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Abstract

Trial-to-trial variability in the execution of movements and motor skills is ubiquitous, and widely 

considered to be the unwanted consequence of a ‘noisy’ nervous system. However, recent studies 

have suggested that motor variability may also be a feature of how sensorimotor systems operate 

and learn. This view, rooted in reinforcement learning theory, equates motor variability with 

purposeful exploration of motor space that, when coupled with reinforcement, can drive motor 

learning. Here we review studies that explore the relationship between motor variability and motor 

learning both in humans and animal models. We discuss neural circuit mechanisms that underlie 

the generation and regulation of motor variability and consider the implications that this work has 

for our understanding of motor learning.
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Introduction

Improving performance, whether on the tennis court or in front of the piano, often means 

reducing the variability of our actions. Yet, no matter how hard we practice, generating 

identical movements on successive trials is virtually impossible. But why is it so hard to 

tame performance variability? One reason is that our actions are generated by an inherently 

‘noisy’ nervous system (Faisal et al., 2008; Renart and Machens, 2014; Stein et al., 2005). 

This ‘noise’ results from stochastic events at the level of ion channels (White et al., 2000), 

synapses (Calvin and Stevens, 1968), and neurons (Mainen and Sejnowski, 1995), and 

further from instabilities in the dynamics of neural networks (Babloyantz et al., 1985; 

Vreeswijk and Sompolinsky, 1996). These processes combine to add uncertainty and 

randomness to how the brain operates and generates movements. It is widely believed that 

motor control is optimized for current performance, and that variability that interferes with 

this goal should be minimized or countered (Harris and Wolpert, 1998; Todorov and Jordan, 

2002).
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However, there is a complementary view of motor variability that suggests that it may be a 

feature of how sensorimotor circuits operate and learn (Herzfeld and Shadmehr, 2014; 

Tumer and Brainard, 2007; Wu et al., 2014). This view is best appreciated from the 

perspective of the novice who has to acquire a new task and for whom variability in motor 

output can be construed as a means of exploring motor space (Figure 1). Through a process 

of trial-and-error, such exploration could, in line with reinforcement learning theory 

(Kaelbling et al., 1996; Sutton and Barto, 1998), steer the motor system towards new control 

policies and patterns of motor activity that improve performance and reduce costs 

(Shadmehr et al., 2016). In this view, motor variability is to skill learning what genetic 

variation is to evolution: an essential component of a process that, through selection by 

consequence, shapes adaptive behaviors (Skinner, 1981).

This review is not about whether motor variability is good, bad, a feature or a bug, nor are 

we implying that there is a dichotomy to be resolved. Indeed, there is little doubt that in 

many situations and for many facets of motor control, uncertainty and noise in neural 

function, and the motor variability it gives rise to, is undesirable. But while this perspective 

has been treated and discussed extensively in the literature (Braun et al., 2009; Franklin et 

al., 2012; Harris and Wolpert, 1998; Izawa and Shadmehr, 2008; Izawa et al., 2008; Kording 

and Wolpert, 2004; Newell, 1993; Todorov, 2004; Todorov and Jordan, 2002), less attention 

has been given to how motor variability could augment the process of motor learning (Figure 

1). To what extent, and under what circumstances, can motor variability be harnessed to 

improve future performance? Does the nervous system regulate and shape motor variability 

to promote learning, and if so, how does it do it? Here we review recent studies related to 

these questions, discuss current views of motor variability, and identify research directions 

that may further advance our understanding of the role of motor variability in learning.

Neural sources of motor variability

Movements are the result of tightly choreographed patterns of muscle activity generated by a 

network of hierarchically organized motor controllers (Lemon, 2008). In principle, motor 

variability can arise at any level of the motor pathway, from variation in movement planning 

by central circuits, to noise in force production by muscles (Figure 2). The motor system 

could take advantage of such variability if it can reproduce neural activity patterns that 

generate successful outcomes. However, little is known about whether and how variability at 

various levels of motor planning and control is harnessed to drive improvements in behavior. 

Below, we review possible sources of motor variability and discuss their relevance to motor 

learning.

Broadly speaking, variability in sensorimotor systems can originate at both cellular and 

network levels (Faisal et al., 2008; Renart and Machens, 2014). At the cellular level, ‘noise’ 

comes from stochastic biophysical and chemical events that underlie processes such as spike 

initiation (van Rossum et al., 2003; Schneidman et al., 1998; White et al., 2000) and 

propagation (Faisal and Laughlin, 2007; Horikawa, 1991), synaptic transmission (Calvin and 

Stevens, 1968; Katz and Miledi, 1970), and muscle activation (Clamann, 1969; Hamilton et 

al., 2004; Jones et al., 2002). Different neural network architectures can then either amplify 

or dampen such noise (Faisal et al., 2008). For instance, instabilities in recurrent network 
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dynamics can magnify variability caused by ‘noisy’ neurons (Babloyantz et al., 1985; 

Litwin-Kumar and Doiron, 2012; London et al., 2010; Vogels et al., 2005), while pooling 

across them can enhance correlated signals and reduce the effects of noise (Bruno and 

Sakmann, 2006; Diesmann et al., 1999).

Variability in the motor system (Figure 2) has perhaps been most extensively characterized 

at the motor periphery (van Beers et al., 2004; Clamann, 1969; Hamilton et al., 2004; Jones 

et al., 2002). Studies have shown signal dependent noise in force production, i.e. trial-to-trial 

fluctuations that scale linearly with mean force, reflect a fundamental property of muscle 

function (van Beers et al., 2004; Clamann, 1969; Hamilton et al., 2004; Jones et al., 2002). 

Because of its uncontrollable nature, such peripherally derived variability, often referred to 

as ‘execution noise’ (van Beers et al., 2004) (Figure 2), may not be well-suited for learning-

related motor exploration. Rather, the motor system may have evolved strategies to decrease 

it in order to increase movement accuracy. This very idea has inspired an influential set of 

theories and models (Fitts, 1954; Harris and Wolpert, 1998) that can predict kinematic 

features of a range of movements, from eye saccades to limb reaches (van Beers, 2007; van 

Beers et al., 2004; Harris and Wolpert, 1998).

In contrast, variability in central planning circuits may be better suited for learning-related 

motor exploration (Figure 2). These circuits have more ready access to reinforcement signals 

(Björklund and Dunnett, 2007; Schultz, 1998), and show more experience-dependent 

plasticity (Doyon and Benali, 2005; Nudo et al., 1996; Sanes and Donoghue, 2000). But 

gauging how higher-order motor circuits contribute to movement variability can be difficult 

because activity patterns related to motor planning are often intermixed with reafferent 

signals reflecting past (or ongoing) movements and task performance (Flament and Hore, 

1988; Kakei et al., 1999; Lauwereyns et al., 2002) (Figure 2).

One way to reduce contamination from reafference is to record in delayed response tasks, in 

which subjects have to withhold a prepared movement until a ‘go’ cue is presented. Using 

such a behavioral paradigm, Churchland and Shenoy (Churchland et al., 2006) found that a 

significant fraction – up to half – of the trial-to-trial variability in reach velocity could be 

explained by the firing rates of cortical neurons in the period prior to movement initiation, 

even in the case of well-practiced movements.

Besides reflecting cellular and network ‘noise’, trial-to-trial variability in motor output can 

also be deterministic. For example, task structure and fluctuations in reward expectation can 

contribute predictable variability in kinematics and motor timing (Haith et al., 2012; 

Kawagoe et al., 1998; Marcos et al., 2013; Opris et al., 2011; Takikawa et al., 2002). Error-

correcting motor learning processes can similarly generate predictable changes in motor 

output (Baddeley et al., 2003; van Beers, 2009; Scheidt et al., 2001; Smith et al., 2006). 

Whether such deterministic changes can double as exploratory motor variability that drives 

motor learning (Figure 1) remains to be understood.
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Reinforcement learning: a natural framework for linking motor variability 

and learning

The process of updating a system by reinforcing states that lead to favorable outcomes forms 

the basis of reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998) - a 

computational framework that has illuminated a variety of different learning and decision 

making processes (Lee et al., 2012; Niv, 2009) as well as inspired algorithms for machine 

learning (Alpaydin, 2014; Sutton and Barto, 1998). Reinforcement learning also provides 

the theoretical foundation for operant conditioning, a powerful training method that is 

predicated on the idea that reinforced behaviors become more frequently expressed (Skinner, 

1948, 1963; Thorndike, 1898)

A major difference with other forms of learning is that reinforcement learning explicitly 

requires exploration. The agent probes the consequences of various actions and registers or 

updates their values, a process that allows it to adaptively and contextually regulate the 

expression of the probed actions. There is increasing evidence that the brain implements the 

computations predicted by reinforcement learning theory (Daw et al., 2006; Eshel et al., 

2015; Lee et al., 2012; Niv, 2009; Schultz et al., 1997; Wunderlich et al., 2009).

But while reinforcement learning has proven a powerful framework for decision making, i.e. 

the process of selecting an action from a discrete set of options, learning and generating the 

details of those actions pose very different challenges. Not only are the neural circuits 

involved in motor control likely distinct from those that implement higher-order decision 

making, but the dimensionality and complexity of the ‘decisions’ that the motor system 

makes are of a different magnitude. This is because ‘motor decisions’ are made in the high-

dimensional and continuous space of possible movement patterns and implemented by a 

highly redundant motor system with many degrees of freedom (Bernshteĭn, 1967; Lashley, 

1933).

Standard reinforcement learning algorithms, well suited to low-dimensional tasks such as 

choosing between discrete options, may not scale well to more complex tasks (Parr, 1998; 

Peters and Schaal, 2008), raising the question of whether they represent effective strategies 

for motor learning. Indeed, the oft-discussed ‘curse of dimensionality’, which describes the 

fact that the size of the solution space explodes as the complexity of a task or its control 

increases, presents a formidable challenge not only for reinforcement learning algorithms, 

but virtually any type of machine learning (Bellman, 1957). The success of deep learning 

networks in solving complex decision and classification problems have, in large part, been 

due to the use of convolutional network architectures that dramatically reduce the 

dimensionality of the solution space by enforcing highly symmetric patterns in the weights 

to be learned (LeCun et al., 2015; Simonyan and Zisserman, 2014).

Another key to the success of deep learning networks has been the use of unsupervised 

methods to pre-train networks based on the statistics of the input data (Hinton et al., 2006; 

LeCun et al., 2015; Lee et al., 2009). This pre-training can serve to get the network into a 

fertile part of solution space before the exploratory phase of training starts. For 

reinforcement learning problems, a similar narrowing of solution space can be achieved by 
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using imitation as a preamble to reinforcement learning (Kormushev et al., 2010; Price and 

Boutilier, 2003). After emulating the behavior of an expert tutor, local trial-and-error 

learning can start off in the neighborhood of an approximate solution. For example, 

“AlphaGo”, Google’s recently unveiled agent for playing the popular board game “Go” was 

created using this general approach (Silver et al., 2016).

Other solutions for making reinforcement learning algorithms work with more complex 

problems, such as hierarchical reinforcement learning algorithms (Botvinick, 2012; Parr, 

1998), policy gradient methods (Peters and Schaal, 2008), and value decomposition 

(Gershman et al., 2009), also aim to break down the complexity of the learning problem into 

smaller, more manageable chunks or policies. While the extent to which the nervous system 

implements such strategies remains to be understood, a recent study on songbirds provides 

some intriguing clues. Using a reinforcement learning paradigm to change temporal and 

spectral features of the song independently, Ali and colleagues showed that the song circuit 

modularizes song learning by implementing separate reinforcement learning processes for 

spectral and temporal aspects of song (Ali et al., 2013).

Songbird studies linking motor variability and learning

Despite a powerful theoretical framework linking variability and reinforcement learning, the 

degree to which motor variability is conducive for motor learning remains debated (Cohen 

and Sternad, 2008; He et al., 2016; Wu et al., 2014). A direct demonstration of how 

variability can be used as a substrate for motor learning came from Tumer and Brainard’s 

experiments in songbirds (Tumer and Brainard, 2007). Though adult birds sing highly 

stereotyped songs, small rendition-to-rendition variability in, for example, the pitch of their 

vocalizations can be detected in real-time. When a negative reinforcer, in the form of a loud 

noise burst, was delivered following certain pitch variants, the song gradually and 

persistently shifted away from those. This suggests that variability even in well-learned 

skills can reflect meaningful motor exploration that supports continuous learning and 

optimization of performance (Tumer and Brainard, 2007).

Taking it a step further, Andalman and Fee (Andalman and Fee, 2009) examined the neural 

mechanisms underlying this reinforcement learning process and found that the error-

correcting signal that drives learning is contributed by the output of the anterior forebrain 

pathway (AFP), LMAN, i.e. the same brain region that introduces much of the exploratory 

motor variability (Figures 3C–E) (see also (Warren et al., 2011)). This suggests a two-stage 

learning process, where reinforcement learning in the AFP produces an error-correcting pre-

motor signal at the level of LMAN, which then biases the motor output (here, the pitch) in a 

more favorable direction. This error-correcting bias then becomes incorporated into the 

motor pathway over time (Andalman and Fee, 2009; Tesileanu et al., 2016; Warren et al., 

2011).

Though the AFP is essential for song learning, its output, LMAN, is only responsible for 

about half of the rendition-to-rendition variability in adult birdsong (Kao et al., 2005), 

raising the question of whether the reinforcement learning algorithm implemented in the 

AFP can make use of motor variability originating elsewhere in the song circuit. Using a 
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pharmacological strategy to reduce LMAN’s contribution to variability while keeping the 

AFP circuit otherwise unperturbed, Charlesworth and colleagues (Charlesworth et al., 2012) 

argued that the error-correcting learning signal mediated by LMAN can be built from 

variability contributed by other parts of the circuit. This implies that the AFP has an 

efference or sensory copy of this variability, and uses it to adaptively update its output. This 

is important because it suggests that exploratory variability need not be generated by the 

circuits implementing the reinforcement learning, as long as information about the 

variability is relayed to those circuits.

The role of variability in human motor learning

Work in songbirds showed that the brain can actively generate and make use of motor 

variability for the purpose of learning (Kao et al., 2005; Ölveczky et al., 2005; Tumer and 

Brainard, 2007) (Figure 3). Picking up this thread, Wu and colleagues set out to test whether 

this may generalize to human motor learning (Wu et al., 2014). They argued that if motor 

variability is conducive for learning, then its structure and magnitude should predict learning 

ability across individuals and tasks. They first tested their hypothesis in a reinforcement 

learning-based paradigm, in which subjects were trained to modify the trajectories of 

ballistic reaching movements to better approximate one of two predefined shapes (Figure 

4A). The subject were not aware of the shapes, but received a numerical ‘reward’ after each 

trial reflecting how well they had done.

The authors found that learning rates depended strongly on the degree to which the subjects’ 

baseline motor variability aligned with the prescribed shapes, with higher task-relevant 

variability predicting faster learning rates both across different tasks and across individuals 

within a single task (Figure 4). These results demonstrate that the human brain can make use 

of trial-to-trial motor variability to update control policies and motor output in a 

reinforcement learning paradigm.

To probe whether their findings generalize also to other forms of learning, the authors 

similarly probed the relationship between variability and learning in an error-based motor 

adaptation paradigm. Here, subjects were tasked with modifying target-specific reaching 

movements in response to external force-field perturbations. This form of learning is 

typically framed as an example of optimal feedback control and believed to rely on sensory 

prediction errors updating an internal model that is used in generating motor output, i.e. 

deterministic processes that are corruptible by ‘noise’ (van Beers et al., 2013; Haith and 

Krakauer, 2013; Krakauer and Mazzoni, 2011). Surprisingly, the results were similar to the 

reinforcement learning paradigm, with higher task-relevant variability predicting faster 

learning rates both across subjects and tasks. This suggests a broader role for variability in 

motor learning, including also in error-based paradigms. Whether this reflects a contribution 

of reinforcement learning processes to learning driven by sensory prediction errors remains 

to be better understood (Huang et al., 2011; Wu et al., 2014).

Confusing matters a bit, a recent study using a visuomotor adaptation paradigm did not find 

a clear relationship between motor variability and the rate of motor adaptation (He et al., 

2016). Though there were several methodological differences between this and the previous 
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study (Wu et al., 2014), the difference in how baseline variability was estimated may help 

resolve the discrepancy and further illuminate the relationship between variability and 

learning. In contrast to the earlier study, He and colleagues measured baseline variability 

with task-relevant feedback available to subjects (i.e. they could see how their movements 

deviated from the desired trajectory). This is pertinent because such task-relevant feedback 

allows ‘errors’ in the brain’s internal model for generating movements, also referred to as 

‘planning noise ’ (Figure 2), to be corrected (van Beers et al., 2013; Scholz and Schöner, 

1999). In the absence of feedback, such ‘errors’ could accumulate, leading to slow drift in 

motor output (van Beers, 2009; van Beers et al., 2013). Central planning circuits, which have 

ready access to task-related feedback and whose neural activity patterns exhibit slow drift 

correlated with behavior (Chaisanguanthum et al., 2014), are likely to be the main source of 

this variability.

In contrast, variability from ‘execution noise’, which probably originates in the motor 

periphery (Figure 2), is not expected to accumulate, even in the absence of corrective 

feedback (van Beers, 2009; van Beers et al., 2013). This means that estimates of motor 

variability made with task-relevant feedback, as in He et al., may emphasize execution noise 

over planning noise, while estimates made without feedback, as in Wu et al, may primarily 

reflect planning noise because it allows drift in central planning circuits to contribute more 

to total motor variability.

If differential access to task-relevant feedback indeed explains the discrepancy between the 

two studies, and this remains to be rigorously tested, it would support the idea that motor 

variability originating from central circuits (i.e. ‘planning noise’) is the main substrate for 

learning-related motor exploration.

Learning-dependent regulation of motor variability

Given that motor variability can be beneficial for learning new motor skills, but detrimental 

for expert performance, it would be desirable to regulate it in a way that optimizes its utility. 

In the context of reinforcement learning, how much to explore (i.e. vary motor output) 

relates to the exploration-exploitation dilemma (Kaelbling et al., 1996; Sutton and Barto, 

1998). Simply put, the dilemma is whether to explore new options (e.g. actions or movement 

patterns) or exploit those with known values. How the nervous system deals with this 

dilemma has been studied extensively in the context of decision making (Cohen et al., 2007), 

but less so in the realm of motor control. However, reinforcement learning theory gives an 

intuition for how variability should be regulated. First, exploration should decrease with 

practice as more information becomes available about the values of various actions (Figure 

1). Second, the reward-context in which actions are generated should influence the relative 

amount of variability, with more exploitation in high-stakes situations. This is because there 

is more to lose from exploring when more is on the line. Third, if the relative reward of an 

action is reduced, it could signal that the overall reward landscape has changed, and that the 

system should explore (i.e. increase motor variability) to find better solutions.

In agreement with the first point, trial-to-trial variability does generally decrease with 

practice (‘practice makes perfect’). Much of what we know about the neural circuit 
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mechanisms underlying such learning-related decreases in motor variability comes, yet 

again, from research in songbirds. As discussed above (Box 1), song variability in juvenile 

birds is, in large part, generated by the AFP, through LMAN’s projection to RA neurons 

(Figures 3C–E). This projection dominates and drives the RA motor program, and 

consequently the song, early in learning (Aronov et al., 2008; Ölveczky et al., 2011). Since 

the activity patterns of LMAN neurons vary across renditions (Hessler and Doupe, 1999; 

Kao et al., 2008; Ölveczky et al., 2005), this results in variable song in juveniles (Figures 

3C–E).

Box 1

What songbirds tell us about motor variability and learning (with Figure 3)

The question of whether and how variability can be harnessed for learning has been most 

thoroughly examined in the zebra finch, a songbird that learns its courtship vocalization 

early in life by first listening to a tutor, then engaging in trial-and-error motor learning to 

copy the memorized song (Immelmann, 1969; Tchernichovski et al., 2001) (Figures 

3A,B). Vocal control circuits in songbirds are organized into two main pathways: the 

descending motor pathway, comprising nuclei HVC and a downstream motor cortex 

analogue RA (Simpson and Vicario, 1990; Yu and Margoliash, 1996), and the anterior 

forebrain pathway (AFP), a song-specialized basal ganglia-thalamo-cortical circuit that 

indirectly connects HVC and RA (Perkel, 2004) (Figure 2A). The song, learned early in 

life by imitating a tutor, is encoded and generated by the motor pathway (Fee and Scharff, 

2010). The AFP is important for song learning, but not for producing the song in the 

adult bird (Bottjer et al., 1984; Scharff and Nottebohm, 1991). Its output nucleus, LMAN, 

projects to RA and introduces variability into the RA motor program and, consequently, 

the song (Kao et al., 2005; Ölveczky et al., 2005, 2011). If activity in LMAN is silenced, 

the otherwise variable juvenile song becomes highly stereotyped (Ölveczky et al., 2005) 

(Figure 3C,D), and if LMAN is lesioned in juvenile birds, the song learning process stalls 

(Bottjer et al., 1984). Furthermore, LMAN neurons generate activity patterns that vary 

from song-to-song, consistent with a role for LMAN in inducing motor variability 

(Ölveczky et al., 2005, 2011) (Figure 3E). These results suggest that variability is not 

simply due to intrinsic noise in the descending motor pathway, but introduced into RA by 

a dedicated, parallel circuit that is required for song learning.

As learning proceeds, control of the RA motor program gradually shifts away from LMAN, 

which is variable, to HVC, which produces stereotyped activity patterns (Hahnloser et al., 

2002), resulting in less variable song late in learning (Aronov et al., 2008). Probing the 

synaptic connectivity in RA over the course of song learning, Garst et al showed that this 

shift in control happens not by changing the overall strength of HVC and LMAN input to 

RA, but rather by strengthening and pruning HVC to RA connections (Garst-Orozco et al., 

2015). Such learning-related synaptic reorganization renders the variable LMAN input to 

RA less effective, leading to more stereotyped song.

Regulating motor variability through learning-related reorganization of action-specific 

synapses lends considerable flexibility to the process of motor sequence learning, as it 
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selectively reduces variability in action elements that have been mastered, while allowing 

continued exploration in others (Ravbar et al., 2012). Intriguingly, learning-related synaptic 

changes akin to those described in songbirds, have been observed also in mammalian motor 

cortex (Fu et al., 2012; Wang et al., 2011; Xu et al., 2009), suggesting that it may be a 

general mechanism for regulating motor variability as a function of learning.

Context-dependent regulation of motor variability

As discussed above, reinforcement learning theory favors exploitation when stakes are high, 

and exploration when they are not (Sutton and Barto, 1998). There is evidence that the 

nervous system regulates variability in such a context-dependent manner, producing more 

reproducible output in high-reward situations. Experiments in a wide range of species, 

including rodents (Gharib et al., 2001, 2004), pigeons (Stahlman and Blaisdell, 2011; 

Stahlman et al., 2010) and monkeys (Takikawa et al., 2002), have shown that animals 

generate more variable actions when they have been cued to expect less reward. In motor 

learning, however, reward expectations are typically set by performance history, not sensory 

cues. To investigate the influence of reward history on motor variability, a recent study in 

humans (Pekny et al., 2015) manipulated the reward probability for reaching movements. 

Increasing or decreasing reward probabilities caused arm movements to become less or more 

variable respectively, suggesting that reward context can have a causal effect on the degree 

of motor variability.

A similar form of context-dependent regulation of motor variability is seen also in 

songbirds, where high-stakes situations equate to those in which songs are directed to 

potential partners (directed singing). Songs are significantly less variable during directed 

singing than when birds sing undirected song (Kojima and Doupe, 2011). The circuit 

mechanisms for this social context-dependent regulation of variability involves a dopamine-

dependent switch in AFP circuit dynamics (Leblois, 2013), which results in less bursty and 

more regular firing in LMAN neurons when a female (and dopamine) is present (Hessler and 

Doupe, 1999; Kao et al., 2008; Woolley et al., 2014). This mechanism is distinct from 

learning-related reduction in variability, which involves reorganization of synaptic 

connectivity within the descending motor pathway (Garst-Orozco et al., 2015), suggesting 

(at least) two independent ways of regulating motor variability for the same behavior.

Compared with songbirds, less is known about context-dependent regulation of motor 

variability in mammals. An important context for any action is its reward landscape (Figure 

1). Detecting changes in reward contingencies requires subjects to compare past and present 

performance, yet it is unclear over what timescales the brain tracks performance history, how 

changes in reward landscape are assessed, and how these computations ultimately regulate 

motor variability. In their recent study, Pekny et al. (Pekny et al., 2015) trained human 

subjects in a reinforcement learning task to reach towards a hidden target. A trial-by-trial 

analysis suggested that motor variability is modulated by the outcome of the past 2–3 trials. 

However, the analysis may have been confounded by trial-to-trial correlations in task 

performance (van Beers et al., 2013; Chaisanguanthum et al., 2014) that make it difficult to 

establish causal relationships between reward history and motor variability. In other words, it 

could have been an increase in motor variability that led to decreased reward rates, rather 
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than vice versa. Overcoming these confounds requires controlling for long-term 

performance history, which is easier done with datasets containing large number of trials. 

Although collecting such large datasets can be cumbersome in human subjects, it is 

becoming increasingly feasible in rodents (Poddar et al., 2013). Efforts to interrogate the 

effect of reward history on motor variability in rodents are currently underway (Miyamoto et 

al., 2015).

If the mammalian brain monitors the reward landscape and regulates motor variability based 

on it, where are these computations implemented? Studies on decision making have 

implicated basal ganglia circuits (Hamid et al., 2016; Hikosaka et al., 2014; Samejima et al., 

2005; Schultz et al., 2003; Tai et al., 2012; Wang et al., 2013) as well as prefrontal regions 

(Matsumoto et al., 2003; Roesch and Olson, 2004; Wunderlich et al., 2009) in encoding 

action values. The basal ganglia are also thought to be involved in invigorating movements 

associated with greater reward (Hamid et al., 2016; Kawagoe et al., 1998; Lauwereyns et al., 

2002; Wang et al., 2013). Whether similar neural substrates are involved in regulating motor 

variability in a reward-history dependent manner remains to be understood.

Motor variability can further be determined and shaped by the nature and reliability of task-

related sensory feedback (Osborne et al., 2005). For instance, Izawa and Shadmehr (Izawa 

and Shadmehr, 2011) found that trial-to-trial motor variability increased substantially when 

humans were learning from binary reward prediction errors as compared to more informative 

sensory (visual) prediction errors. More generally, the sensorimotor system is thought to 

weight distinct sources of sensory input streams based on the amount of information that 

these sources provide. The degree of confidence in the sensory evidence can then feed back 

into the motor system to influence variability in motor output (Box 2).

Box 2

Internal estimates of sensorimotor noise can influence motor variability

While this review focuses on how and why motor variability is generated, it should be 

noted that the motor system also monitors sensorimotor variability and uses internal 

estimates of it to optimize motor control strategies and performance. One salient example 

is in setting safety margins for grip forces, whose misestimation can have grossly 

asymmetric consequences. Whereas grasp can be maintained by overgripping, 

undergripping can lead to catastrophic failures. A recent study showed that this safety 

margin is determined by an adaptable internal estimate of environmental variability 

(Hadjiosif and Smith, 2015) , analogous to maintaining a greater safety margin when 

driving near an erratically behaving vehicle than a predictable one.

The sensorimotor system also weighs different sources of sensory information depending 

on their reliability, allowing it to dynamically modify the information it extracts from 

variable and noisy sensory inputs. For example, if variability in the sensorimotor realm is 

introduced because a movement is physically perturbed or visual information about it is 

distorted, the gains of corrective feedback responses are reduced to match the high 

uncertainty, thereby maximizing the precision of the generated action (Franklin et al., 

2012; Kording and Wolpert, 2004). The rate of trial-to-trial motor adaptation has also 
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been shown to decrease when variability is experimentally added (Wei and Koerding, 

2010), in line with optimal Bayesian inference. However, having an estimate of the 

persistence of environmental variability and its statistical structure can have an even 

greater effect on learning rates (Gonzalez Castro et al., 2014).

Regulating the structure of motor variability

Given the high degree of redundancy in how the motor system controls movements and in 

how tasks can be executed (Bernshteĭn, 1967), certain forms of motor variability may have 

small effect on performance, while others may be more consequential. But to what extent 

does the nervous system distinguish task-relevant and task-irrelevant variability? A number 

of studies have shown that task-relevant variability is systematically reduced after repeated 

practice, while task-irrelevant variability can remain high (van Beers et al., 2013; Kang et 

al., 2004; Latash and Anson, 2006; Scholz and Schöner, 1999). These results are consistent 

with optimal feedback control theory, which posits that movements are specifically planned 

and shaped to optimize fidelity in performance (Harris and Wolpert, 1998) and reduce effort 

(Braun et al., 2009; Izawa and Shadmehr, 2008; Izawa et al., 2008; Todorov, 2004; Todorov 

and Jordan, 2002). It has even been suggested that larger amounts of task-irrelevant 

variability can afford reduced task-relevant variability (Todorov, 2004; Todorov and Jordan, 

2002), though evidence for this is not as clear.

Shaping the structure of motor variability with such specificity allows the motor system to 

exploit along dimensions that are deemed task-relevant, while enabling continued 

exploration (and learning) in others. In agreement with this principle, Wu and colleagues 

showed that the nervous system can reshape the structure of motor variability as a function 

of learning to increase the task-relevant component (Wu et al., 2014). Interestingly, this 

reshaping persisted even after training terminated and the learning-related gains in 

performance had washed out, suggesting a lasting and experience-dependent modification of 

the structure of motor variability that could promote more efficient exploration.

Interestingly, neural correlates of such task-specific regulation of motor variability have been 

observed in the activity of cortical neurons during visuomotor adaptation, where learning 

related increases in trial-to-trial spiking variability are principally seen in the subset of 

neurons that are tuned to the movement directions being trained (Mandelblat-Cerf et al., 

2009). Taken together, these results suggest that the nervous system shapes the structure of 

motor variability in sophisticated ways to adapt it to the specific task demands. Further 

follow-up studies will be required to better understand how and under what circumstances 

the brain sculpts motor variability and how the underlying computations are implemented in 

neural circuitry.

Conclusions and outlook

Though noise in nervous system function can often be detrimental for optimal performance, 

the studies we have reviewed here suggest that neural variability may also be conducive for 

motor learning, in-line with reinforcement learning theory (Kaelbling et al., 1996; Sutton 
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and Barto, 1998). Random fluctuations (or noise) in the activity of neurons could plausibly 

underlie such motor exploration, but recent findings suggest that the nervous system is more 

deliberate and sophisticated than that, and is actively regulating and shaping motor 

variability to augment learning.

While the link between variability and motor learning has been established, the specifics of 

this relationship remain to be worked out (see future questions). Importantly, furnishing our 

understanding with mechanistic insight will require animal models with suitable 

experimental paradigms. Songbirds have proven powerful in this regard (Box 1), and have 

offered valuable clues. Rodent models also hold significant promise (Ölveczky, 2011) given 

the feasibility of high-throughput and longitudinal studies (Miyamoto et al., 2015; Poddar et 

al., 2013), and the increasingly sophisticated ways in which their neural circuits can be 

manipulated (Luo et al., 2008).

Future questions

1. Which form(s) of motor variability, both in terms of statistical structure and 

neural origin, can be harnessed for motor learning? For example, to what 

extent can the motor system learn from centrally versus peripherally 

generated motor variability?

2. What are the neural circuit mechanisms that underlie the generation of 

learning-related motor variability? Are there dedicated circuits in mammals 

akin to those described in songbirds? If so, what are these circuits and how do 

they function?

3. How is motor variability regulated? How are the reward landscape and other 

relevant contextual cues computed and monitored, and how does this 

information influence the amount and structure of trial-to-trial motor 

variability?

4. How does the nervous system implement reinforcement learning in the motor 

domain? Specifically how does it reduce the dimensionality of the solution 

space?

5. How are action variants that improve performance reinforced, reproduced, 

and ultimately consolidated for long-term improvements in motor output?

A deeper understanding of the link between variability and learning will be further helped by 

detailed descriptions of the structure of motor variability. Increasingly sophisticated methods 

for tracking the movements of experimental animals at high spatiotemporal resolution 

(Anderson and Perona, 2014; Egnor and Branson, 2016) will fuel progress and allow trial-

to-trial motor variability to be used and appreciated as an important tool in our quest to 

understand how the nervous system operates and learns.
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Figure 1. Illustrating how variability can be conducive for motor learning
A. Each task is associated with a reward landscape in action space. B. When the reward 

landscape is not known, trial-and-error reinforcement learning offers a powerful strategy for 

finding appropriate solutions. This requires initial exploration of action space coupled with a 

process that reinforces rewarded actions. Initially variability is high, but as reinforcement 

learning proceeds (‘early ’ to ‘late ) ’ , variability is reduced as the motor system hones in on 

action variants associated with high reward.

Dhawale et al. Page 19

Annu Rev Neurosci. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Sources of motor variability
Motor variability can arise at all levels of the motor systems. Here we distinguish variability 

in central planning and control circuits, referred to as ‘planning noise’, from variability in 

the motor periphery, referred to as ‘execution noise’. Variability conducive for learning is 

more likely to originate in central circuits, which receive performance related feedback, as 

opposed to peripheral circuits where variability may be more difficult to reinforce and 

reproduce (see text).
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Figure 3. Vocal variability in songbirds is generated by a basal ganglia-like circuit
Research on the courtship song of zebra finches has informed the link between motor 

variability and learning. A. The song is generated by the vocal control pathway comprising 

HVC, RA, and brainstem motor regions (red pathway). The Anterior Forebrain Pathway 

(blue pathway), a basal ganglia-thalamo-cortical circuit, is important for song learning, but 

not for producing learned song. B. Spectrograms of zebra finch song at different stages of 

song learning, shows that learning is associated with a gradual decrease in song variability 

and an increase in song quality, as defined by the similarity to the song model being imitated 

(not shown). Grey lines denote the song motif of the bird, which crystallizes to the same 

syllable sequence late in learning. C. Inactivating LMAN (left) causes a dramatic reduction 

in song variability in juvenile birds (right). Song spectrograms from the same bird before 

and immediately after LMAN inactivation. Data from (Ölveczky et al., 2005). D. 

Inactivating LMAN reduces the rendition-to-rendition variability of RA neurons. (left) 
Activity patterns of an LMAN neuron in a juvenile bird, aligned to a recognizable song 

motif (i.e. syllable sequence). Each row of spikes represents the activity during one rendition 

of the song motif. Note the high degree of rendition-to-rendition variability. (right) 
Recording from the same RA neuron in a juvenile singing bird with and without 
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pharmacological inactivation of LMAN, shows a dramatic reduction in rendition-to-

rendition variability in the RA neurons with LMAN silencing. Data from (Ölveczky et al., 

2011).
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Figure 4. 
Structure of motor variability predicts learning rates in a reinforcement-based task. A. 
Subjects were asked to move a manipulandum between two points on a screen (red, yellow). 

B. Example baseline movements from one participant showing the pattern of trial-to-trial 

variability. C. The subjects were rewarded based on how well their movements reflected 

predefined shapes (two shapes were used in different experiments). The shapes were never 

made explicit to the subjects, making it a trial-and-error learning task. D. Schematic showing 

baseline variability projected into the space defined by the two shapes. The target shapes 

were chosen to make sure that, on average, task-relevant variability was higher for Shape 1. 

E. Average learning curves showing that subjects generally learned Shape 1 faster than 

Shape 2. F. Task-relevant variability is correlated with learning level both across tasks 

(different colors) and individuals (markers). Adapted from (Wu et al., 2014).
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