig. 6: Modifications to the structure of lipid A.
Shown are modifications made to lipid A described in the text, alongside the enzymes which 

mediate them in corresponding colors. A) Modifications made to the glucosamine 

phosphates. While shown in their preferred positions, it is possible for either phosphate to be 

modified with either substituent. B) Modifications made to the acyl groups. The X indicated 

for LpxO is a hydroxyl (−OH) when LpxO is active, and a hydrogen (−H) when it is not. 

When acyl chains are removed, the cleaved bond is shown as a dotted line. It is important to 

note that LpxP is part of the conserved Raetz pathway but only active at low temperatures, at 

which LpxP substitutes for LpxL to add a C16:1 palmitoleoyl group instead of a lauroyl 

group.
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Fig. 7: Modifications to the structure of the core oligosaccharide.
Shown is the conserved inner core oligosaccharide (and its linkage to lipid A) in black, with 

potential modifications being indicated in red (though the alternate rhamnose modification 

by WaaS when the second Kdo is modified with PEtN by EptB is shown in blue). Numbers 

represent bond positions between sugars. Enzymes mediating modifications are next to each 

linkage, and when not associated with E. coli K-12, core type associations are listed in 

parentheses beside the modification.
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Fig. 8: Transport of LPS across the cell envelope.
Shown are representations of MsbA, which mediates the transport of core-lipid A across the 

IM, and the Lpt complex (LptB2FGCADE), which mediates LPS extraction from the IM and 

its transport through the periplasm and OM. As described in the text, the O antigen can be 

synthesized on Und-P and transported across the IM by different pathways (Fig. 5). If made, 

the O antigen is ligated to core-lipid A in the periplasmic leaflet of the IM by WaaL (not 

shown).
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