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Abstract

Access to streamlined computational resources remains a significant bottleneck for new users of 

cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit 

cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services 

(AWS) from a local computer or laptop. These new software tools (“cryoem-cloud tools”) have 

incorporated optimal data movement, security, and cost-saving strategies, giving novice users 

access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION 

processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-

galactosidase in ~55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic 

model building and refinement to AWS. These software tools dramatically reduce the barrier for 

entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud.

INTRODUCTION

Cryo-electron microscopy (cryo-EM) is a structural biology technique that has undergone 

rapid growth over the past few years (Nogales 2016). Technical developments in direct 

electron detection and electron optics in conjunction with improvements in image analysis 

(S. H. Scheres 2014; Punjani et al. 2017) have led to the widespread adoption of cryo-EM as 
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a structural biology technique. Furthermore, the advent of GPU-accelerated cryo-EM 

structure determination (Punjani et al. 2017; Kimanius et al. 2016) has helped to reduce the 

overall cost for computing hardware for a single user. While these improvements have 

helped to spread cryo-EM, it becomes difficult to scale the required hardware to 

accommodate large cryo-EM facilities that have a large number of users. These facilities 

have to balance cost with availability of resources: idle computing infrastructure is wasted 

capital whereas queuing times for compute resources waste personnel salaries. The 

challenge is how to create a computing facility that is cost-effective while also delivering 

compute resources on-demand without wait times.

Previous work has shown that Amazon Web Services (AWS), the world’s largest cloud 

computing provider, is a cost-effective resource for cryo-EM structure determination 

(Cuenca- Alba et al. 2017; Cianfrocco and Leschziner 2015). Since this original publication, 

AWS released GPU-accelerated virtual machines (‘VMs’) (named ‘p2’, ‘p3, and ‘g3’) with 

1, 8, or 16 NVIDIA K80 GPUs on p2, 1, 8, or 16 NVIDIA V100 GPUs on p3, 1, 2, or 4 

NVIDIA M60 GPUs on g3, while also reducing prices for data storage on the block storage 

service (‘S3’) and archival storage (‘Glacier’).

Despite its power, previous implementations for cryo-EM required users to manually deploy 

AWS resources. To streamline the process, we have developed software tools that allow for 

the remote management of AWS resources from the local computer of a user. These tools 

were then combined with the standard suite of cryo-EM software tools MOTIONCOR (Li et 

al. 2013), MOTIONCOR2 (Zheng et al. 2017), UNBLUR (Grant and Grigorieff 2015), 

GCTF (Zhang 2016), CTFFIND4 (Rohou and Grigorieff 2015), RELION (S. H. W. Scheres 

2012) and Rosetta (Wang et al. 2016, 2015), allowing users to submit jobs directly to AWS 

from their local project directory while syncing results back in real time. In contrast to our 

previous implementation, we are now using ‘on-demand’ VMs from AWS, which eliminates 

the risk of users being ‘kicked-off due to price changes. Finally, by combining the full 

RELION pipeline (and associated software) with atomic model building and refinement with 

Rosetta (Wang et al. 2016, 2015) with AWS, cryoem-cloud-tools provides users with all 

aspects of cryo-EM structure determination in a single pipeline - from micrograph motion 

correction to atomic model refinement.

APPROACH

We realized that manual workflows for managing AWS resources was cumbersome, 

requiring the use of complex commands. To streamline this process, we wrote software tools 

that leverage the capabilities of command-line tools provided by AWS. Then, we 

incorporated these commands directly into the RELION GUI to allow users to submit 

RELION jobs directly to AWS (Figure 1).

The overall approach takes advantage of the cluster submission feature of RELION by 

providing users with a new submission command (‘qsub_aws’) to do the following: 1) 

identify the type of RELION job, 2) upload data to AWS block storage (S3), 3) start VM(s) 

required for the task, 4) download data from S3 to VM, 5) Run RELION commands, 6) 

Sync output results back to the local machine in real time, and 7) Turn off machines when 
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finished (or if an error is detected). Given this workflow, for large upload tasks (such as 

uploading movies), there is an initial data movement step onto S3 prior to any calculations 

being performed. We are maintaining the latest stable version of RELION, which will 

inform users of the RELION version and detect any discrepancies between local and cloud 

versions of RELION. As shown in Figure 1, we implemented job type-dependent data 

processing strategies for RELION analysis routines. This means that GPU-accelerated steps 

(Auto Pick, CTF estimation, 2D/3D classification, auto-refine) are run on VMs with GPUs 

(p2 VMs), whereas CPU-based steps are run on VMs with 16 or 128 virtual CPUs (vCPUs) 

(See (Cianfrocco and Leschziner 2015) for a detailed discussion of vCPUs vs. CPUs).

In building this software, we are providing users with workflows that have been optimized 

for data transfer and computing. For instance, all data is first uploaded into AWS’s S3 

‘buckets’. This allows for fast uploads (up to 300 MB/sec) and also for cost-effective storage 

of data in between analysis routines. Storing data on S3 between RELION runs removes the 

latency that results from re-uploading the same data multiple times. Next, we implemented 

data storage policies that allow for high input/output tasks and large dataset sizes, which 

included 42 terabyte drives for movie particle extraction on d2 VMs. Finally, for 

computational tasks that can be distributed (Movie alignment and Movie particle extraction), 

we boot up and manage multiple VMs in parallel to finish analysis routines quickly.

RESULTS & DISCUSSION

To assess the performance of our approach, we compared processing times for the 

determination of a 2.2 Å ß-galactosidase structure (Bartesaghi et al. 2015) that was recently 

solved using a stand-alone GPU workstation (Kimanius et al. 2016). While the comparison 

is testing very different computing environments, we chose it because many new cryo-EM 

users are purchasing stand-alone GPU workstations and we wanted to compare performance 

relative to AWS. The following discussions of AWS assume that the user has setup an AWS 

account and followed installation instructions for using ‘cryoem-cloud-tools’, including 

setting up security access keys on local computing resources.

Below we lay out two computing scenarios: ‘advanced’ and ‘common’. The advanced 

computing scenario (Figure 1) describes all steps in the RELION processing pipeline, which 

include movie alignment and particle polishing, as previously described. The common 

approach involves (Figure 3) using particles that have already been extracted from motion-

corrected micrographs, and thus does not require S3 storage or particle polishing steps. We 

will first describe the advanced pipeline and then the common pipeline.

Using our integrated AWS software tools in the RELION GUI and launching all RELION 

analysis commands remotely for the advanced pipeline, we were able to determine a 2.2 Å 

structure in 54.5 hours on AWS (Figure 2A & 2B, Figure 2 - Supplement 1), which is 2X 

faster than a standalone GPU workstation (Figure 2C). These processing times also included 

the time required for movement of data into and between resources on AWS, thus reflecting 

the full processing times experienced by a user (For full list of data transfer times, see Figure 

2 - supplement 1). For GPU-accelerated RELION processing steps, VMs with 8 GPUs 

(p2.8xlarge) performed equally well or slightly faster than a 4 GPU workstation (Figure 2D). 
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This likely results from faster GPUs in the workstation (NVIDIA GTX1070: 1683 MHz 

clock speed) compared to those on AWS (NVIDIA K80: 875 MHz clock speed). Expectedly, 

the largest time savings were seen in steps that could be distributed across multiple VMs 

(Movie alignment and Movie particle extraction) (Figure 2D). For these processes, we were 

able to select VMs that were appropriate for the process - CPU machines for movie 

alignment (x1.32xlarge), large storage arrays for movie particle extraction (d2.8xlarge), and 

high vCPU numbers for movie refinement and polishing (x1.32xlarge: 128 vCPUs). As an 

alternative to cryoem-cloud-tools, a common processing pipeline can also be used. The 

common pipeline assumes particles that have already been extracted from motion-corrected 

micrographs (e.g. using MotionCor2) (Figure 3).

In order to build the atomic model for ß-galactosidase into this density, we used the 

molecular modelling program Rosetta (Wang et al. 2016, 2015). As modelling software, 

Rosetta needs CPU computing clusters because its sampling of hundreds of atomic models 

relative to the cryo-EM density requires a dedicated CPU for each model. Therefore, we 

incorporated Rosetta tools for model building and refinement into our AWS-based pipeline, 

allowing users to submit a Rosetta refinement to AWS from their local computer or laptop 

(Figure 4A). By distributing the Rosetta refinement over multiple VMs on AWS, each with 

36 vCPUs (c4.8xlarge), we were able to generate 200 models using RosettaCM and Rosetta 

FastRelax 6.1 hours on AWS, a speedup of about 7X over a single workstation with 16 

processors (41.8 hours) (Figure 4B). The resulting model showed good agreement with the 

density, with a r.m.s.d for the top 10 Rosetta models of < 0.5 Å. (Figure 4C & Figure 4D, 

Figure 4 - Supplement 1).

The cost for determining a 2.2 Å structure using the advanced computing pipeline with 

RELION and building an atomic model with Rosetta, both using AWS, was $1,468 USD 

(Figure 2 - Supplement 1). This cost represents both storage and computing on AWS, with 

the top three expenditures (71% of the total) coming from 30 terabytes of data storage on 

AWS S3 ($690.00), Movie particle extraction ($179.73), and Movie alignment ($146.72) 

(Figure 2 - Supplement 1). The common pipeline (including Rosetta modeling) was ~6X 

cheaper than the advanced pipeline, with an overall price of $247 (Figure 3 - Supplement 1). 

As a typical user likely already has extracted, motion-corrected particles, this common 

pipeline cost represents a realistic price for users of cryoem-cloud-tools.

This approach for cryo-EM data analysis has the potential to benefit many different types of 

cryo-EM users. Since this software package integrates directly into a user interface, 

individual users will have the option to perform multiple analysis routines from a single 

workstation by pushing additional jobs to AWS instead of waiting to run them sequentially 

on a local GPU workstation. For research teams, this software provides ‘burstable’ 

processing power, ensuring that data processing does not become rate-limiting ahead of 

grant and manuscript deadlines. Finally, this software can have a significant impact on cryo-

EM facilities with a large user base. Given the scale of AWS, a cryo-EM facility could not 

only provide many users with access to microscopes but also allow those users to push cryo-

EM jobs to AWS without having to accommodate their computing needs locally.
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METHODS

Integrating cryoem-cloud-tools into the RELION GUI

The overall strategy for users accessing cryoem-cloud-tools from the RELION GUI used the 

cluster submission of RELION. When users submit jobs to a cluster, they indicate the 

submission command directly into the RELION GUI (e.g. ‘qsub’). Within this framework, 

we built cryoem-cloud-tools to be specified directly from the GUI using a python program 

named ‘qsub_aws.’ This program will automatically determine the type of RELION 

command that needs to be run and determine the AWS resources required to execute the 

task. This approach does not require users to compile RELION using cryoem-cloud-tools; 

instead cryoem-cloud-tools is a software extension for RELION to submit jobs to AWS.

ß-galactosidase image processing

To replicate the published work on ß-galactosidase (Kimanius et al. 2016; Bartesaghi et al. 

2015), we used an almost identical processing strategy using RELION v2.1 compiled with 

CUDA v7.5. A summary of processing times, VM types, and costs can be found in Figure 2 

-Supplement 1. All VMs were ‘on-demand’, which means that we paid full price and did not 

risk being ‘kicked off by being outbid due to spot price markets. We uploaded 1536 7676 × 

7420 pixels super-resolution movies of ß-galactosidase (EMPIAR 10061) (Bartesaghi et al. 

2015) to AWS and aligned them using Unblur v1.0.2 (Grant and Grigorieff 2015) on 5 x 

x1.32xlarge instances. From our data servers at UCSD that have a 10 Gb connection to 

AWS, we were able to achieve ~350 MB/sec upload speeds to S3 using multi-file uploads 

with ‘rclone’. Note that data upload times reflect data movement into S3, which is a separate 

process from data processing. For users with 1 Gb connections to AWS, we expect speeds of 

35 MB/sec, which would increase upload time by 10X, requiring 110 hours for movie 

upload (4.5 days). Gctf v0.50 (Zhang 2016) was used to estimate the CTF of the aligned 

micrographs on a single p2.8xlarge VM (8 GPUs). Then, 138,901 particles were picked 

using GPU-accelerated AutoPick on a single p2.8xlarge VM and extracted at a pixel size of 

1.274 Å (binned by 4 from the original data) in a box size of 192 × 192 pixels on a single 

m4.4xlarge VM (16 vCPUs). This stack of particles was subjected to 2D classification into 

200 classes over 25 iterations on a p2.16xlarge VM (16 GPUs). Selection of the best class 

averages resulted in a stack of 119,443 particles that were then re-extracted at a pixel size of 

0.637 Å in a box size of 384 × 384 pixels on a m4.4xlarge VM. These particles were refined 

with PDB 3I3E (Dugdale et al. 2010) as the initial model using auto-refine to a resolution of 

3.5 Å (unmasked) on a single p2.8xlarge VM. These refined coordinates were used for 

Movie particle extraction on 8 x d2.8xlarge VMs (36 vCPUs and 48 Terabytes on each VM) 

and Movie refinement on a single x1.32xlarge VM (128 vCPUs) with a running average of 7 

movie frames and a standard deviation of 2 pixels on particle translations. These particles 

were subjected to Polishing on a single x1.32xlarge VM, yielding an unmasked resolution of 

3.3 Å, after which they were used for 3D classification into 8 classes over 25 iterations using 

an angular step of 7.5 degrees on a single p2.8xlarge VM. From the 4 best classes, 106,237 

particles were used for 3D auto-refine on a single p2.8xlarge instance to obtain a final, post-

processed structure at 2.2 Å, as previously reported(Kimanius et al. 2016; Bartesaghi et al. 

2015). During the course of this work, we moved data using ‘rclone’ for data 
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synchronization, uploading 12 TB of movie files and downloading approximately 400 GB of 

data, which would incur $36 in data egress charges ($0.09 USD/GB).

Atomic model building with Rosetta on AWS

We extended cryoem-cloud-tools to allow users to build atomic models into cryo-EM maps 

using Rosetta, specifically RosettaCM and Rosetta’s FastRelax protocols. We ran these 

protocols on c4.8xlarge instances with a single solution requested per vCPU. Using this 

method we generated atomic models for the 2.2 Å ß-galactosidase map determined on AWS. 

We used atomic coordinates of 1JZ7 chain A as the starting model for the asymmetric unit of 

the ß-galactosidase map and generated the initial aligned reference structure using 

rosetta_refinement_on_aws.py routine from cryoem-cloud-tools. Following this step, we 

generated the symmetry definition file for Rosetta describing the D2 symmetry of ß- 

galactosidase in the context of 1JZ7 using the script rosetta_prepare_symmfile.py. All these 

initial steps were carried out on t2.micro instances. We used the initial reference structure 

and the symmetry definition file as input and used RosettaCM to generate 200 output 

models. RosettaCM was run using using rosetta_refinement_on_aws.py routine running on 

10 x c4.8xlarge instances with 20 models per instance. The best model in terms of Rosetta 

energy (including fit-to-density energy) was used as an input for a final refinement with 

Rosetta’s FastRelax. We generated 8 models from FastRelax using one of the two half maps 

generated during refinement (training half map) low-pass filtered to a resolution of 2.24 Å 

and sharpened with a B-factor of −49.52. To estimate overfitting, FSCWOrk (FSC curve 

between the refined model and the training half map) and and FSCfree (FSC curve between 

the refined model and the other half map generated during refinement, the test half map) 

were compared and the the spatial frequency at which the FSC value was 0.5 was 1/2.4 Å−1 

in both cases (Figure 4D green and blue curves). The nearly identical FSC curves obtained 

with the two half maps indicate that there was no over-refinement of the model. The FSC 

curve between the refined model and the final cryo-EM map (obtained by combining data 

from both the half maps) showed that FSC value was 0.5 at a spatial frequency of 1/2.2 Å−1 

(Figure 4D red curve). The FSC curves were calculated in Rosetta and the plots were made 

using GraphPad Prism (GraphPad software). The best model in terms of Rosetta energy and 

model geometry (as determined by MolProbity) was selected as the final atomic model for 

the ß-galactosidase map.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 - AWS architecture for ‘advanced’ cryo-EM data processing with RELION.
Shown is a schematic of AWS resources deployed by cryoem-cloud-tools through the 

program ‘qsub_aws’. For all job types shown, the software places VMs within security 

groups that restrict access to the IP address of the end-user. Within a security group, the 

software determines the appropriate VM and storage choices, using S3 as a distribution point 

between local and AWS resources.
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Figure 2 - Performance of AWS vs. local GPU workstation.
Processing times (A) and FSC curve (B) for the determination of a 2.2 Å ß-galactosidase 

structure on AWS. (C) Processing times from the determination of 2.2 Å ß-galactosidase 

structure on GPU workstation (Kimanius et al. 2016). (D) Comparison of percent speed-up 

increases between AWS and a GPU workstation.
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Figure 3 - AWS architecture for ‘common’ cryo-EM data processing with RELION.
Shown is a schematic of AWS resources deployed by cryoem-cloud-tools through the 

program ‘qsub_aws’. For this common pipeline, there is no data storage on S3 and RELION 

jobs are run directly on p2 instances.
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Figure 4 - Rosetta atomic model refinement in the cloud.
(A) WS architecture for running Rosetta model refinement across multiple VMs. (B) Run 

time comparisons between a local workstation (16 cores) and AWS (252 vCPUs). (C) 

Representative region of the cryo-EM map with the top five atomic models built by Rosetta 

FastRelax (D) FSC curves between the best atomic model from FastRelax and the cryo-EM 

map of ß- galactosidase. The resolution corresponding to the FSC value of 0.5 for the full 

map is shown.
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