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SUMMARY

Categories can be grouped by shared sensory attributes (i.e. cats) or by a more abstract rule (i.e. 

animals). We explored the neural basis of abstraction by recording from multi-electrode arrays in 

prefrontal cortex (PFC) while monkeys performed a dot-pattern categorization task. Category 

abstraction was varied by the degree of exemplar distortion from the prototype pattern. Different 

dynamics in different PFC regions processed different levels of category abstraction. Bottom-up 

dynamics (stimulus-locked gamma power and spiking) in ventral PFC processed more low-level 

abstractions whereas top-down dynamics (beta power and beta spike-LFP coherence) in dorsal 

PFC processed more high-level abstractions. Our results suggest a two-stage, rhythm-based model 

for abstracting categories.

eTOC Blurb

Wutz et al. show that different levels of category abstraction engage different oscillatory dynamics 

in different prefrontal cortex (PFC) areas. This suggests a functional specialization within PFC for 

low-level, stimulus-based categories (e.g. cats) and high-level, rule-based categories (e.g. animals).
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INTRODUCTION

Categorization is the capacity to organize items based on shared characteristics. Those 

characteristics can vary by level of abstraction. Sometimes they are more feature-based with 

members looking physically similar (e.g., housecats). Other times they are more conceptual 

(e.g., animal) with members looking different (e.g., cats and elephants). There is little known 

about how the brain achieves different levels of abstraction. Does higher-level abstraction 

simply engage more of the same mechanisms and networks as lower-level, feature-based 

categorization? Or do they engage different mechanisms and/or areas?

We used a dot-pattern categorization task (Posner and Keele, 1968; Knowlton and Squire, 

1993; Vogels et al., 2002) that varied abstraction by the degree of spatial distortion of each 

exemplar from its category prototype. Low distortion exemplars look alike. High distortion 

exemplars require greater abstraction of the category’s “essence” (Figure 1A and B). 

Monkeys learned two new categories in each session. Local field potentials and multi-unit 

spiking activity were recorded in dorsolateral and ventrolateral prefrontal cortex (dlPFC, 

vlPFC; Figure 1C).

Neural correlates of categorization have been reported in many cortical and sub-cortical 

brain areas (Merchant et al., 1997; Kreiman et al., 2000; Sigala and Logothetis, 2002; 

Hampson et al., 2004; Ashby and O’Brien, 2005; Seger, 2008; Poldrack and Foerde, 2008). 

For high-level abstraction, however, the prefrontal cortex (PFC) may play a central role 

(Wallis et al., 2001; Fabre-Thorpe, 2003; Freedman et al., 2003; Badre and D’esposito, 

2009; Christoff et al., 2009; Cromer et al., 2010; Goodwin et al., 2012). Likewise, different 

oscillatory dynamics may subserve different functions for category processing. There is 

growing evidence that beta (~20 Hz) vs gamma (>40 Hz) oscillations are involved in top-

down vs bottom-up cortical processing, respectively (Jensen et al., 2007; Buschman and 

Miller, 2007; Engel and Fries, 2010). Thus, different oscillatory dynamics might reflect 

different functional roles for categorization based on bottom-up features or more abstract 

concepts (top-down). We found abstraction organized by PFC area and oscillatory rhythm. 

vlPFC-gamma oscillations were more engaged for lower-level abstraction and dlPFC-beta 

oscillations for higher abstraction.

RESULTS

Two monkeys were trained in a delayed-match-to-category task (Figure 1D). First, a sample 

exemplar from one of the two categories appeared for 1s. After a memory delay period (0.85 

s plus a jitter of max. 0.4s), two test exemplars appeared on the right and left. One of the 

exemplars was the same category as the sample (match); the other was from the other 

category (non-match). The monkeys free-viewed the test exemplars and were rewarded for 

maintaining fixation (0.7s) on the match. Each session was organized into a set of training 

blocks, each of which contained an increasing number of category exemplars. To move on to 

the next block, animals had to perform at or above 70% correct. We used correct trials from 

training blocks five and above (minimum of 64 exemplars per category). Level of abstraction 

was varied by the degree of exemplar distortion from the category prototype (summed 

Euclidean distance median ± IQR = 0.95 ± 0.2 degrees visual angle (DVA), Figure 1B). A 
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complete description of the methods and analyses can be found in the STAR methods 

section.

Prefrontal cortex was organized into beta (dlPFC) and gamma (vlPFC) regions

Local field potentials (LFPs) were recorded from chronic multi-electrode arrays in 

dorsolateral and ventrolateral PFC (dlPFC, vlPFC; Figure 1C). There was a task-related 

increase in LFP oscillatory power in different frequency bands in dlPFC vs vlPFC 

(Wilcoxon sign-rank z-value relative to −1 to −.75 s before sample onset, see STAR 

methods). In dlPFC, it was mainly in the beta band (Figures 2A and S1; significant for 13–

30 Hz for 0–1s (sample) and 13–28 Hz for 1–2 s (delay), 52% channels, Bonferroni 

corrected). In vlPFC, gamma power increased and beta decreased during sample and test 

stimulus presentation (Figures 2B and S1; gamma: 63–110 Hz for 0.1–0.3 s, 46–172 Hz for 

2.5–2.7 s, 20% channels; beta: 13–33 Hz for 0.1–0.3 s, 11–33 Hz for 2.5–2.7 s, 69% 

channels). vlPFC gamma power to sample onset (0.1–0.3 s) was maximal between 80–120 

Hz and then decreased with increasing frequency (tested between four adjacent gamma sub-

bands: (1) 41–80 Hz vs. 81–120 Hz, z= −4.8, p< 1.9×10−6; (2) 81–120 Hz vs. 121–160 Hz, 

z= 4.8, p< 1.7×10−6; (3) 121–160 Hz vs. 161–200 Hz, z= 4.8, p< 1.9×10−6; Figure S1). If 

gamma power simply reflected a spike-bleed through effect, one would expect a monotonic 

increase with increasing frequency. Thus, this suggests that the gamma effects were a true 

oscillatory event in a circumscribed frequency and not spiking activity bleeding into the 

gamma frequencies (see also the multi-unit spiking analysis below). Over time (0–3 s), beta 

(10–35 Hz) and gamma power (60–160 Hz) were negatively correlated within each area 

(dlPFC mean r ± SD: −0.3 ± 0.39, Wilcoxon test vs. 0 z= −3.1, p< .002; vlPFC −0.83 ± 0.13, 

z= −4.8, p< 1.7×10−6) and across areas (dlPFC-beta with vlPFC-gamma −0.64 ± 0.17, z= 

−4.8, p< 1.9×10−6). Due to the opposite changes in power in beta vs gamma between dlPFC 

and vlPFC, there was a highly significant interaction between frequency bands and PFC 

areas for oscillatory power (F(1,29)= 365, p< 1.1×10−16; Figure 2C).

The dominant frequency in each PFC area carried more category information

We computed the category information in the LFP power of each area (ω2-statistic, see 

STAR methods). This metric quantifies the percentage explained variance in the neural 

activity by the category membership of an exemplar. The ω2-statistic results in a zero-mean 

statistic when there is no category information (see baseline interval from −0.5 to 0 s in 

Figure 2D, E) and its maximal value would be 1 indicating 100% explained variance. To 

simultaneously capture category information across the sample and delay epochs, we 

averaged power in beta (10–35 Hz) and gamma (60–160 Hz) from 0.5 to 1.5 s after sample 

onset. Power and information don’t have to be co-modulated (i.e. there can be significant 

information when power is not elevated). Figures 2D and E plot category information for 

significant channels (ω2-statistic with p< .001, permutation test; see STAR methods) in 

either the beta or gamma band (Figure S1; dlPFC: 25% channels for beta, none for gamma; 

vlPFC: 49% for beta, 71% for gamma). Black colors indicate no category information and 

warm colors (red-white) indicate significant information (p< .001). There was significant 

information in dlPFC-beta power (Figures 2D and S1, 10–42 Hz for 0–1s and 14–27 Hz for 

1–2 s). In vlPFC, information was found in low and high frequencies (Figures 2E and S1, 1–

25 & 35–200 Hz for 0–1s and 12–200 Hz for 1–2 s) but it was maximal between 80–120 Hz 
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(for 0–1 s: (1) 41–80 Hz vs. 81–120 Hz, z= −2.2, p< .026; (2) 81–120 Hz vs. 121–160 Hz, 

z= 2.2, p< .029; (3) 121–160 Hz vs. 161–200 Hz, z= 2.7, p< .008; Figure S1). Overall, we 

found a highly significant interaction for category information between PFC areas and 

frequency bands (F(1,29)= 31.8, p< 4.3×10−6). There was more category information for the 

dominant frequencies in each area (dlPFC: beta > gamma, z= 2.1, p< .039; vlPFC: gamma > 

beta, z= −4.6, p< 3.5×10−6; Figure 2F).

Category information in bottom-up inputs to vlPFC and in top-down dynamics in dlPFC

Gamma oscillations (which were stronger in vlPFC) have been associated with processing of 

bottom-up sensory inputs. Indeed, in vlPFC there was nearly a 3-fold stronger stimulus-

evoked potential (ERP, vs dlPFC, z= 4.8, p< 1.9×10−6, Figure 3A). Moreover, multi-unit 

spiking activity (MUA, average spike rate/s for 0–2 s > 1) was present on more vlPFC 

channels across recording days (608 channels (34%) vs. 335 (19%) in dlPFC, z= 4.4, p< 

1.2×10−5; Figure S1). In vlPFC, spiking was strongly time-locked to sample onset (0.1–0.3 s 

vs dlPFC, z=4, p< 6.3×10−5; Figure 3B). By contrast, the average spike rate in dlPFC 

remained largely constant throughout the trial. This was not caused by increased/decreased 

firing over MUA channels canceling each other out because the spike rate variance remained 

constant as well (Figure 3B). One would predict different amounts of variance at different 

times in a trial if the average rate would be calculated from increasing/decreasing, rather 

than constant, spike rates. Moreover, there was no difference between the variances in vlPFC 

and dlPFC (Levene-Test for variance homogeneity for 0.1–0.3 s, p= .91). The time series 

(between 0–3 s) of the evoked potential and of multi-unit spike rates (in spikes/s) in vlPFC 

correlated positively with the time series of gamma (ERP mean r ± SD: 0.21 ± 0.17, z= 4.3, 

p< 1.8×10−5; MUA 0.5 ± 0.37, z= 19.3, p< 6.6×10−83) and negatively with beta power (ERP 

mean r ± SD −0.19 ± 0.13, z= −4.3, p< 1.8×10−5; MUA −0.28 ± 0.4, z= −14.1, p< 

2.4×10−45).

By contrast in dlPFC, there was no significant correlation between beta power and evoked 

activity (mean r ± SD −0.007 ± .18, z= 0.6, p= .54; Fisher’s r-to-z test vs. vlPFC-beta z= 

−2.2, p< .028) and the MUA spike rates correlated less with power than in vlPFC (beta: 

mean r ± SD −0.07 ± 0.41; vs. vlPFC z= −2.6, p< .011; gamma: 0.24 ± 0.35, vs. vlPFC z= 

3.6, p< 3.8×10−4). Instead, dlPFC-spiking was more coupled to oscillatory beta phase as 

shown by stronger spike-LFP coherence (pairwise phase consistency metric (PPC), Vinck et 

al., 2010; see STAR methods). For both areas, spike-LFP coherence (spikes and LFPs within 

the same area but across different channels) between 0–2 s was greatest in the beta band 

(averaged over all LFP channels per area; Rayleigh test p< .001 for 27.5% MUA channels in 

vlPFC, 32.5% in dlPFC; Figure S2). This beta coherence was stronger in dlPFC vs vlPFC 

(z= −4.6, p< 4.9×10−6; Figures 3C and S2).

These different dynamics between PFC areas were also reflected in category information. 

Evoked activity in vlPFC carried significantly more category information than in dlPFC 

(sample, 0–1 s: z= 2.8, p< .006; delay, 1–2 s: z= 2.3, p< .02; Figure 3D, see also transient 

low-frequency information in Figure 2E). Likewise, there was significantly more category 

information in vlPFC spiking (vs dlPFC, sample, 0–1 s: z=14.7, p< 3.5×10−49; delay, 1–2 s: 

z=12.6, p< 1.8×10−36; Figure 3E). In vlPFC, 40% of the 608 spike-recording MUA channels 
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contained category information (p< .001 between 0–2 s), whereas in dlPFC it was only 4% 

of the 335 MUA channels (Figure S1).

Category selectivity in spike-LFP coherence was tested for the 10% most informative LFP-

channels for power per PFC area (Figure S1; beta in dlPFC, gamma in vlPFC; see Figure S2 

for beta in vlPFC). It was assessed by the difference in PPC between categories for each 

MUA channel (permutation test p< .05, frequency-cluster corrected). In dlPFC, 11.6% of 

MUA channels and in vlPFC 9.7% of MUA channels showed category selectivity in their 

coherence spectrum (from 1–200 Hz). The strongest category-selectivity was in the beta 

band (Figure 3F). In both PFC areas, there were higher proportions of MUA channels than 

chance (at 5%) with significant beta PPC differences between categories (averaged between 

10–35 Hz; inset plot in Figure 3F; 8.4% MUA channels in dlPFC, Binomial test vs. 5% p< .

006; 9.4% in vlPFC, p< 5.710−6). These ×proportions were not different between areas (χ2= 

0.3, p= .6). However, the absolute beta PPC difference between categories on these category-

selective MUA channels was significantly greater in dlPFC (vs. vlPFC-gamma LFP z=−2.8, 

p< .006; vs. vlPFC-beta LFP z=−2.2, p< .028, Figure S2). We subtracted the median 

absolute PPC difference from each category-shuffled permutation distribution from the 

observed absolute PPC difference per MUA channel, in order to partial out between-area 

differences due to an overall different PPC level (as shown in Figure 3C) and to ensure that 

the between-area differences were due to differences in category-selectivity. In sum, in 

vlPFC most category information was found in the spike rates, whereas in dlPFC there was 

more category information in beta spike-LFP coherence. This suggests that vlPFC was more 

driven by bottom-up inputs (sample onset), whereas dlPFC was more in sync with its beta 

oscillatory/top-down dynamics.

Power in the dominant frequency per PFC area correlated with category preference in 
behavior

Monkeys learned new categories each day and often performed better on one (“preferred”). 

In 2/3 of sessions, there was a difference by more than 5 % (correct trials) between 

categories (Figure 4A). Pooling performance over preferred and non-preferred categories 

across recording days revealed a highly significant difference (t(29)= 7, p< 1.1×10−7; Figure 

4B). This behavioral preference was reflected in each region’s dominant frequency.

For each session, we arbitrarily subtracted the performance and power for one category from 

the other: Differences in performance ranged from about −20 to +20% and in power from 

−10% to +10% (normalized to overall performance/power, see STAR methods). In dlPFC, 

there was a positive correlation across recording days between the performance differences 

and the beta power differences (significant between 0.23 – 1.17 s with p< .002, time-cluster 

corrected, Figures 4C and S3). On average 61 % of the dlPFC channels were significant 

during this time period (channel-cluster corrected, Figure S3). There was no significant 

correlation between dlPFC-gamma power and performance differences (Figure S3). 

Conversely in vlPFC, gamma power differences correlated positively with performance 

differences (0.1 – 0.3 s with p< .02, 28% channels, Figures 4D and S3). A further contrast 

with dlPFC was that vlPFC-beta power differences were negatively correlated with category 

preference (1.13–1.52 s with p< .016, Figure S3). When averaging over all channels with a 
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significant correlation, we found stronger power for the preferred category for beta in dlPFC 

(p< .006, time-cluster corrected, Figure 4E) and for gamma in vlPFC (p< .024, Figure 4F),.

The gamma power effects in vlPFC contrasted with the effects for spiking activity. At first, 

the peak spiking response was transiently stronger for the preferred category (0.09–0.14 s, 

p< .042, uncorrected). The more prominent pattern, however, was a sustained period with 

less spiking for the preferred vs. non-preferred category (0.275–0.81 s, p< .02, time-cluster 

corrected; Figure 4G). Thus, although gamma power and spiking were correlated in their 

time course (see analysis above and Figure 4F, G) and were anatomically co-located in 

vlPFC (Figure S1), the two signals were not the same. They showed opposite effects with 

respect to category preference. This was confirmed by a two-way ANOVA for gamma 

power/spiking (averaged between 0–2 s and normalized to overall spiking/power, see STAR 

methods) and for preferred/non-preferred categories over all MUA channels with category 

information (Figure S3). We found a significant interaction between gamma power/spiking 

and category preference (F(1,241)= 5.8, p< .018). To sum, preferred categories elicited less 

spiking activity in vlPFC and stronger power in the dominant frequency in each area (beta in 

dlPFC, gamma in vlPFC).

dlPFC-beta carried more information for higher, and vlPFC-gamma for lower abstractness

We found stronger behavioral effects of abstraction for behaviorally preferred categories. 

Preferred category performance as a function of dot pattern distortion was best fit with a 

decreasing sigmoid function with a sharp inflection point (R2= 0.87, inflection ± CI at 1.1 

± 0.0004 DVA; steepness ± CI = 144 ± 7.7 % correct trials/DVA, Figure 5A). This was less 

so for the non-preferred category (R2= 0.5, inflection at 1.2 ± 0.008 DVA; steepness ± CI = 
15 ± 1.1 %/DVA). We used the preferred-category inflection point to separate exemplars into 

high vs low abstractness. This revealed a main effect for abstractness on performance (low 

vs high, F(1,29)= 17.7, p< 2.2×10−4) and a significant interaction of abstractness with 

preference (F(1,29)= 4.6, p< .042). The performance difference between low and high 

abstractness was significant for the preferred category (t(29)= 4.2, p< 2.5×10−4) but not for 

the non-preferred category (t(29)= 1, p< 0.33; Figure 5B).

Category information (ω2-statistic) in power was compared between low and high 

abstractness levels for the 10% channels per PFC area with the most category information 

(Figure S1) separately for sample (0–1 s) and delay epochs (1–2 s; see Figure 6 for the time 

series data). In dlPFC, category information in beta power was significant (permutation test 

p< .001) for both abstractness levels during the sample epoch (low vs. high z= −0.6, p= .54). 

During the delay epoch, however, it only remained significant for high abstractness and it 

was significantly greater than that for low abstractness (z= −3.5, p< 5.3×10−4; Figure 5C and 

6A). Because category information was exclusive for high abstractness during the delay, 

there was reduced information during that epoch when calculated over all trials (low and 

high together as shown in Figure 2D). By contrast, vlPFC-gamma power showed 

significantly more category information for low vs. high abstractness during the sample 

epoch (z= 2.9, p< .005; Figure 5C and 6A) but not during the delay (z= 1.5, p= .15). There 

was no significant difference for category information in beta power in vlPFC (sample: z= 

0.4, p= .72, delay: z= −0.2, p= .83; Figure 6B). The sample/delay epoch differences between 
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low vs. high abstractness were also tested with non-parametric permutation tests for (1) the 

maximum/minimum statistic per task epoch (max. gamma-sample p< .027; min. beta-delay 

p< .01, one-sided) and (2) over time with a cluster-based method for multiple comparison 

correction (gamma p< .038; beta p< .01). The time courses were aligned to the first time 

point with significant category information for each recording day (with p< .05, permutation 

test) for the time-cluster tests. The alignment accounts for variability in the latency of 

category information due to different categories and exemplars on different recording days 

(Figure S4).

The pattern of category selectivity in power on different abstractness levels was further 

supported by spiking and spike-LFP beta coherence. As shown above, for the spike rates we 

found the strongest category signals in vlPFC and almost no information in dlPFC. By 

contrast for beta spike-LFP coherence, dlPFC showed stronger category effects compared to 

vlPFC. Thus, we expected the strongest differences in category information between 

different abstractness levels for spiking in vlPFC and for beta spike-LFP coherence in 

dlPFC. Indeed, vlPFC-spiking contained more information for low vs. high abstractness 

(sample: z= 2.5, p< .013; delay: z= 3.8, p< 1.5×10−4; Figure 5D). Overall there was more 

category information in spiking compared to LFP power. This might be explained by the fact 

that spiking reflects the behavior of only a few, well-isolated neurons, whereas LFP signals 

reflect the collective activity of many cells, of which only a subset might contain 

information.

In contrast to vlPFC-spiking, spike-LFP beta coherence in dlPFC showed stronger category 

selectivity for high vs. low abstractness. Table 1 shows the proportions of MUA channels in 

dlPFC with a significant difference in beta PPC between categories (permutation test, p< .

05) for each abstractness level and task epoch. Importantly in dlPFC, there was a higher 

proportion of category-selective MUA channels for high abstractness during the sample 

epoch (9.3% for high, vs. chance p< .002; 4.8 % for low, vs. chance p= .51; low vs. high p< .

039). There was no category selectivity in dlPFC during the delay. Conversely in vlPFC 

(Table 2), there were significant proportions of category-selective MUA channels for both 

abstractness levels during both epochs but no difference between them.

Functional significance of category abstraction effects

The functional relevance of the abstraction results was supported by a correct vs. error trials 

analysis. For both PFC areas, there was more category information on correct trials. For 

dlPFC-beta the difference was significant during the delay epoch (z= 2.4, p< .019), while for 

vlPFC-gamma it was significant during the sample epoch (z= 3, p< .003; Figures 5E and 

6C). There was no significant difference in the other respective task epochs (dlPFC-beta 

sample z= 0.9, p= .38; vlPFC-gamma delay z= 1.2, p= .21).

Moreover, the abstraction/distortion results were not merely due to a more generic effect of 

task difficulty or attention. This was shown by a control analysis that varied task difficulty 

while holding distortion constant. The trials were re-grouped by whether the sample 

exemplar was below vs. above the median distance to the second category prototype 

(median= 4.3 ± 0.02 DVA, by contrast for distortion/abstractness the trials were sorted by 

the distance to the same category prototype; see Figure 1A, B). Because exemplars above 
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this median split are farther away from the other category prototype, they are easier to 

categorize (above: 78.8% correct trials vs. below: 77.5%, t(29)= 2.1, p< .046). Critically, 

there was no difference in exemplar distortion between the median distance split trial subsets 

(t(29)= 0.65, p= .52). For category information in power (between 0–2 s), there was a 

significant main effect with less information below the median distance for both frequencies 

(F(1,29)= 9.6, p< .005; no interaction F(1,29)= 1.3, p= .27; Figures 5F and 6D). By contrast 

for distortion/abstractness, we found a significant interaction between frequencies and 

abstractness levels (F(1,29)= 13.3, p< .001, no main effect of distortion F(1,29)= 0.35, p= .

56; Figure 5F and 6A). Thus, greater difficulty (lesser distance between categories) reduced 

category information for both frequencies, whereas distortion/abstractness had opposite 

effects on them. vlPFC-gamma power had more category information for low abstractness, 

whereas dlPFC-beta power had more information for high abstractness.

DISCUSSION

We found a dissociation between PFC sub-region (vlPFC, dlPFC), oscillatory frequency 

(gamma vs beta) and level of category abstraction. Gamma power increased in vlPFC and 

beta in dlPFC. The frequency bands were anticorrelated between and within areas, which 

might reflect a general principle of working memory in PFC (Lundqvist et al., 2016). 

Gamma rhythms have been associated with bottom-up, and beta with top-down processing. 

For example, learned rules are expressed in beta oscillations (Engel and Fries, 2010; 

Buschman et al., 2012; Antzoulatos and Miller, 2014). Gamma oscillations are involved in 

encoding bottom-up information in working memory (Buschman and Miller, 2007; Jensen et 

al., 2007; Jutras et al., 2009). Correspondingly, we found stronger evoked potentials and 

stronger stimulus-locked spiking in vlPFC. There, gamma power and spiking carried more 

information at low abstractness. In line with previous results (e.g. Jia et al., 2013; Lundqvist 

et al., 2016), we found that gamma power and spiking were tightly associated. But gamma 

power did not simply index spiking. For (behaviorally) preferred vs. non-preferred 

categories, we found less spiking but more power for the preferred category. Thus, the two 

signals are not the same and they contribute differently to category information in vlPFC. 

Whereas vlPFC was more driven by bottom-up inputs (sample onset), dlPFC was more in 

sync with its oscillatory/top-down dynamics. Beta oscillations were predominant in power 

and spike-LFP coherence in dlPFC; and carried more information at high abstractness. This 

suggests a two-stage, rhythm-based model for category abstraction in different PFC regions. 

Lower-level categories are first extracted from bottom-up inputs to vlPFC reflected in 

stimulus-locked gamma power and spiking. Then, beta network interactions in dlPFC 

encode more abstract levels that transcend appearance and depend more on top-down 

processing.

This anatomical distinction between PFC regions by level of abstraction might result from 

their differential connectivity to posterior cortex. vlPFC may be more governed by bottom-

up processing, because it receives direct inputs from inferior temporal cortex (IT) via the 

ventral stream (“the what”) and may, thus, continue the functional properties of IT neurons 

into PFC. Therefore, category processing in vlPFC can be viewed as an object recognition 

problem based on bottom-up/stimulus-based principles. By contrast, dlPFC has stronger 

connectivity to parietal cortex via the dorsal stream (“the where/how”) and thus may identify 

Wutz et al. Page 8

Neuron. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more complex relationships to objects that optimize behavior (O’Reilly, 2010). 

Categorization in dlPFC may therefore extend beyond object recognition to less stimulus-

based, more rule-based, top-down and abstract processing. This fits with the framework that 

gamma rhythms support the feedforward flow of cortical information, while beta rhythms 

support feedback (Jensen et al., 2015; Bastos et al., 2015).

Category information in vlPFC-gamma was stronger for low abstractness during the sample 

epoch, whereas for dlPFC-beta it was stronger for high abstractness during the delay. This 

temporal pattern further supports the bottom-up/top-down distinction. Low-distortion 

exemplars can be judged on their physical appearance using bottom-up processing, because 

they look like their prototypes. Thus, the category judgment for low-distortions can be made 

more quickly during the influx of sensory information. Consequently, gamma power showed 

more information for low distortions during stimulus presentation (sample epoch). By 

contrast, beta power and information was less tied to stimulus onset, it was equally strong 

for low and high abstractness during the sample epoch and for high abstractness this 

selectivity was maintained into the delay. In this view, the category signal in dlPFC-beta was 

more robust against abstractness, such that it remained at a constant level in face of 

increasing amounts of distortion. Another interpretation might be that higher distortions 

require more abstraction (and thus more top-down processing) because the defining 

characteristics of the category, the unseen prototype, are less obvious. They don’t “look 

alike” like the lower distortions and thus rely more on rule-based categorization. Thus, 

information in beta power might remain significant during the delay for high distortions 

(while it declines for low distortions) because the higher degree of abstraction requires more 

thought and thus longer top-down processing extending after the bottom-up sensory input 

has ceased. This pattern suggests that category information in dlPFC is not just passively 

robust against increasing degrees of abstractness. Instead, dlPFC-beta oscillations might 

reflect a specialized top-down mechanism for high abstractness levels.

The functional relevance of category abstraction in PFC was supported by the data in three 

different ways. First, there was more category information on correct trials for vlPFC-

gamma in the sample epoch and for dlPFC-beta in the delay. Beyond buttressing its 

functional importance in the task, this pattern mirrors the effects seen for distortion/

abstraction (i.e., gamma during sample, beta during delay), which, in turn, is in line with the 

bottom-up vs. top-down distinction. Second, the distortion/abstraction effects were not 

merely due to more generic effects of task difficulty or attention. Greater difficulty reduced 

information for both frequencies, while abstractness had opposite effects on them (more 

information for low in vlPFC-gamma and for high in dlPFC-beta). Third, the category 

preference observed in behavior was directly reflected in the neural dynamics in PFC. 

Categorization can be based on dividing exemplars in two categories (“A vs. B”) or by a 

strategy with one dominant category, against which all exemplars are judged (“A vs not-A”, 

analogous to a figure-ground distinction). Our results suggest the latter. Behaviorally, one 

category was often preferred (“A”) and, on this category, performance differed between low 

and high abstractness levels. In the neural effects, category preference was observed in lower 

spike rates and higher power in the dominant frequency per PFC area (dlPFC-beta, vlPFC-

gamma) for the preferred category. This resulted in positive correlation between power 

differences and behavioral performance differences between categories. The negative 
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correlation for vlPFC-beta power is in line with the antagonistic relationship between beta 

and gamma in each PFC subdivision. In line with recent findings and computational models, 

stronger gamma power co-occurs with weaker beta power and vice versa (Lundqvist et al, 

2011; 2016). Thus, the negative correlation with performance of vlPFC-beta power (which 

signals higher relative power for the “non-preferred” category) could have resulted from a 

stronger suppression effect for the “preferred” category.

Disorders like autism are marked by a decreased capacity to categorize and schizophrenia by 

a confusion between bottom-up and top-down signaling (Gastgeb et al., 2012; Uhlhaas and 

Singer, 2010). Our results support an anatomically distinct, rhythm-based model for 

category abstraction in the PFC. They might guide the way to new insights into the 

underlying pathology and therapy of psychiatric disorders and into the creation of 

abstractions by the brain.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Earl K. Miller (ekmiller@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two, middle-aged monkeys (macaca mulatta) were used in this study: one male (9–10 years 

old), and one female (8–9 years old). The male weighed about 13 kg and was treated with 

cyclosporine daily, and the female weighed 9 kg. They were both experimentally naïve, pair-

housed, on a 12-hr day/night cycle, and in a temperature controlled environment (80 degrees 

Fahrenheit). The animals were handled in accord with National Institutes of Health 

guidelines and approved by the Massachusetts Institute of Technology Committee on 

Animal Care.

METHOD DETAILS

Prototype and exemplar generation—The visual stimuli were composed of 7 

randomly located dots on a black background. To generate the categories, we followed 

previously published procedures (Posner and Keele, 1968; Knowlton and Squire, 1993; 

Vogels et al., 2002; Antzoulatos and Miller, 2011). Figure 1A shows two example 

categories. Every day, two novel prototypes were created at random. These prototypes (as 

would be the exemplars) were generated as 7 arbitrarily positioned, 0.35 DVA dots on a grid 

of 7 by 7 DVA. In order to control for difficulty, these arbitrarily constructed prototypes had 

to obey a number of rules: (1) They had no dot centers that fell within 0.7 DVA of one 

another. (2) The average position of the prototype was at the center of the grid. (3) No dots 

from each exemplar fell within a 0.5 DVA margin around the grid edges. And, (4) the 

maximum Euclidean distance (summed across all pairs of dots) between each exemplar and 

each prototype was 10 DVA.

In order to generate the exemplars, the prototype dot patterns were distorted according to a 

procedure first established by Posner and colleagues (Posner and Keele, 1968). We first 
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defined 5 concentric annular regions around each dot, which were spaced apart radially by 

0.35 DVA. Region 1 refers to the annulus immediately surrounding the dot center, 1 dot-

diameter away, and region 5 refers to the annulus 5 dot-diameters away. Next, each dot was 

shifted away from its prototypical location by at least 1 region. Whether any particular dot 

was moved to regions 2 through 5 depended on the distortion level desired. Posner et al. 

defined different levels of distortion based on the probability of a dot-shift to each concentric 

region. Distortion level 1 was used in this task. At distortion level 1, 88% of dots were 

shifted to region 1, 10% to region 2, 1.5% to region 3, 0.4% to region 4, and 0.2% to region 

5. To ensure that each exemplar was unique no more than 2 dots from each exemplar could 

be less than 0.5 DVA away from any other exemplar’s dots. Across all trials used here, the 

median Euclidean distance summed over all pairs of dots between each exemplar and its 

corresponding prototype (distortion) was 0.95 DVA, the minimum and maximum distance 

was 0.81 and 2.17 DVA, respectively. The median Euclidean distance summed over all pairs 

of dots between each exemplar and the nearest dots in the other prototype (distance between 

categories) was 4.28 DVA, the minimum and maximum was 3.1 and 5.94 DVA, respectively. 

Figure 1B shows the distributions of all available trials as a function of distance between the 

presented exemplar and its own category prototype (distortion, yellow) and to the other 

category prototype (between-category distance, green).

Overall, the use of these visual stimuli provided us with a number of advantages: (1) The 

categories were not imbued with any overt meaning to the animal, for they held no apparent 

relationship to objects seen in daily life. (2) The categories could not be distinguished by any 

simple rule. (3) The perceptual distance between categories was controlled over sessions and 

exemplars from different categories were different enough to ensure above chance 

performance. (4) The exemplars from each category, which could in fact look distinctively 

different from one another, were always perceptually related and averaged out to the original 

prototype. And (5), the stimuli provided parametric control over the similarity of sensory 

features between each exemplar and its prototype (distortion) and thus allowed us to vary the 

level of required abstraction.

Task—In each session, animals had to classify numerous category exemplars into their 

respective categories (delayed match-to-category paradigm, Figure 1D). To initiate each 

trial, each animal had to fixate within 2.5 (DVA) of a centrally located, red dot (0.2 DVA in 

diameter) for 0.5 s. After this fixation, an exemplar of one of the two categories was 

presented at the center of the screen (7 by 7 DVA) for 1s. If the animal continued to fixate 

through this sample epoch, and a subsequent delay of at minimum 0.85 s (plus an additional 

jitter of max. 0.4s), then the central fixation dot disappeared and two new exemplars from 

either category (match vs. non-match) were presented on the left and right side of the screen 

(9 from the center of the screen). Once the test exemplars appeared, the animal had the 

opportunity to freely view both of the exemplars presented, and make the choice. The animal 

indicated its choice by fixating for 0.7s on one of the two peripherally presented exemplars. 

Neither category was tied to any particular location. If the animal made the correct choice, 

the white dots of the chosen exemplar turned green and the animal received juice. If the 

animal made the wrong choice, the chosen exemplar turned red and no juice was given. 

Depending on the animal, the length of timeout incurred on error trials varied from 5–16 s. 
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For the analysis, we focused on the sample and delay epochs in this paradigm (when the 

animals’ eyes were fixating the screen center), because the neural signals during the test 

epoch might also reflect eye-movement related activity.

Block Design—To facilitate category learning, each session was organized into blocks. 

The blocks were defined by a progressively growing pool of available exemplars. In block 1, 

there were two exemplars per category. The pool of available exemplars grew by accretion; 

“new” exemplars were added to a bank of “familiar” ones, so that the total number of 

available exemplars for each category was equal to 2block. The terms novel and familiar are 

not an indication for how familiar any exemplar was to an animal, but simply a reflection of 

when it became available in the pool of potentially usable exemplars. As the blocks 

progressed, the chances for only seeing novel exemplars increased substantially, and above 

chance performance on these novel exemplars suggested successful categorization. In fact, 

block transition was not possible without successful categorization, and the overlap of 

available exemplars between blocks favored a smooth learning process. In order to pass from 

one block to another, each animal had to successfully complete 70% of the previous 10 trials 

for each potential condition (Category A – on left, Category A – on right, Category B – on 

left, and Category B – on right). This behavioral criterion ensured that the animals were able 

to categorize stimuli from an increasing pool of different exemplars and supposedly learned 

the underlying category rule by the end of the training blocks. We only used correct trials 

above training block 5 with a minimum of 64 different exemplars per category for the 

analysis of neurophysiological data presented here. In addition, the behavioral criterion 

limited idiosyncratic biases of the animals for either choosing a particular location and/or a 

particular category. Because of these behavioral criteria, not all available exemplars were 

presented in each block (see Bias correction below). An additional restraint was imposed on 

the pool of available exemplars presented in block 1. Because both animals struggled to pass 

block one, in which two exemplars from each category were presented, the two exemplars 

from each category had to have a summed Euclidean distance of less than 1 DVA apart. This 

constraint reduced the difficulty of the first block, promoted rapid block passage, and 

ultimately favored category abstraction. Following block one, there was no limitation on the 

presented exemplars.

Bias Correction—As stated above, each of the animals attempted suboptimal strategies 

(i.e. exhibited biased behavioral choices) and, if left to their own devices, they would fail to 

learn to categorize stimuli. To avoid these aberrant behaviors, we detected the animals’ 

biases, and scaled the probability that any particular condition was shown to counteract these 

“easier,” inefficient strategies. In order to assess bias in any one of the four conditions 

enumerated above, we compared performance in each of the four conditions to one another, 

and computed a Mann Whitney U test statistic for each comparison. From this test statistic, 

we obtained the area under the curve, subtracted 0.5 to obtain a bias measure, and remapped 

this bias measure to a value between [0–1] by dividing it by 0.5. We then used this measure 

to scale the probability that any particular condition would be seen (i.e. we forced more 

choices for the non-preferred condition by showing it more often). We only implemented 

this bias correction algorithm after 20 trials were performed in each block. The bias 

correction ensured that the animals’ performance was above chance for exemplars from both 
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categories. Despite this bias correction, the animals still maintained preferences for a 

particular category in each session.

Recordings—Stimulus presentation and reward delivery were controlled by custom 

software written in Matlab (The MathWorks, Natick, MA) using PsychToolbox (Brainard, 

1997; Pelli, 1997). All stimuli were presented on an LCD screen at 144 Hz (ViewSonic 

VG2401mh 24″ Gaming Monitor). Eye movements and pupil size were monitored using 

EyeLink II at 1000 Hz sampling. Two 8×8 channel Blackrock Cereport arrays with 1mm 

long electrodes were placed within dorosolateral prefrontal cortex (dlPFC), and ventrolateral 

prefrontal cortex (vlPFC) of each monkey. Both monkeys also had two more arrays 

chronically implanted in the frontal and supplementary eye-fields regions (FEF, SEF). Only 

data from the PFC arrays was analyzed for this paper. Each electrode was separated by 400 

μm. vlPFC and dlPFC were defined by anatomical landmarks following a large craniotomy. 

3D MRI brain reconstructions and plastic models were used to guide the surgical implants of 

the array. The vlPFC array was placed 1 mm ventral to the principal sulcus and was centered 

at 9–12 mm anterior to the genu of the arcuate sulcus. In contrast, the dlPFC array was 

positioned slightly more rostral, 12–15 mm anterior to the genu of the arcuate and 1 mm 

dorsal to the principal sulcus. Figure 1C shows the approximate anatomical locations. 

Signals were recorded through a headstage (Blackrock Cereplex M and Cereplex E), 

sampled at 30 kHz, band-passed between 0.3 Hz and 7.5 kHz (1st order Butterworth high-

pass and 3rd order Butterworth low-pass), and digitized at a 16-bit, 250 nV/bit. Summed 

over all 30 recording days, there were in total 608 channels in vlPFC and 335 channels in 

dlPFC with spikes. A channel was defined as recording spikes (multi-unit activity (MUA) 

channel) when its spike count per second averaged over trials and over sample and delay 

epochs (0–2 s) was greater than one. Figure S1 shows the array topographies for the 

percentages over recording days that a given channel recorded spikes for each animal. The 

details about the multi-unit spiking activity (MUA) analysis are reported below. Local field 

potentials (LFPs) were recorded with a sampling frequency of 1 kHz, referenced to ground 

and AC-coupled.

Data from 15 recording days were analyzed from each of the two monkeys for the LFP 

analysis. There were two data sets less for monkey G for the MUA analysis. For the analysis 

of neurophysiological data, we used equal proportions of trials from the two categories in 

each session (by drawing a random sub-sample of trials equal to the minimum trial number 

across categories). Further, we used only correct trials above training block 5 (see section 

Block design). The only exception from this procedure was the correct vs. error trial 

analysis. Across sessions, on average 269 trials were used from monkey P (min= 94, max= 

520) and 293 trials for monkey G (min= 140, max= 572). For the analysis on category 

information across different levels of distortion, median split by between-category distance 

and for correct vs. error trials, we equated the trial numbers per condition for each session 

(see below for details). This reduced the number of available trials for the distortion analysis 

(monkey P: 185 trials, min= 48, max= 364; monkey G: 200 trials, min= 80, max= 360) and 

the correct vs. error analysis (monkey P: 142 trials, min= 36, max= 284; monkey G: 111 

trials, min= 24, max= 244).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data—Behavioral and neurophysiological results were very similar between 

monkeys and therefore pooled across animals. All analytic measures for behavioral and LFP 

data were calculated for each recording session separately (unit of observation n= 30 

sessions, unless otherwise indicated). For MUA analysis, all measures were calculated for 

each channel that recorded spiking activity (MUA channel). For behavior and LFPs, this 

yielded repeated measures between the tested conditions in each session and, thus, the 

statistical contrasts were calculated for a dependent-samples design across sessions. For 

MUA, this yielded repeated measures between conditions in the same area (same MUA 

channels) and independent measures for between-area contrasts (different MUA channels). 

For the dependent-samples case, the error bars and shaded error regions show the standard 

error of the mean for repeated measures. The mean between conditions in each session was 

subtracted from the data in each condition before calculating the standard error. The 

resulting error estimate was bias corrected by the number of conditions (M, multiplied by √ 

(M/(M−1)), as described in Morey, 2008).

Behavioral performance (percent correct trials) was well above chance (50 %) in every 

session (mean ± SD: 78 ± 6 %, t-value vs. 50 %: t(29)= 27, p< 5.3×10−22, Figure 4A). 

Performance was analyzed as a function of distortion level, median split by between-

category distance (difficulty) and for preferred and non-preferred categories. Category 

preference was based on the proportion of correct trials for each category on any given 

recording day. The better-performed category was defined as “preferred”. Performance was 

then pooled over preferred and non-preferred categories across recording days. For the effect 

of exemplar distortion on behavioral performance, we sorted all trials across all recording 

days by the summed Euclidean distance of the shown exemplar to its category prototype 

(distortion, see Prototype and exemplar generation above). Performance curves as a function 

of exemplar distortion were calculated by convolving the distortion-sorted performance 

vectors with a sliding-average window, encompassing 10% of the trials (width for preferred 

categories: 1243 trials; non-preferred categories: 1403 trials). Performance remained largely 

unchanged across a wide range of distortion levels but then decreased sharply at a critical 

distance from the prototype. Generalization across different exemplars and sharp distinctions 

with increasing category distance are hallmarks of categorization. Performance curves were 

fitted with a generalized logistic function (sigmoid S, Eqn. 1) with four free parameters (A = 

lower asymptote, B = upper – lower asymptote, C = steepness, x0 = mid-point) to estimate 

the inflection point (x0; see Figure 5A).

S = A + B/(1 + e(C ∗ (x − x0))) Eqn. 1

The coefficient of determination (R2) was used to determine the goodness of the fit, and the 

95%-confidence intervals of the parameter estimates were calculated. In order to directly 

compare performance between low and high distortion levels, we split the data sets for each 

session at the estimated inflection point for preferred category trials (1.1 DVA). For the 

difficulty analysis, the data sets per session were split at the median distance between 
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exemplars and the second category prototype (on average 4.3 DVA). The effects of category 

preference and exemplar distortion (low vs. high split at the inflection point) or difficulty 

(median split) across sessions on behavioral accuracy (% correct trials) were then tested with 

a two-way, repeated-measures analysis of variance (ANOVA). Interaction effects were 

explored with post-hoc dependent-samples t-tests (Figure 5B, F). The difference in exemplar 

distortion between the median split trial subsets for between-category distance was tested 

with a dependent-samples t-test across sessions.

LFP pre-processing—Data was analyzed using custom Matlab code (The MathWorks, 

Natick, MA) and the Fieldtrip toolbox (Oostenveld et al., 2011). The continuous local field 

potential (LFP) for each of the 64 electrodes on each recording array (vlPFC, dlPFC) was 

cut into trials between −2 s to 4 s around the sample onset. For the evoked response analysis, 

the LFP signal from each area was referenced to the same common reference (ground) and 

band-pass filtered between 1 and 15 Hz with a zero-phase Butterworth filter (4th order) 

applied in the forward and reverse direction. Before filtering, each trial was zero-padded to a 

length of 10 s to avoid edge artifacts. Stimulus-evoked activity was derived by averaging the 

LFP signal at each electrode across trials and baseline correcting it to the pre-trial interval 

between −1 to −0.75 s relative to sample onset. For the analysis of oscillatory power, LFPs 

were re-referenced to the array average, subtracting out the common signal components 

across all electrodes. LFPs were then band-pass filtered between 1 and 250 Hz and band-

stop filtered around line noise frequencies (60, 120, 180, 240 ± 1 Hz, same filter settings as 

above). In order to obtain induced activity without the contribution from stimulus-evoked 

LFP components, the trial-average was subtracted from each single trial.

Time-frequency representations were calculated using a Fourier transform applied to short 

sliding time windows in steps of 10 ms in the time interval between −1 to 3 s relative to 

sample onset and in the frequency range between 1 to 200 Hz. Fourier estimates were 

computed by means of a multi-taper transformation (discrete prolate spheroidal sequences 

(dpss), 3 tapers) applied to single trial data. The squared absolute value of the Fourier 

estimate gave the LFP signal power for each electrode across different frequencies and time 

points. For time-frequency representations and frequency spectra, we used a fixed 200 ms 

window width with a fixed amount of spectral smoothing (±10 Hz for frequencies between 

1–200 Hz in steps of 1 Hz). This procedure yielded a good resolution in the frequency 

domain (see Figures 2 and S1). For the power time courses, we opted for a better temporal 

resolution (especially for higher frequencies) and used a frequency-dependent window width 

(5 cycles per frequency between 1–59 Hz in 1 Hz steps, between 60–99 Hz in 5 Hz steps, 

between 100–200 Hz in 10 Hz steps) and smoothing (0.4 times the frequency of interest). 

Subsequently, we averaged over the respective frequency bands to derive the time course of 

beta (10–35 Hz) and gamma power (60–160 Hz) and information (see Figures 4, S3 and 6). 

The two methods yielded very similar results apart from the described trade-off between 

spectral and temporal resolution.

Task-related changes in LFP power—LFP signal power during the sample 

presentation (0–1 s), the memory delay epoch (on average 1–2 s, jittered between 1 to 1.85–

2.25 s) and at the test epoch (>2.25 s) was compared to the pre-trial baseline epoch (−1 to 
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−0.75 s relative to sample onset) by means of a Wilcoxon signed-rank test. This time epoch 

was chosen as baseline because it was free from stimulus-evoked and eye-movement related 

activity by the onset of the fixation dot and the associated saccade. Baseline activity for each 

trial was calculated by averaging power between −1 to −0.75 s for every frequency bin on 

each electrode. Single-trial baseline values were then compared to each time-frequency bin 

during the task epoch. The sum of the signed rank difference across trials (Wilcoxon test 

statistic) was converted into a z-value for a standard normal distribution. The resulting time-

frequency z-value maps for each electrode were averaged over sessions.

For Figures 2A and B, the time-frequency z-value maps were averaged over all electrodes in 

each area and masked at a conservative threshold of z = ± 3.29 (corresponding to p< .001, 

two-sided). For the array topographies (Figure S1) the z-value maps were averaged over the 

time interval between 0–3 s and either the beta (10–35 Hz) or the gamma band (60–160 HZ). 

For the power spectra (Figure S1) the z-value maps were averaged over all electrodes in each 

area and over the time intervals between 0–1 s/1–2 s for dlPFC and 0.1–0.3 s/2.5–2.7 s for 

vlPFC. Both z-value power spectra and topographies were Bonferroni corrected for multiple 

comparisons (200 frequency bins, 64 electrodes). The locus of maximal power changes in 

vlPFC was explored by separating the broadband gamma spectrum into four equally spaced 

frequency ranges between 40 and 200 Hz (41–80 Hz, 81–120 Hz, 121–160 Hz, 161–200 

Hz). The average z-value over each of these frequency ranges was then tested between 

adjacent sub-bands with a Wilcoxon sign-rank test. In order to obtain a single value 

representing the power modulations relative to baseline in each session, as shown in Figure 

2C, we averaged the z-values over each frequency band, the time epoch from 0–3 s and all 

electrodes per area. This power modulation value was used to explore the interaction 

between the frequency bands across areas with a two-way, repeated-measures ANOVA.

The degree of correlation between the beta and gamma power time-courses within and 

across areas was tested by averaging power changes over all electrodes per area and in the 

respective frequency band (beta: 10–35 Hz, gamma: 60–160 Hz) and calculating the 

Pearson-correlation over the time interval between 0–3 s after sample onset. The resulting r-

coefficients over sessions were compared against 0 with a Wilcoxon sign-rank test.

Category information in LFP power—We assessed category selectivity in LFP power 

in vlPFC and dlPFC using a percentage of explained variance statistic (ω2-statistic). The ω2-

statistic reflects how much variance in the LFP signal can be explained by the category 

membership of a particular presented exemplar in each trial (Eqn. 2, where SSbetween is the 

sum of squared residuals between categories SSbetween = Σcategory Ncategory * (meancategory – 

meantotal)2, SStotal is the total sum of squared residuals across all trials SStotal = Σtrials 

(xexemplar - meantotal)2, df1 is the degrees of freedom between categories (i.e: 1, number of 

categories – 1), MSE is the mean squared error MSE = 1/df2 * Σtrials (xexemplar - 

meancategory)2, where df2 is the degrees of freedom of the error (i.e: number of trials – 

number of categories).

ω2 = (SSbetween − df1 ∗ MSE)/(SStotal + MSE) Eqn. 2
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ω2 is an unbiased measure of explained variance (Olejnik and Algina, 2003). It results in a 

zero-mean statistic when there is no category information (see baseline interval from −0.5 to 

0 s in Figure 2D, E) and its upper limit would be 1 indicating 100 % explained variance. 

Note that slightly negative ω2 - values can occur due to the bias-correction of the statistic for 

small sample sizes (i.e. subtracting the MSE in Eqn. 2).

Category information expressed in the ω2-statistic was calculated for each recording session, 

in each of which a new set of categories was presented, and then averaged over sessions. A 

permutation test was used to determine significant category information (ω2) in the LFP-

signal. To this end, the association between neural activity and category membership was 

broken up by randomly shuffling the category labels across trials. The ω2-statistic was 

recorded after each permutation run, generating a reference distribution of ω2-statistics 

under the null hypothesis of no category information in the LFP signal (approximated with a 

Monte Carlo procedure of 1000 permutations). Akin to the analysis of the observed data, the 

reference distributions were generated for each session separately and subsequently 

averaged over sessions. The observed ω2-statistic was then compared with this null 

distribution. A given electrode, time- or frequency sample was defined as carrying category 

information, if its associated, observed ω2-statistic exceeded the 99.9% - quantile of the 

corresponding reference distribution (p< .001). For example, we determined the percentage 

of category-informative electrodes (see Figure S1) in each area (vlPFC, dlPFC) for each 

frequency band (beta: 10–35 Hz; gamma: 60–160 Hz). To this end we averaged power 

across the respective frequency band and the time interval between 0.5 to 1.5 s after sample 

onset and calculated for each electrode the ω2-statistic (and its corresponding null-

distribution). An electrode was then defined as carrying category information, if its 

associated, observed ω2-statistic exceeded the 99.9% - quantile of the corresponding 

reference distribution.

Figures 2D and E show the time-frequency maps averaged over all category-informative 

electrodes in either frequency band in each area and masked at a conservative threshold of 

p< .001. In Figure S1, we show category information as a function of frequency averaged 

over all category-informative electrodes and either the sample (0–1 s) or delay epoch (1–2 

s). Significant frequency ranges were defined for observed ω2-statistics with p< .001. The 

locus of maximal category information in vlPFC was explored by separating the broadband 

gamma spectrum into four equally spaced frequency ranges between 40 and 200 Hz (41–80 

Hz, 81–120 Hz, 121–160 Hz, 161–200 Hz). The average ω2-statistic over each of these 

frequency ranges was then tested between adjacent sub-bands with a Wilcoxon sign-rank 

test. For each array (vlPFC, dlPFC), we calculated a single value representing the category 

information in each frequency band (beta, gamma, averaged between 0.5–1.5 s, see above). 

We averaged the ω2-statistics for each frequency band across all electrodes per area and 

converted it into a z-score for each session relative to the session’s permutation distribution 

(i.e. subtracting the mean of the distribution and dividing by its standard deviation, see 

Figure 2F). This category information value was used a) to assess the amount of category 

information per frequency band and cortical area and b) to explore their interaction with a 

two-way, repeated-measures ANOVA and Wilcoxon sign-rank tests.
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Evoked activity—The evoked potential was calculated as the trial-average LFP signal 

between 1–15 Hz (see above). The evoked potentials for each electrode were baseline 

corrected for the average amplitude in the baseline epoch (−1 to −0.75 s before sample 

onset) and then averaged over all electrodes per area. The absolute amplitude time-locked to 

sample onset (averaged between 0.1 to 0.3 s after sample onset) was compared between 

areas (vlPFC, dlPFC) with a Wilcoxon sign-rank test (Figure 3A). Category information in 

the evoked activity (ω2-statistic) in each area was calculated for the band-bass filtered single 

trial data (averaged over all electrodes) and its statistical significance assessed with a 

permutation test (as described above for LFP power). The information time courses were 

smoothed with a Gaussian filter (width: 100 ms, sigma: 25 ms) for better illustration (Figure 

3D). The results were identical between raw and smoothed time courses. Significant 

differences in information between areas were tested independently for the sample (0–1 s) 

and memory delay epoch (1–2 s) with a Wilcoxon sign-rank test for the average ω2-statistic 

over the respective time interval.

Multi-unit spiking activity—Multi-unit activity (MUA) was derived from the 30 kHz-

sampled raw signals (see Recordings). Each channel was re-referenced to the array average, 

subtracting out the common signal components across all electrodes. The signals were then 

high-pass filtered at 300 Hz (6th order Butterworth, zero-phase), rectified and thresholded at 

five times above each channel’s noise level (Eqn. 3).

thr = 5 ∗ median (abs(signal)/0.6745) Eqn. 3

This noise estimate improves on the estimation based on a channel’s standard deviation 

because it remains largely constant across different firing rate regimes and spike amplitudes 

(Quiroga et al., 2004). We chose a conservative threshold (5 times above the channel’s noise 

level), in order to capture only very few neurons near an electrode. Because nearby neurons 

tend to show similar properties, this local MUA activity is nearly identical to single-unit 

activity. Spike time stamps were extracted for each threshold crossing between −1 s before 

to 3 s after sample onset on each trial with a minimal time interval of 1 ms (30 samples) 

between successive time stamps. All channels with an average spike rate (spikes/s) between 

0–2 s > 1 were defined as containing multi-unit spiking activity (MUA channel). Given the 

inter-electrode distance (400 μm), the same neuron cannot contribute to MUA activity on 

multiple channels. Thus, each MUA channel was treated as an independent unit of 

observation (n= 608 channels in vlPFC, n= 335 channels in dlPFC).

Category information for each MUA channel was calculated with the ω2-statistic for the 

summed spike counts between 0–2 s and its statistical significance assessed with a 

permutation test (as described above for LFP power). The ω2-statistic accounts for category 

information for both increased and reduced firing rates for one or the other category (i.e. 

category A > category B and category B > category A contribute equally to information in 

the ω2 – statistic). Figure S1 shows the array topographies for the percentage over recording 

days that a given channel recorded spikes and that it contained category information (p< .

001). The spike rates over time (spikes/s) were calculated by convolution with a Gaussian 
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filter (width: 100 ms, sigma: 25 ms) and then down-sampled to 1000 Hz. Category 

information over time was calculated by the ω2-statistic for each time bin. The difference in 

the average spike rates between 0.1–0.3 s and in the average category information during 

sample (0–1 s) and delay epochs (1–2 s) between PFC areas was tested with a Mann-

Whitney U-test across all MUA channels per area. The Pearson-correlation between the 

power time-courses and spike rates was calculated over the time interval between 0–3 s after 

sample onset for each MUA channel. The resulting r-coefficients were compared against 0 

with a Wilcoxon sign-rank test. The average r-coefficients were compared between PFC 

areas with Fisher’s r to z test.

Spike-LFP coherence—The LFP-phase in the frequency range between 1 to 200 Hz was 

computed locally around the spike time stamps (± 0.1 s; spike-triggered spectrum) using a 

Fourier transform (Hanning taper). To exclude the possibility of spike bleed-through 

artifacts, we linearly interpolated the LFP traces in the interval ±2 ms around the spike time 

stamps. Spike-LFP phase coherence was calculated for each MUA channel averaged over all 

LFP channels per area (within- and between PFC areas) except for the spike-recording MUA 

channel. Each LFP channel was normalized for its power prior to averaging across channels. 

We used the pair-wise phase consistency metric (PPC, Vinck et al., 2010) to assess the 

degree of spike-LFP coherence. PPC is an unbiased measure of phase coherence with 

respect to sample size (i.e. its mean is independent of the number of observations). Thus, 

PPC yields similar results for different spike counts (i.e. when many or few LFP phases are 

compared). However, the variance of PPC does depend on the number of observations 

(Vinck et al., 2010). Thus, PPC estimates based on less than 30 spikes were discarded (i.e. 

replaced with NaN). PPC spectra were calculated for all spikes between 0–2 s. The time-

frequency PPC representations were generated using short sliding time windows (width 0.2 

s) in steps of 10 ms in the time interval between −0.5 to 2 s relative to sample onset. We used 

a Rayleigh test to assess significance for spike-LFP coherence across each MUA channel’s 

entire spectrum (p<. 05, Bonferroni corrected for 1–200 Hz) and averaged in the beta band 

(10–35 Hz, p<. 001). The difference in beta PPC between PFC areas was tested with a 

Mann-Whitney U test across all MUA channels per area with significant PPC in the beta 

band (vlPFC n= 167, dlPFC n= 109). The same test was used for the PPC time-frequency 

representations and the resulting statistical map was masked at p< .001.

For category information in spike-LFP coherence, we restricted our analyses to LFP 

channels that carried most category information in power (10% most informative channels 

per area and frequency band, see green dots in Figure S1). Category selectivity for each 

MUA channel was tested with a non-parametric permutation approach for the PPC 

difference between categories either averaged in the beta band or frequency-cluster corrected 

for the entire spectrum (p< .05; similar to the description in Maris et al., 2007). The 

reference distribution was approximated by a Monte Carlo procedure based on 500 

permutations, each time shuffling the category labels across trials, splitting the trial-shuffled 

data into two equal sets and re-calculating the PPC difference between categories. Cluster-

level statistics were calculated by summing over supra-threshold PPC differences when they 

were adjacent in frequency space. The threshold for clustering was defined non-

parametrically for each frequency sample in both the observed spectrum and each random 
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permutation based on all other permutations (p< .05). The maximum cluster level statistic 

was recorded after each permutation run, generating a reference distribution of cluster-level 

statistics. A given MUA channel was category selective when its observed PPC difference 

between categories exceeded the 2.5% and 97.5%-quantiles of its corresponding reference 

distribution (averaged in beta or on the cluster-level). The absolute difference between 

categories in beta band PPC was compared between PFC areas by means of a Mann 

Whitney U test across all MUA channels per area with significant beta PPC differences 

(vlPFC gamma-LFP n= 57, vlPFC beta-LFP n= 54, dlPFC n= 28). We subtracted the median 

absolute PPC difference from each category-shuffled permutation distribution from the 

observed absolute PPC difference per MUA channel, in order to partial out between-area 

differences due to an overall different PPC level and to ensure that the between-area 

differences were due to differences in category-selectivity.

Category selectivity in beta spike-LFP coherence for different distortion levels was assessed 

with a non-parametric permutation approach (as described above) separately for spikes in 

the sample (0–1 s) and delay epochs (1–2 s). The proportions of category-selective MUA 

channels (for all trials and per distortion level) were tested against a chance level of 5% with 

a binomial test and between PFC areas with a χ2-test for independence. We used a 

McNemar test to assess the difference in the proportions of category-selective MUA 

channels between low and high distortion levels. It takes the condition pairing across MUA 

channels into account (i.e. each MUA channel was tested twice for category selectivity, once 

for low and high distortion). The p-value for the McNemar statistic (the number of 

discordant pairs) was derived from a binomial distribution with p=0.5.

Correlation between behavioral category performance and LFP power 
changes—We tested the relationship between the behavioral preference for a particular 

category in a given session with the task-related change in LFP power in the beta and 

gamma bands. To this end, we computed an index of behavioral category preference as the 

difference in the proportion of correct trials (pcor) between the two categories divided by the 

overall proportion of correct trials per session (Eqn. 4). Likewise, the LFP power differences 

between categories in the beta (averaged between 10–35 Hz) and gamma band (60–160 Hz) 

were quantified by the difference in the average LFP power (pow) between the two 

categories divided by the overall LFP power in that band per session (Eqn. 5).

(pcorA − pcorB)/pcorall Eqn. 4

(powA − powB)/powall Eqn. 5

The performance and power differences were divided by overall performance/power, in 

order to bring the magnitude of the behavioral and neural effects onto the same scale. The 

LFP power differences were averaged over all electrodes for each array (vlPFC, dlPFC) and 
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the Pearson-correlation (Pearson-rsessions) between behavioral and power differences per 

frequency band was calculated for each time point between 0–2 s.

In order to correct for multiple comparisons at multiple time samples, we used a 

nonparametric cluster-based permutation test (Maris and Oostenveld, 2007). First, clusters of 

temporally adjacent supra-threshold correlation (Pearson-correlation exceeding p < .05, two-

sided) were identified. Within one cluster, r coefficients were summed up to obtain a cluster-

level test statistic. Then, random permutations of the data were drawn by exchanging the 

session labels and therefore breaking up the relationship between behavioral category 

preference and LFP power change between categories in each session. The maximum cluster 

level statistic was recorded after each permutation run, generating a reference distribution of 

cluster-level statistics (approximated with a Monte Carlo procedure of 1000 permutations). 

Cluster-level p-values were then estimated as the proportion of values in the corresponding 

reference distribution exceeding the cluster-level statistic obtained in the actual data. The 

cluster-level statistic represents the significant correlation over a time interval, which is 

effectively controlled for multiple comparisons at multiple time samples (see Figure S3).

Figures 4C and D show the power differences between categories, averaged over these 

significant time intervals, plotted against behavioral differences. We estimated the 

percentage of electrodes in each array with a significant correlation during those significant 

time intervals. To this end, the LFP power change was averaged within the time intervals of 

interest (0.23–1.17 s for dlPFC beta; 0.1–0.3 s for vlPFC gamma) and the Pearson-

correlation with behavioral differences was calculated for each electrode. The cluster-based 

permutation procedure (see above) was used for multiple comparison correction at multiple 

electrodes (Figure S3). In order to form sensor clusters, the electrode neighborhood on the 

array was defined by Delaunay triangulation. We tested the difference in power between 

preferred and non-preferred categories per session (defined based on behavior, see 

Behavioral data above) for the average power across the strongest connected cluster of 

electrodes with a significant correlation (see Figure S3). For spiking in vlPFC, we tested the 

difference in the spike rates (spikes/s) for preferred vs. non-preferred categories across all 

MUA channels that contained category information (n = 242 MUA channels). Dependent-

samples t-statistics were calculated for the power or spiking difference between preferred 

and non-preferred categories for the time course between 0–2 s and the cluster-based 

permutation test (see above) was used for multiple comparison correction at multiple time 

samples (Figure 4E–G).

For vlPFC-gamma power, we repeated the same analysis averaged over all MUA channels 

that contained category information (like for the spiking analysis), instead of averaging over 

recording sessions, in order to directly compare the gamma power and spiking effects on the 

same electrodes (Figure S3 H). We used a two-way, repeated-measures ANOVA with the 

factors category preference (preferred/non-preferred) and neural measure (gamma power/

spiking) to contrast the average activity between 0–2 s. The neural measures (power and 

spiking) were transformed into a relative change to its mean activity (subtracted and divided 

by the mean power/spike rate over all MUA channels and preferred/non-preferred 

categories), in order to bring the magnitude of the spiking and power effects onto the same 

scale.
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Category information as a function of exemplar distortion, correct vs. error 
trials and difficulty—In order to compare category information across different levels of 

exemplar distortion, we split the data sets for each recording day at the critical distortion 

level (1.1 DVA, based on the inflection point for behavioral performance on the preferred 

category, see Behavioral data). For the difficulty analysis, the data sets per session were split 

at the median distance between exemplars and the second category prototype (on average 4.3 

DVA). Likewise, we compared category information between correct and error trials. We 

calculated the ω2-statistic separately for each trial subset. Although the mean of ω2 is 

unbiased (around zero when there is no information), the distribution of observed values still 

varies with the number of observations (the skew of the distribution). Therefore, the data 

sub-sets were balanced in trial numbers for each session (by drawing a random sub-sample 

of trials equal to the minimum trial number across conditions, see section Recordings 

above).

For power, we restricted our analyses to electrodes that carried most category information 

between 0.5 to 1.5 s after sample onset (see green dots in Figure S1). Category information 

(ω2-statistic) was averaged between the balanced trial subsets and then the 10% most 

informative electrodes in each area and each frequency band were selected. This ensured 

that we simultaneously captured effects in the sample and delay epoch on those informative 

electrodes without any bias to either trial subset. Significant differences in information were 

tested independently for the sample (0–1 s) and memory delay epoch (1–2 s) with a 

Wilcoxon sign-rank test for the average ω2-statistic over the respective task epoch. For 

spiking in vlPFC, we tested the differences between low and high distortion in the ω2-

statistic calculated for the summed spike counts per epoch and for all MUA channels that 

contained category information (n = 242 MUA channels). For the distortion and difficulty 

analyses, we used a two-way repeated-measures ANOVA with the factors frequency 

(gamma/beta) and trial subset (either low/high distortion or above/below median distance) 

for the average category information between 0–2 s. The time courses of category 

information shown in Figures 6 and S4 were smoothed with a Gaussian filter (width: 100 

ms, sigma: 25 ms) for better illustration.

The sample/delay epoch differences between low vs. high abstractness were also tested (1) 

with a non-parametric permutation tests for the maximum/minimum statistic per task epoch 

and (2) over time with a cluster-based method for multiple comparison correction (see 

above; Figure S4). For (1), the empirically observed maximum/minimum statistic over the 

respective task epoch (max. for gamma in sample (0–1 s), min. for beta in delay (1–2 s)) for 

the Wilcoxon test statistic between low and high distortions was compared to the 95%-

quantile of random permutations. The reference distributions were generated by shuffling 

the condition labels across sessions (but keeping the session-pairing between conditions), 

calculating the Wilcoxon test-statistic and recording the maximum/minimum statistics over 

the respective epoch (approximated with a Monte Carlo procedure of 1000 permutations). 

For (2), the time courses were first aligned to the first time point with significant category 

information for each recording day (with p< .05, permutation test). In case there was no time 

point with p< .05 (which happened in dlPFC-beta for 2/30 recording days), we aligned to the 

time point with maximal information. The alignment accounts for variability in the latency 
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of category information due to different categories and exemplars on different recording 

days. For dlPFC-beta, the first time point with information was on average at 0.532 s 

± 0.375 s SD. For vlPFC-gamma, this time point was on average at 0.186 s ± 0.162 s SD. 

We tested across all time points that were consistently available across all recording days 

from the first significant time point per day up to the test exemplar onset (sample and delay 

epoch) with a Wilcoxon test-statistic and a cluster-based permutation approach for multiple 

comparison correction (0–1 s for vlPFC-gamma, 0–0.6 s for dlPFC-beta; 1000 

permutations).

DATA AND SOFTWARE AVAILABILITY

Custom code for analyses will be provided upon request to the Lead Contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Category abstraction was organized by oscillatory dynamics and PFC sub-

region.

• Gamma oscillations in ventrolateral PFC signaled low-level category 

abstraction.

• Beta oscillations in dorsolateral PFC signaled high-level category abstraction.
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Figure 1. Dot-pattern category stimuli, task and recording locations
(A) Two dot-pattern categories under low and high distortion. (B) Summed Euclidean 

distance in degrees visual angle (DVA) between exemplars and prototypes (distance to same 

category (distortion) in yellow; distance to other category (distance between categories) in 

green). (C) Array locations in dlPFC and vlPFC. AS = arcuate sulcus, PS = principal sulcus. 

(D) Trial sequence of the delayed match-to-category paradigm.
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Figure 2. LFP-power and its category information
(A, B) Power change (Wilcoxon z-value) relative to baseline in dlPFC (A) and vlPFC (B). z-

values with p< .001 are shown. These effects appeared in a large proportion of channels (see 

Figure S1). (C) Power change (Wilcoxon z-value) for beta and gamma power in dlPFC and 

vlPFC. Error bars show +/−1 SE. Asterisks indicate the significance level vs baseline and for 

the interaction between frequency bands and areas (with n.s. = not significant, * p< .05, *** 

p< .001). (D, E) Category information (ω2) in dlPFC (D) and vlPFC (E) averaged over 

significant channels for beta or gamma power (see Figure S1). ω2 with p< .001 are shown. 

(F) Information z-scores vs. random permutations for beta and gamma power in dlPFC and 

vlPFC. Error bars show +/−1 SE. Asterisks indicate the significance level for each z-score, 

between the z-scores per frequency in each area and for the interaction between frequency 

bands and areas (with n.s. = not significant, * p< .05, *** p< .001).
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Figure 3. Evoked activity, spiking and spike-LFP coherence and its category information
(A) Evoked potential averaged over all dlPFC and vlPFC channels. (B) Spike rate (spikes/s) 

averaged over all dlPFC and vlPFC MUA channels (MUA channel = average spike rate 

between 0–2 s > 1; see Figure S1). (C) Spike-LFP coherence (pairwise phase consistency 

(PPC) between 0–2 s) averaged over all dlPFC and vlPFC MUA channels with significant 

beta coherence (Rayleigh test, p< .001). The spike-LFP coherence results between areas and 

over time are shown in Figure S2. For (A–C), shaded areas show +/−1 SE. Asterisks indicate 

the significance level for the difference between areas for intervals (0.1–0.3 s)/frequencies 

(10–35 Hz) of interest (gray area; with *** p< .001). (D) Category information in evoked 

activity in dlPFC and vlPFC. (E) Category information in spiking activity in dlPFC and 

vlPFC. For (D, E), shaded areas show +/−1 SE. Asterisks indicate the significance level for 

the difference between areas for sample (0–1 s) and delay epochs (1–2 s, with * p< .05, ** 

p< .01, *** p< .001). (F) Absolute PPC difference between categories over frequency 

averaged over all significant MUA channels per area in the beta band (gray area). The 

median absolute PPC difference from each category-shuffled permutation distribution was 

subtracted from the observed absolute PPC difference per MUA channel. Inset plot: % MUA 

channels with a significant beta PPC difference (p< .05, permutation test). Asterisks indicate 

the significance level for the PPC difference between areas and against chance (at 5%) for 

the proportions (with n.s. = not significant, ** p< .01, *** p< .001). Error bars and shaded 

areas show +/−1 SE.
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Figure 4. Category preference in behavior, LFP-power and spiking
(A) Performance (% correct trials) per category for each recording day (circles). Data points 

away from the main diagonal indicate a behavioral preference for a particular category on 

that day (A in black or B in green). (B) Performance for preferred and non-preferred 

categories. Error bars show +/−1 SE. Asterisks indicate the significance level (with *** p< .

001). (C, D) dlPFC-beta power (C) and vlPFC-gamma power (D) difference between 

categories, averaged over significant time intervals (0.23–1.17 s for (C), 0.1–0.3 s for (D), 

see Figure S3), plotted against performance difference. Asterisks indicate the significance 

level (with * p< .05, ** p< .01). (E–G) dlPFC-beta power (E), vlPFC-gamma power (F) and 

vlPFC-spiking (G) for preferred/non-preferred categories (averaged over channels with a 

significant correlation ((E, F), see Figure S3) or all MUA channels with category 

information (G). Shaded areas show +/−1 SE. Horizontal lines show significant time 

intervals (p< .05, time-cluster corrected).
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Figure 5. Category abstraction in behavior, LFP-power and spiking
(A) Performance (% correct trials) as a function of exemplar distortion for preferred and 

non-preferred categories. Shaded areas show +/−1 SE. Lines show the sigmoid fit and inset 

circles show its inflection point. (B) Performance for low and high distortion separately for 

preferred and non-preferred categories. (C, D) Category information (ω2) for low and high 

distortion separately for sample (0–1 s) and delay epochs (1–2 s) for dlPFC-beta power, for 

vlPFC-gamma power (C) and for vlPFC-spking (D). (E) Category information (ω2) for 

correct and error trials separately for sample (0–1 s) and delay epochs (1–2 s) for dlPFC-beta 

power and vlPFC-gamma power. (F) Category information (ω2) for dlPFC-beta power and 

vlPFC-gamma power between 0–2 s for low/high distortion (left) and median split by 

between-category distance (right; easy = above median, hard = below median). For (B–F), 

error bars show +/−1 SE. Asterisks indicate the significance level (with n.s. = not significant, 

* p< .05, ** p< .01, *** p< .001). Additional analyses for time course stability are shown in 

Figure S4.
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Figure 6. Time-series data for category information
(A) Category information (ω2) as a function of time from sample onset for low (light hue) 

and high distortion (dark hue) for dlPFC-beta power (blue) and vlPFC-gamma power (red) 

averaged over the 10% most informative electrodes per area (see Figure S1). (B) Category 

information (ω2) as a function of time from sample onset for low (light hue) and high 

distortion (dark hue) for vlPFC-spiking (green) averaged over all channels that contained 

significant category information for spiking (242 MUA channels) and vlPFC-beta power 

(yellow) averaged over the 10% most informative electrodes per area (see Figure S1). (C) 

Category information (ω2) as a function of time from sample onset for correct (light hue) 

and error trials (dark hue) for dlPFC-beta power (blue) and vlPFC-gamma power (red) 

averaged over the 10% most informative electrodes per area (see Figure S1). (D) Category 

information (ω2) as a function of time from sample onset for above Median (easy) between-

category distance (light hue) and below Median (hard) between-category distance for dlPFC-

beta power (blue) and vlPFC-gamma power (red) averaged over the 10% most informative 

electrodes per area (see Figure S1). For (A–D), shaded areas show +/−1 SE. See also Figure 

S4.
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