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Abstract

Neuroscientific theories of ADHD alternately posit that cognitive aberrations in the disorder are 

due to acute attentional lapses, slowed neural processing, or reduced signal-to-noise ratios. 

However, they make similar predictions about behavioral summary statistics (response times and 

accuracy), hindering the field’s ability to produce strong and specific tests of these theories. The 

current study uses the linear ballistic accumulator (LBA: Brown & Heathcote, 2008), a 

mathematical model of choice response time (RT) tasks, to distinguish between competing theory 

predictions. Children with ADHD (80) and age-matched controls (32) completed a numerosity 

discrimination paradigm at two levels of difficulty, and RT data were fit to the LBA model to test 

theoretical predictions. Individuals with ADHD displayed slowed processing of evidence for 

correct responses (signal) relative to their peers, but comparable processing of evidence for error 

responses (noise) and between-trial variability in processing (performance lapses). The findings 

are inconsistent with accounts that posit an increased incidence of attentional lapses in the 

disorder, and provide partial support for those that posit slowed neural processing and lower 

signal-to-noise ratios. Results also highlight the utility of well-developed cognitive models for 

distinguishing between the predictions of etiological theories of psychopathology.
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Introduction

The study of psychological dysfunction, like all sciences, advances through a process of 

conjectures and refutations. Scientific theories posit strong and specific predictions, and 

when they disagree with empirical data, a theory is discarded in favor of new theories that 

explain these data and make novel predictions of their own (Popper, 1963). However, the 

challenges of realizing such a progression continue to impede the growth of cumulative 

knowledge that is essential for public health. Attention-Deficit/Hyperactivity Disorder 

(ADHD), one of the most prevalent mental health diagnoses in the United States (Fulton et 

HHS Public Access
Author manuscript
J Abnorm Psychol. Author manuscript; available in PMC 2019 July 01.

Published in final edited form as:
J Abnorm Psychol. 2018 July ; 127(5): 529–539. doi:10.1037/abn0000357.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2015), is linked to range of serious social and academic impairments (Loe & Feldman, 

2007; Wehmeier, Schacht, & Barkley, 2010), but, due to the sparse knowledge of this 

disorder’s etiology1, treatment is limited to interventions that work for a subset of children 

and fail to provide long-term gains (Molina et al., 2009). Coghill, Nigg, Rothenberger, 

Sonuga-Barke and Tannock (2005) asserted that, although multiple etiological theories of 

ADHD have been proposed, there are considerable challenges to testing them empirically, 

including causal heterogeneity, developmental change, and the need integrate multiple levels 

of analysis (e.g., social and genetic). In the decade since, important work has addressed 

these challenges (e.g., Fair, Bathula, Nikolas, & Nigg, 2012), but theories still abound, and 

many, including those present a decade ago, have yet to be refuted.

In the current study, we focus on another challenge to forming and testing causal theories of 

ADHD that we believe runs parallel to those identified by Coghill et al. (2005): the fact that 

controlled cognitive processes, which play a central role in neuroscientific theories of 

ADHD, are difficult to define and measure mechanistically. Aberrations in working memory, 

response inhibition and decision making are ubiquitous in psychiatric populations (Moritz et 

al., 2002; Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005; Wright, Lipszyc, Dupuis, 

Thayapararajah, & Schachar, 2014), form the basis of many leading etiological theories of 

ADHD and related disorders (Nigg, 2000; Pennington & Ozonoff, 1996; Robbins, Gillan, 

Smith, de Wit, & Ersche, 2012), and serve as a crucial bridge between clinical research and 

current cognitive neuroscience. Yet, this line of work is currently limited by two interrelated 

factors.

The first challenge for this general paradigm is the fact that “executive functions”, the broad 

category in which most cognitive processes relevant to psychopathology are placed 

(Halperin, 2016), are often difficult to define mechanistically. Critics have long pointed out 

that theories of these constructs tend to rely on a control “homunculus”, or an intelligent 

agent who carries out complex operations (e.g., making decisions, managing memories) 

without an explanation of the specific mechanisms used to accomplish them (Monsell & 

Driver, 2000; Verbruggen, McLaren, & Chambers, 2014). Without a model of how 
computational and neural mechanisms complete cognitive tasks, findings of a cognitive 

deficit in a clinical condition may provide information about how the construct contributes 

to behavior (e.g., impulsive behavior due to poor inhibition), but are limited in their utility to 

test theories about the neurocognitive etiology of the condition.

Theoretical uncertainty about the mechanistic processes that underlie complex cognitive 

functions is compounded by the fact that dependent measures of cognitive performance are 

multi-determined. The integrity of a cognitive function is typically probed with summary 

statistics of behavioral performance on a task: response times (RTs) and accuracy rates. Yet, 

reductions in accuracy and/or increases in the mean or variance of RT may occur for a 

multitude of reasons: inefficiency in the core cognitive process, changes in caution (i.e., 

speed/accuracy tradeoffs), momentary lapses of attention to the task, or difficulties initiating 

a motor response (McVay & Kane, 2012; Ratcliff & McKoon, 2008). This multi-determined 

1Herein, we use the term “etiology” to mean any causal process that underlies the observed symptoms of ADHD, including distal 
factors, such as genes, as well as the neurocognitive processes that are the focus of this study.
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nature is problematic because measurements of a process of interest may be contaminated by 

extraneous processes. Hence, competing etiological theories may posit that separate 

mechanisms are involved in a clinical condition, but the predictions they make about 

behavioral performance on a given task (e.g., slowed RT) may be identical.

Such is the case with several major neuroscientific theories of ADHD. Children and adults 

with ADHD display slower, less accurate and more variable performance on a wide array of 

cognitive tasks (Castellanos et al., 2005; Epstein et al., 2011; Willcutt et al., 2005), and these 

findings have thus played a central role in many etiological theories. One causal account, 

endorsed by at least two major theories, posits that cognitive aberrations in ADHD are 

primarily due to intermittent attentional lapses, which temporarily hinder performance on 

affected trials, but leave performance on other trials intact. The functional working memory 

model (Kofler et al., 2014; Rapport et al., 2008) holds that children with ADHD display 

incomplete neural maturation in the cortical regions that support the “central executive” 

(CE) component of working memory, causing increased mind-wandering and other variable 

processes that disrupt performance on an intermittent subset of trials. A similar proposal is 

made by a theory positing that spontaneous, low frequency (<0.1 Hz) fluctuations of the 

default mode network, a brain network that has been linked to resting and off-task states, 

produce periodic lapses of attention during task performance (Sonuga-Barke & Castellanos, 

2007).

In contrast, a second causal account posits that cognitive deficits in ADHD are the result of 

metabolic constraints that limit the overall speed of neural computation. This account holds 

that children with ADHD exhibit insufficient production of lactate by astrocytes, which 

replenishes neural energy on repetitive tasks (Russell et al., 2006; Todd & Botteron, 2001). 

Insufficient production would be expected to delay the restoration of ionic gradients across 

neurons’ cell membranes, which would slow neuronal firing rates and thus compromise the 

general speed with which individuals with ADHD would be able to complete repetitive 

cognitive operations. The behavioral neuroenergetics theory proposed by Killeen, Russell 

and Sergeant (2013) refined this hypothesis by positing a model (detailed below) that 

describes the acute consequences of insufficient neuronal energy as slower and more 

variable RTs.

A third and distinct account is that cognitive deficits in ADHD are due to reductions in the 

ratio of task-relevant neural signal to task-irrelevant neural noise during cognitive 

processing. Karalunas et al. (2014) posit that state-regulation deficits in ADHD, mediated by 

impairments in phasic responses of, or top-down inputs to, the locus coeruleus-

norepinephrine (LC-NE) system (Aston-Jones & Cohen, 2005), result in reduced signal-to-

noise ratios. Similarly, the moderate brain arousal model (MBA: Sikström & Söderlund, 

2007) references the concept of “stochastic resonance”, in which the addition of moderate 

amounts of noise to a system allows signals that would otherwise remain undetected to pass 

a detection threshold (Moss, Ward, & Sannita, 2004). The MBA model posits that 

individuals with ADHD require more noise than typically-developing individuals for 

stochastic resonance to occur, effectively reducing the signal-to-noise ratio.
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Although these three general accounts, acute attentional lapses, slowed neural computation, 

and reduced signal-to-noise, provide plausible explanations for behavioral dysfunction, the 

causal mechanisms that they highlight have similar effects on behavioral summary statistics: 

increases in the mean and variance of RTs (Karalunas, Geurts, et al., 2014; Killeen et al., 

2013; Kofler et al., 2014). As strong tests of theories require predictions to be unambiguous 

and distinct, analytic tools that extract additional information about the mechanisms that 

underlie task performance are essential to differentiate such theories.

Model-based cognitive neuroscience, an emerging field that integrates formal models of 

psychological processes with neuroscience methods and theory (Forstmann & 

Wagenmakers, 2015; Wiecki, Poland, & Frank, 2015), may provide a framework in which 

neuroscientific theories of ADHD, and other disorders, can be strongly distinguished. By 

formally describing how basic computational mechanisms combine to execute complex 

tasks, mathematical models of cognition have the potential to move the field beyond verbal 

descriptions of cognitive dysfunction. In turn, the problem of multi-determined measures 

can be addressed by fitting these models to behavioral data, which allows researchers to 

observe how model parameters that represent specific mechanistic processes differ between 

clinically-relevant conditions (White, Ratcliff, Vasey, & McKoon, 2010).

Sequential sampling models (Smith & Ratcliff, 2004), which explain decision making as the 

gradual, noisy accumulation of sensory evidence in favor of each possible response, have 

already shown great promise in applications to clinical questions (White et al., 2010; Wiecki 

et al., 2015). Although there are multiple models in this class, they share the assumption that 

decisions are the result of a stochastic comparison process (Smith & Ratcliff, 2004), which 

can be understood with the metaphor of buckets that gather correct and erroneous drops of 

evidence. In a standard “numerosity discrimination” paradigm (Ratcliff & McKoon, 2008) 

where participants decide whether a stimulus contains “many” (>50) or “few” (<50) 

asterisks, (Figure 1a), evidence from the stimulus would enter a noisy process in which it is 

compared to the “many” and “few” categories. Correct drops of evidence (i.e., drops in the 

“many” bucket after the presentation of a “many” stimulus) are bits of information that are 

attributed to the matching category, while erroneous drops are attributed to the other 

category. Typically, the bucket matching the stimulus fills first, but errors occur when noise 

causes excessive evidence to accumulate in the non-matching bucket. “Accumulator” models 

(Figure 1b) describe this process as a race between separate evidence accumulators towards 

a common threshold, while “diffusion” models (Figure 1c) frame it as a single evidence total 

that moves between thresholds for each response (Smith & Ratcliff, 2004).

Initial work involving the Ratcliff diffusion decision model (DDM: Ratcliff, 1978), of the 

latter class, has already called the conventional interpretation of ADHD-related RT 

variability into question. Increased RT variability and positive skew are often assumed to 

reflect attentional lapses (Kofler et al., 2014). However, applications of the DDM to data 

from individuals with ADHD (Huang-Pollock, Karalunas, Tam, & Moore, 2012; Karalunas, 

Huang-Pollock, & Nigg, 2012; Metin et al., 2013) have consistently demonstrated that 

generally lower cognitive efficiency is sufficient to explain these RT features without 

reference to lapses. Despite these novel insights, no previous empirical studies have 

explicitly compared competing theories within the DDM framework. Furthermore, as the 
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DDM does not estimate the accumulation speed of correct vs. erroneous evidence separately 

(Smith & Ratcliff, 2004), the predictions of the slower neural speed and lower signal-to-
noise accounts described above cannot be easily distinguished.

The linear ballistic accumulator model (LBA: Brown & Heathcote, 2008), which frames 

decisions as a race between two or more accumulators of smoothly and linearly increasing 

evidence for each response, and provides a similar description of behavioral data to the 

DDM while simplifying several assumptions (Donkin, Brown, Heathcote, & Wagenmakers, 

2011), allows the predictions of all three accounts to be made explicit. In the LBA, the rate 

of accumulation, or “drift rate”, for an accumulator at a given trial is sampled from a normal 

distribution with a mean of v and a standard deviation of sv. Typically, the speed of evidence 

accumulation for the correct response (vc) competes with the speed of evidence 

accumulation for the error response (ve). The starting point of both accumulators is drawn 

from a uniform distribution bounded at 0 and the parameter A, and when one of the 

accumulators in the race reaches a response threshold (b), the corresponding response 

occurs. The model also has a non-decision time parameter (t0), which indexes the amount of 

time in an RT that is taken up by processes which are not involved in the decision (e.g., 

encoding, motor response).

Relevant to the attentional lapses explanation, the LBA parameter indexing between-trial 

variability of drift rate (sv), which may intuitively be assumed reflect variability in 

attentional state, has been both theoretically (Hawkins, Mittner, Boekel, Heathcote, & 

Forstmann, 2015) and empirically (McVay & Kane, 2012) linked to acute attentional lapses 

and mind-wandering. Therefore, attentional lapse theories predict that children with ADHD 

should show increases in sv relative to their typical peers (Figure 2a). The explicit 

formalization of the behavioral neuroenergetics model (Killeen et al., 2013) describes the 

consequences of slowed neural computation by assuming that RTs in any task are the result 

of a single, general accumulation process towards a boundary. The drift rate of the process is 

assumed to be determined by the amount of neuronal energy available, and, for simplicity, to 

be the same for correct and error RTs. Therefore, as the available energy decreases, the rate 

of accumulation slows. In the LBA framework, such slowing should be reflected by 

reductions in both the vc and ve parameters in the disorder (Figure 2b), as global slowing in 

firing rates would be expected to affect all neurons involved in the decision. Finally, the 

signal-to-noise account posits that reductions in this ratio would lower an individual’s ability 

to discriminate between stimuli, analogous to d’ from signal detection theory (Karalunas, 

Geurts, et al., 2014). In the LBA, reduced d’ can be reflected by reductions in the difference 

between the vc and ve parameters (Heathcote, Suraev, et al., 2015), as has been found in 

previous within-subjects manipulations of stimulus discriminability (Ester, Ho, Brown, & 

Serences, 2014; van Maanen, Forstmann, Keuken, Wagenmakers, & Heathcote, 2016). Thus, 

reduced signal-to-noise should result in a lower ratio of vc relative to ve because of 

reductions in the former and increases in the latter (Figure 2c), reflecting similar speed of 

neural computation, but lower discriminability.

The current study seeks to explicitly test the predictions of the three causal accounts of 

ADHD-related performance deficits described above within the LBA model framework. We 

applied a hierarchical Bayesian implementation of the model (Turner, Sederberg, Brown, & 
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Steyvers, 2013) to data from a perceptual decision task to produce accurate group-level 

estimates of the vc, ve, and sv parameters for children with ADHD and age-matched 

typically-developing peers. It should be noted that these accounts do not provide an 

exhaustive list of etiological theories of ADHD, and that findings of heterogeneity in the 

disorder (Fair et al., 2012; Karalunas, Fair, et al., 2014) suggest that hopes of identifying a 

single theory that explains impairment in all cases are likely unrealistic. However, we aimed 

to 1) provide initial steps toward using model-based analyses to narrow the field of proposed 

neuroscientific theories of ADHD, and 2) demonstrate the utility of well-developed formal 

models from cognitive science for distinguishing the predictions of etiological theories of 

psychiatric disorders, in general.

Methods

Participants

Children ages 8 through 12 with (N=80) and without (N=32) ADHD (Table 1) were 

recruited from a community sample as part of an ongoing study, which was approved by the 

Pennsylvania State University’s Institutional Review Board (IRB#32126). Children with 

ADHD met DSM-IV criteria, including parent-reported age of onset, duration, cross-

situational severity, and impairment based on the Diagnostic Interview Schedule for 

Children (DISC-IV) (Shaffer, Fisher, & Lucas, 1997). In addition, at least one parent and 

one teacher report of behavior on the Attention, Hyperactivity, or ADHD subscales of the 

Behavioral Assessment Scale for Children (BASC-2: Reynolds & Kamphaus, 2004) or the 

Conners’ Rating Scales (Conners’: Conners, 2008) was required to exceed the 85th 

percentile (T-score>61). Children in the ADHD group who were prescribed a 

psychostimulant medication (N=25; 31%) ceased taking their medication at least 24-48 

hours in advance of the day of testing (median=56 hours). Controls had never previously 

been diagnosed or treated for ADHD and did not meet diagnostic criteria on the DISC-IV. In 

addition, they were required to fall below the 80th percentile (T-score≤58) on all of the above 

listed rating scales. To equate IQ levels between groups, potential non-ADHD controls with 

an estimated IQ>115, as well as children in both groups with IQ<80, were excluded.

The presence of common childhood psychopathology, such as anxiety, depression, 

oppositional defiant disorder, and conduct disorder was assessed using the DISC-IV and 

standardized rating scales, but was not exclusionary. Sample demographics, which reflected 

those of the larger region, were as follows: 71.4% Caucasian/non-Hispanic, 8.0% Caucasian/

Hispanic, 1.8% other Hispanic, 10.7% African American, 0.9% Asian, 5.4% mixed and 

1.8% unknown/missing.

Experimental Procedure & Stimuli

The data described here were obtained during the second practice block of a task, which was 

designed to familiarize children with numerosity discrimination trials that would eventually 

be interleaved within a complex span working memory paradigm. Data from the first (simple 

spatial span) and third (complex spatial span, interleaved with numerosity trials) blocks are 

reported by Weigard and Huang-Pollock (2016). The majority of the control (N=27; 84%) 

and ADHD groups (N=71; 89%) in the current study were also part of the sample reported 
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in this previous study. In the numerosity discrimination paradigm, children were asked to 

respond with a mouse click as to whether a randomly-distributed array of black asterisks 

presented on an invisible 10×10 grid within a square box had “a lot” (i.e. >50 asterisks, left 

mouse click) or “a little bit” (i.e. <50, right mouse click) of asterisks (called “candy”). 100 

trials were presented in random order; half were relatively easy to discriminate (Low 

Difficulty) and contained either 31-35 or 66-70 asterisks, while the other half were more 

difficult to discriminate (High Difficulty), containing either 41-45 or 56-60 asterisks. Stimuli 

remained onscreen until a response was made. A feedback cue (“Correct”/“Incorrect”) was 

then displayed for 500ms above the stimulus, followed by a blank screen for 400ms. 

Children were asked to complete the task as quickly and accurately as possible.

Model-Based Analyses

RT data were fit to a standard LBA model in which b was parameterized as the distance 

above the top of the start point distribution (A). An optimization model selection analysis 

(Donkin, Brown, & Heathcote, 2011), a procedure used in previous work to determine the 

best-fitting sets of parameter constraints for the LBA (Heathcote, Loft, & Remington, 2015), 

was first used to select an optimal model to explain within-subjects effects of stimuli and 

difficulty. Models with all possible sets of constraints were fit using maximum likelihood 

procedures, and the Akaike Information Criterion (AIC: Akaike, 2011) was used as an index 

of relative fit. This procedure suggested that an ideal model allowed 1) b to vary by response 

type (“many”/”few”) to account for response bias, 2) v to vary by accuracy of the 

information (correct/error, or vc/ve, as expected to account for above-chance performance) 

and difficulty (high/low), 3) sv to vary by accuracy (svc/sve) and stimulus type 

(“many”/”few”), and 4) common estimates of t0 and A for all conditions and responses. To 

constrain the model (Donkin, Brown, & Heathcote, 2009), sve for “few” was fixed to 1 as a 

scaling parameter (the reasons for this constraint, and potential effects on group differences, 

are described in Supplemental Materials).

Following model selection, a hierarchical Bayesian version of the LBA (Turner et al., 2013) 

was fit to RT data from both groups to estimate posterior distributions over model parameter 

values. This method produces more stable parameter estimates than traditional person-by-

person analyses because it uses group-level posterior distributions of parameter values as 

prior distributions for individual parameter estimates (parameter “shrinkage”). The model 

assumed that individual-level parameters followed truncated normal distributions defined by 

two group-level hyper-parameters, a mean (μ) and standard deviation (σ). Prior to 

estimation, RTs <200ms and >3000ms were removed as fast guesses and outliers, 

respectively (these exclusion procedures eliminated <3.5% of the raw RT data), to prevent 

contaminant trials from affecting parameter estimates (Luce, 1986; Ratcliff & Tuerlinckx, 

2002). To further reduce the influence of outliers and stabilize estimates, a contaminant 

mixture (Ratcliff & Tuerlinckx, 2002) assumption was employed in which 5% of trials, 

uniformly distributed between 200ms and 3000ms and between correct and error responses, 

were assumed to be contaminants. Details of the priors, sampling procedure, and plots of 

model fit, which indicated that the model provided an adequate description of behavioral 

data, are available in Supplemental Materials.
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Hypothesis Testing

Behavioral summary statistics were compared with traditional null-hypothesis significance 

tests (p-values) and Bayes Factors (BFs) using JASP (JASP Team, 2018)2. BFs quantify the 

likelihood of the data under the research hypothesis (above 1) vs. under the null hypothesis 

(below 1); a BF of 3, for example, indicates that the research hypothesis is three times more 

likely than the null hypothesis, given the observed data. Based on guidelines provided by 

Kass and Raftery (2012), BFs between 1 and 3 provide “anecdotal” or ambiguous evidence 

for the research hypothesis, BFs of 3 to 20 provide positive evidence, and BFs >20:1 provide 

strong evidence.

For the estimated model parameters, we carried out inference at the group level using both a 

BF framework and a parameter estimation framework, which focuses on the location of 

model parameter posteriors. Each framework has individual limitations, and whether either 

provides an optimal method for Bayesian inference is the subject of current debate 

(Kruschke, 2013; Lee & Wagenmakers, 2014; Wagenmakers, Lodewyckx, Kuriyal, & 

Grasman, 2010). Inference in the parameter estimation framework was carried out by 

calculating “Bayesian p-values” (Bp), which quantify the degree which the posterior 

difference distribution is consistent with the hypothesis that a difference exists (Matzke, 

Hughes, Badcock, Michie, & Heathcote, 2017); Bps close to 0 indicate a greater likelihood 

of a difference. Inference using the BF framework was carried out using Savage-Dickey 

density ratios (SDR), which approximate the BF by dividing the density of the posterior for 

a parameter at a value of interest from the density of the prior at the same value 

(Wagenmakers et al., 2010). Procedures for the calculation of both values are available in 

Supplemental Materials. We chose to use both methods of inference and, based on the Kass 

and Raftery (2012) guidelines3, adopted the following convention for interpreting results: if 

either SDR<3:1 or Bp>.25, evidence for the effect was considered ambiguous, if both 

SDR>3:1 and Bp<.25, evidence was considered moderate, and if both SDR>20:1 and Bp<.

05, evidence was considered strong.

Results

Behavioral Summary Statistics

Mean RT—As expected, children with ADHD had longer RTs than controls, 

F(1,110)=12.63,η2=.10,p<.001, BF=23.65 (Supplemental Table 1). There were also main 

effects of Difficulty, F(1,110)=95.25,η2 =.46,p<.001, BF>10,000, and Stimulus, 

F(1,110)=31.15,η2=.22,p<.001, BF>10,000, such that RTs were generally faster for low-

difficulty trials and stimuli in the “many” category. There were no significant interactions.

RT Variability—Consistent with previous literature, children with ADHD had more 

variable RTs than controls, F(1,110)=21.54,η2 =.16,p<.001, BF=1015.67. Mirroring the 

2All Bayesian tests used standard JASP priors, including the Cauchy prior for effect size (width = .707) for t-tests, prior effect size 
scale = .5 for fixed factors in ANOVAs, and prior effect size scale = 1 for random factors.
3Conversions of BF criteria to Bp are based on the logic that if 3 to 1 odds in favor of the research hypothesis are considered 
“positive” evidence, a Bp of .25 (.25 =1/4 = a 3 to 1 chance that the posterior is consistent with the hypothesis that a difference exists) 
should also be treated as positive evidence.
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mean RT effects, there were also main effects of Difficulty, F(1,110)=35.15,η2=.23,p<.001, 

BF>10,000, and Stimulus, F(1,110)=10.91,η2=.09,p=.001, BF=28.02, such that RTs were 

less variable for low-difficulty trials and “many” stimuli. There were no significant 

interactions.

Accuracy—Children with ADHD were less accurate than controls, F(1,110)=15.46,η2=.

12,p<.001, BF=34.20, and accuracy was worse on high-difficulty trials, 

F(1,110)=224.21,η2=.67,p<.001, BF>10,000. A small Group x Difficulty x Stimulus 

interaction was also detected by p-values, but the BF indicated evidence against this 

interaction, F(1,110)=4.00,η2=.03,p=.048, BF=.02.

Model-Based Analysis

Posterior distributions for the group μ parameters are displayed as violin plots in Figures 3–

4. Violin plots include both a standard boxplot that represents variability of the posterior 

samples and kernel density plots of the same samples. These plots represent uncertainty 

about the location of the μ parameter estimates, but do not represent between-subject 

variability. Between-subject variability is, instead, captured by the σ hyper-parameters and 

represented by population density plots that are reported in Supplemental Materials.

Correct Drift Rate—As expected, there was strong evidence for a main effect of Difficulty 

(Bp=.01,SDR=25.0:1), such that vc was slower for more difficult trials (Figure 3a). There 

was also strong evidence for a main effect of Group (Bp=.01,SDR=23.9:1), in which 

children with ADHD displayed lower vc than their peers. There was ambiguous evidence for 

a Group x Difficulty interaction (Bp =.66,SDR=4.3:1).

Error Drift Rate—There was strong evidence for a main effect of Difficulty (Bp<.

01,SDR>10,000:1), such that ve was faster for the high-difficulty trials (Figure 3b). This 

effect was expected because the reduced discriminability of high-difficulty stimuli should, 

theoretically, cause more evidence to be incorrectly routed to the error accumulator, 

consistent with previous research involving discriminability manipulations (Ester et al., 

2014; van Maanen et al., 2016). In contrast, there was ambiguous evidence for Group 

differences in ve (Bp =.20,SDR=0.8:1), and for an interaction (Bp=.29,SDR=0.5:1). 

Therefore, a reduction in vc and increase in ve explain the slower and more variable RTs, 

and higher error rates, observed in the high-difficulty condition, reflecting decreased 

discriminability. However, slow and variable RTs, and higher error rates, among children 

with ADHD can only be attributed to slower vc.

Drift Rate Variability—Evidence for Group differences in between-trial variability of drift 

rate was generally weak (Figure 3c). As sv were estimated separately for “many” and “few” 

stimuli, based on the initial model selection analysis, and sve for “few” was fixed to 1, 

effects of Group, Stimulus, and interactions were probed for svc, while Group effects in sve 
were probed for “many” stimuli. There was moderate evidence that svc was greater in 

controls (Bp=.05,SDR=3.9:1), in the opposite of the hypothesized direction, and ambiguous 

evidence for an effect of Stimulus, (Bp=.38,SDR=1.1:1), and an interaction, (Bp=.

49,SDR=1.3:1). The sve of “many” (Bp=.28,SDR=0.5:1) stimuli displayed ambiguous 
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evidence for an effect of Group. Thus, there was little evidence for group differences, and 

effects with the most evidence suggested greater svc in controls.

Non-decision time—There was moderate evidence (Bp=.02,SDR=8.0:1) that non-

decision time was shorter in ADHD (Figure 4a). However, as shorter t0 would be expected 

to decrease RT, and would not affect accuracy or RT variability, this difference does not 

explain the between-group differences in summary statistics.

Start Point Variability and Boundary—There was ambiguous evidence for Group 

differences in A (Bp=.25,SDR=0.7:1). Likewise, in b (Figure 4b), there was ambiguous 

evidence for a main effect of Group (Bp=.14,SDR=2.1:1). Children displayed moderate 

evidence (Bp=.02,SDR=10.4:1) for an effect in which boundaries for the “many” response 

were lower than those for the “few” response, and there was little evidence for an interaction 

(Bp=.37,SDR=1.3:1). This pattern suggests that children were biased to respond “many” 

over “few”, but that this bias does not contribute to group differences in RT and accuracy.

Between-subject variability—ADHD is a heterogeneous disorder (Fair et al., 2012; 

Karalunas, Fair, et al., 2014) and aspects of the above results led us to speculate that the 

ADHD group may contain distinct subgroups of children with different impairments (see 

Discussion). We therefore sought to test the hypothesis that this group displays greater 

between-subject variability in parameter estimates. To do so, we conducted a post-hoc 

analysis in which we used Bayesian p-values to assess whether group standard deviation 

parameters (σ) for vc, ve, svc, and sve (averaged between difficulty and “many”/”few” 

conditions) were greater in ADHD. We found rather weak evidence for greater between-

subject variability in vc in ADHD, Bp=.24, but moderate evidence for the same effect in ve, 

Bp=.07. In contrast, we found moderate evidence that svc estimates actually displayed 

greater between-subject variability in the control group, Bp=.11, and little evidence for 

effects in sve, Bp=.35. Therefore, there is suggestive evidence that ve, and possibly vc, 

values are more heterogeneous in ADHD.

Discussion

The goal of the current study was to demonstrate the utility of formal cognitive models for 

better operationalizing and testing predictions from etiological theories of psychiatric 

disorders, and to use this approach to provide a strong test of several neuroscientific 

accounts of cognitive deficits in ADHD. A hierarchical Bayesian implementation of the 

LBA model (Brown & Heathcote, 2008; Turner et al., 2013) was fit to behavioral data of 

children with ADHD and typically-developing controls from a numerosity discrimination 

paradigm. Crucially, behavioral summary statistics demonstrated that children with ADHD 

were less accurate and had slower and more variable RTs than their typically-developing 

peers, suggesting that this simple task effectively captures the characteristic features of 

cognitive performance in ADHD. LBA parameters were then used to test three competing 

accounts of cognitive deficits.

Several results were highly relevant to these accounts. Both groups showed comparable 

within-subjects effects of difficulty in which the rate of evidence accumulation for correct 
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information (vc) decreased on high-difficulty trials, but the rate of evidence accumulation 

for erroneous information (ve) increased. These effects reflect a decreased signal-to-noise 

ratio in the high-difficulty condition; high-difficulty stimuli are more similar to stimuli in the 

opposite category than low-difficulty stimuli, which reduces their discriminability and 

causes more evidence to be accumulated in the incorrect accumulator, consistent with 

previous manipulations of stimulus discriminability (Ester et al., 2014; van Maanen et al., 

2016). However, group differences in mean drift rate parameters followed a distinct pattern. 

Although vc was lower in ADHD, there was little evidence that ve differed between groups, 

suggesting that slower, more variable and more erroneous responding in the ADHD group 

was driven only by slower accumulation of correct evidence. Further, between-trial 

variability in drift rate (sv) was unlikely to explain poorer performance in ADHD; evidence 

for group sv differences was relatively weak, and the most substantial evidence suggested 

that svc was actually greater in controls. Taken together, this pattern has implications for all 

three theoretical accounts.

The main prediction of the first general account, which posits that children with ADHD have 

a greater incidence of acute attentional lapses, was not supported by the model-based 

analysis. This account is proposed by at least two major theories, which hold that 

intermittent performance lapses occur either due to oscillatory activity within the default 

mode network during task engagement (Sonuga-Barke & Castellanos, 2007) or due to a core 

deficit in the CE component of working memory (Kofler et al., 2014; Rapport et al., 2008). 

Evidence of group differences in the sv parameter, which has been empirically demonstrated 

to index such lapses (McVay & Kane, 2012), was weak, and suggested that children with 

ADHD may actually have less between-trial variability in the speed of correct evidence 

accumulation (svc) than controls.

Implications of the current results for the other two theoretical accounts are more complex. 

As the slowing in neural computation account (Killeen et al., 2013; Russell et al., 2006) 

predicts that the speed of evidence accumulation would be globally slowed in ADHD, it 

does not explain why only vc was reduced. Similarly, the lower signal-to-noise account 

(Karalunas, Geurts, et al., 2014; Sikström & Söderlund, 2007) is partially supported by the 

decrease in vc relative to ve. However, it also predicts that ve would be greater in ADHD, 

similar to the effect produced by the within-subjects discriminability manipulation. 

Although it appears that both of these accounts do not adequately describe the empirical 

data, there are two ways in which one or both may be compatible with the results.

First, it is possible that either may explain the selective effect in vc if specific assumptions 

are considered. Of the signal-to-noise theories, the MBA model, which posits that 

individuals with ADHD require more noise for stochastic resonance to occur, may provide a 

framework that most easily accounts for the data. If state-regulation processes increase 

signal-to-noise ratios through stochastic resonance, but this mechanism is less efficient in 

ADHD, controls would be expected to exhibit greater signal (vc) at comparable levels of 

noise (ve), as in the current study. However, the neuroenergetic theory (Killeen et al., 2013) 

may also explain the current data if it is assumed, for instance, that neurons which are most 

relevant for selecting correct responses exhaust their energy more quickly than neurons that 

are less relevant to the task (and thus contribute to noise). To further explore the possibility 
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that selective slowing in vc is congruent with one or both accounts, other predictions could 

be assessed in the LBA framework. The neuroenergetic theory predicts that neural speed is 

reduced as time on task increases and inter-stimulus interval decreases, and is 

disproportionately reduced in ADHD (Killeen et al., 2013). Although the latter prediction 

has been confirmed with the DDM (Huang-Pollock et al., 2017), exploration of both 

predictions with the LBA could establish selective reductions in vc as a more specific 

marker of lower neuronal energy. As the signal-to-noise accounts predict that arousal 

increases signal-to-noise ratios, experimental manipulations of reward or those that promote 

task engagement (e.g., game-like features) would be expected to selectively increase vc, but 

do so to a lesser extent in ADHD. Further, as phasic task-elicited pupil dilations may provide 

an index of arousal state (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010), a strong test of 

the signal-to-noise accounts could determine whether these pupillometric measures correlate 

with individual difference in, and mediate ADHD-related reductions in, vc.

Second, rather than explaining cognitive deficits across the broad population of individuals 

with ADHD, it is possible that one or both of these accounts may explain performance 

differences for distinct subsets of this population. Given recent evidence for heterogeneity in 

ADHD (Fair et al., 2012; Karalunas, Fair, et al., 2014), it is possible that a subgroup of 

children exhibits globally slowed processing, while a separate subgroup exhibits lower 

signal-to-noise ratios. As both mechanisms would slow vc, but each would have opposite 

effects on ve, this combination could explain the group-level results. Indeed, our post-hoc 

analysis provided tentative evidence that children with ADHD displayed greater between-

subject variability in mean drift, but not drift variability, parameters, and in ve in particular, 

providing initial support for this notion. To further explore the possibility that discrete 

subgroups exist, individuals’ LBA parameter estimates could be entered into clustering 

algorithms, such as community detection (Fair et al., 2012). Individual parameter estimates 

from the current study are inappropriate for these analyses because they were estimated with 

relatively few per-participant trials, and are therefore unreliable, and because individual 

parameters from hierarchical models are non-independent. However, clustering analyses 

could be applied in the future to experimental data sets with larger numbers of trials per 

participant.

Several effects in LBA model parameters that were less relevant to explaining group 

differences in performance should also be noted, including the response bias effect in b, and 

the finding that t0 was shorter in ADHD. It is unclear why a bias toward “many” responses 

should exist in the numerosity task. However, as we called the asterisk stimuli “candy” in 

our instructions to children, this bias may relate to classic findings in which the subjective 

value of stimuli (e.g., “many” pieces of candy are better than “few”) affects perceptual 

estimation (Bruner & Goodman, 1947). The t0 finding is consistent with several previous 

DDM studies of ADHD (Karalunas & Huang-Pollock, 2013; Metin et al., 2013), although, 

as this parameter does not affect accuracy or RT variability, it does not explain the 

characteristic behavioral phenomena associated with ADHD. As has been previously noted 

(Karalunas, Geurts, et al., 2014), t0 is likely multi-determined, and the implications of 

findings in this parameter are currently unclear.
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Perhaps the most puzzling finding was the moderate evidence that svc was greater in 

controls, in the opposite direction of effects hypothesized by attentional lapse accounts. If 

svc is interpreted strictly as indexing lapses, this finding suggests the surprising conclusion 

that children with ADHD have fewer lapses than their peers. However, several caveats of this 

finding, and our broader assertion that the sv results refute attention lapse accounts, are 

worth noting. First, the empirical evidence for sv as an index of lapses is preliminary; a 

single study (McVay & Kane, 2012) found links between this parameter and reports of task-

unrelated thoughts, as well as other constructs theoretically linked to lapses. A second 

limitation is that lapses may not cause drift variability that is perfectly Gaussian; as lapses 

would presumably cause trials with very slow drift rates, but not fast drift rates, there would 

be a disproportionate increase in variability at the low end of the drift distribution (rather 

than both ends, as in Figure 2a). Although a hypothetical model that accounts for negative 

skew in the drift distribution may better describe this phenomenon than the LBA, with its 

assumption of Gaussian variability, McVay and Kane (2012)’s work suggests that sv 
provides a reasonable approximation of variability caused by lapses. Finally, drift variability 

parameters are often more difficult to estimate than other parameters in sequential sampling 

models (Voss, Nagler, & Lerche, 2013). Although our simulation/recovery study 

(Supplemental Materials) suggested that the hierarchical model was able to obtain relatively 

reliable group estimates of sv, the reliability and construct validity of this parameter must be 

further explored in future research.

The current study has several additional limitations. First, as common psychiatric disorders 

that are often comorbid with ADHD were not exclusionary, it is possible that children with 

these conditions either contributed to the mean differences, or the observed heterogeneity, in 

the ADHD group. A second caveat is that data from a single task was used. Replication of 

the current results in different cognitive paradigms will be instrumental for both 

corroborating our findings and clarifying how task parameters may modulate them. A related 

limitation is that the current study did not explore how broader developmental, contextual, or 

biological factors, discussed by Coghill et al. (2005) as essential to testing theories of 

ADHD, were related to the model-based predictions. The combination of model-based 

techniques with prospective longitudinal studies that include measurements from multiple 

levels of analysis would arguably provide the most powerful tests of causal theories. We 

hope that the current study provides an initial step towards the regular inclusion of cognitive 

modeling in these larger studies.

In addition to these limitations of the data set, results also highlight some broader limitations 

with the model-based approach used. As stated in the introduction, the LBA was used in 

place of the DDM, another sequential sampling model commonly applied in the ADHD 

literature, because the race framework of the LBA allows separate estimates of drift for 

correct and incorrect evidence, and thus allows the global slowing and lower signal-to-noise 
accounts to be explicitly distinguished. However, this raises a major conceptual issue with 

the approach of using well-developed models from cognitive science to test neuroscientific 

theories of clinical disorders; whether a model-based analysis provides evidence for a 

particular etiological theory is highly dependent on the assumptions of the specific model 

chosen. Furthermore, as the LBA analysis found partial support for both of these accounts, it 

could be argued that this approach was unable to parse them apart or address the possibility 
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that both accounts could explain etiology for a subset of the heterogeneous clinical group. 

The LBA analysis advanced the field by identifying a unique mechanism of performance 

deficits in ADHD that both accounts must describe (selective slowing in vc) and suggesting 

future tests of each account and methods for breaking down heterogeneity. Nonetheless, we 

acknowledge that, as the nascent field of applying computational modeling methods to 

clinical questions continues to grow, it must wrestle with the major conceptual issues of the 

effects of model choice, how to interpret ambiguous results, and how to adequately describe 

heterogeneity in clinical populations.

Conclusions

The current study produced several key conclusions. First, the model-based analysis found 

that there was little evidence that children with ADHD exhibit greater between-trial 

variability in cognitive processing, casting doubt on etiological models that highlight 

intermittent performance lapses. Second, it demonstrated that children with ADHD display 

lower signal-to-noise ratios than their peers in decision tasks, but that this effect is distinct 

from those that occur in response to manipulations of stimulus discriminability; children 

with ADHD display slower accumulation of correct evidence (signal) but show similar 

accumulation rates of incorrect evidence (noise) to controls. Third, these results partially 

supported both the behavioral neuroenergetics theory (Killeen et al., 2013; Russell et al., 

2006) and accounts highlighting lower neural signal-to-noise ratios (Karalunas, Geurts, et 

al., 2014; Sikström & Söderlund, 2007), and provide a roadmap for how these theories can 

be further tested, distinguished and refined in a model-based framework. Specifically, they 

suggest that mechanisms through which signal detection is improved without concurrent 

reductions in noise should be further explored.

Overall, this work demonstrates how formal models of cognition can both make the 

mechanisms of etiological theories of psychopathology more explicit and provide strong 

tests of their predictions. Although the complexity of psychological phenomena may not 

allow all proposed mechanisms in such theories to be formalized, taking a model-based 

approach to those that can serves to advance the science as a whole by providing stronger 

conjectures and more definitive refutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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General Scientific Summary (GSS)

Children with ADHD display slower response times and less accurate choices when 

completing choice response time tasks. This study demonstrates how mathematical 

models that describe cognitive processes underlying these tasks can be used to test 

theories about the causes of ADHD.
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Figure 1. 
Representation of the stochastic comparison process assumed by sequential sampling 

models (a) using the “bucket” metaphor, and illustrating how (b) “accumulator” and (c) 

“diffusion” models each describe the decision process on a given correct trial.
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Figure 2. 
Demonstration of (left) and hypothetical parameter values for (right) three possible 

mechanistic causes for cognitive deficits in ADHD: a) increased attentional lapses, b) 

slowing in the general speed of neural computation, and c) a reduced signal-to-noise ratio. 

Black and gray arrows represent mean drift rates for correct (vc) and error (ve) information, 

respectively. Normal distributions centered about the arrows represent between-trial variance 

in drift.
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Figure 3. 
Violin plots representing the posterior density of group μ parameters for the average drift 

rate for correct evidence (vc), average drift rate for error evidence (ve) and between-trial 

drift variability for correct (svc) and error (sve) evidence. Light gray = Control; Dark gray = 

ADHD.
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Figure 4. 
Violin plots representing the posterior density of group μ parameters for non-decision time 

(t0), and response boundaries (b). Light gray =Control; Dark gray =ADHD.
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Table 1

Comparison of group demographic and diagnostic variables.

Control ADHD

N(Males:Females) 32(14:18) 80(52:28)

#Subtypes (H,I,C) 2,36,42

Age 9.03(1.28) 9.43(1.24)

Estimated full-scale IQ 105.31(8.04) 102.54(13.37)

Hyperactivity/Impulsivity

 Total symptoms 0.28(.58) 5.66(2.57)***

 Parent BASC-2 40.97(4.82) 67.38(13.27)***

 Parent Conners 45.03(3.24) 69.16(14.42)***

 Teacher BASC-2 42.97(2.61) 58.82(12.35)***

 Teacher Conners 45.03(2.51) 58.26(12.02)***

Inattention

 Total symptoms 0.34(.48) 7.91(1.59)***

 Parent BASC-2 42.72(6.73) 66.51(7.66)***

 Parent Conners 46.09(3.91) 70.03(10.54)***

 Teacher BASC-2 43.16(4.99) 60.90(7.22)***

 Teacher Conners 46.59(4.46) 59.14(11.80)***

Comorbidity (DISC: past year)

MDD 0 4

GAD 0 6

ODD/CD 2/0 34/8

Significant differences are noted:

*
=p<.05,

**
=p<.01,

***
=p<.001
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