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Abstract

The attractor neural network scenario is a popular scenario for memory storage in association 

cortex, but there is still a large gap between models based on this scenario and experimental data. 

We study a recurrent network model in which both learning rules and distribution of stored 

patterns are inferred from distributions of visual responses for novel and familiar images in 

inferior temporal cortex (ITC). Unlike classical attractor neural network models, our model 

exhibits graded activity in retrieval states, with distributions of firing rates that are close to 

lognormal. Inferred learning rules are close to maximizing the number of stored patterns within a 

family of unsupervised Hebbian learning rules, suggesting learning rules in ITC are optimized to 

store a large number of attractor states. Finally, we show that there exists two types of retrieval 

states: one in which firing rates are constant in time, another in which firing rates fluctuate 

chaotically.

Introduction

Attractor networks have been proposed as models of learning and memory in the cerebral 

cortex (Hopfield, 1982; Amit, 1992, 1995; Brunel, 2005). In these models, synaptic 

connectivity in a recurrent neural network is set up in such a way that the network dynamics 

have multiple attractor states, each of which represents a particular item that is stored in 

memory. Each attractor state is a specific pattern of activity of the network, that is correlated 

with the state of the network when the particular item is presented through external inputs. 
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The attractor property means that the network converges to the stored pattern, even if the 

external inputs are correlated to, but not identical, to the pattern, a necessary requirement for 

an associative memory model. In many of these models, the appropriate synaptic 

connectivity is assumed to be generated thanks to a ‘Hebbian’ learning process, according to 

which synaptic efficacies are modified by the activity of pre and post-synaptic neurons 

(Hebb, 1949).

These models have been successful in reproducing qualitatively several landmark 

observations in delayed response tasks experiments in monkeys (Fuster et al., 1971; 

Miyashita, 1988; Funahashi et al., 1989; Goldman-Rakic, 1995) and rodents (Liu et al., 

2014; Guo et al., 2014; Inagaki et al., 2017). In some of the monkey experiments, animals 

are trained to perform a task in which they have to remember for short times the identity or 

the location of a visual stimulus. These tasks share in common a presentation period during 

which the monkey is subjected to an external stimulus, and a delay period during which the 

monkey has to maintain in working memory the identity of the stimulus, which is needed to 

solve the task after the end of the delay period. One of the major findings of these 

experiments is the observation of selective persistent activity during the delay period in a 

subset of recorded neurons in many cortical areas, in particular in prefrontal cortex (Fuster et 

al., 1971; Funahashi et al., 1989; Romo et al., 1999), parietal cortex (Koch and Fuster, 

1989), inferior temporal cortex (Fuster and Jervey, 1981; Miyashita, 1988; Nakamura and 

Kubota, 1995) and other areas of the temporal lobe (Nakamura and Kubota, 1995). In those 

neurons, the firing rate does not decay to baseline during the delay period, but it is rather 

maintained at higher than baseline levels. Furthermore, this increase in firing rate is 

selective, i.e. it occurs only for a subset of stimuli used in the experiment. Selective 

persistent activity is consistent with attractor dynamics in a recurrent neural network, whose 

synaptic connectivity is shaped by experience dependent synaptic plasticity (Amit, 1995; 

Wang, 2001; Brunel, 2005).

The attractor network scenario was originally instantiated in highly simplified fully 

connected networks of binary neurons (Amari, 1972; Hopfield, 1982). While theorists have 

since strived to incorporate more neurophysiological realism into associative memory 

models, using e.g. asymmetric and sparse connectivity (Derrida et al., 1987), sparse coding 

of memories (Tsodyks and Feigel’Man, 1988; Tsodyks, 1988), online learning (Mézard et 

al., 1986; Parisi, 1986; Amit and Fusi, 1994), spiking neurons (Gerstner and van Hemmen, 

1992; Treves, 1993; Amit and Brunel, 1997; Brunel and Wang, 2001; Lansner, 2009), there 

is still a large gap between these models and experimental data. First, none of the existing 

models use patterns whose statistics is consistent with data. Most models use bimodal 

distributions of firing rates, with neurons either ‘activated’ by a stimulus or not, while there 

is no indication of such a bimodality in the data. Second, the connectivity matrices used in 

these models are essentially engineered (and sometimes highly fine-tuned) such as to 

produce attractor dynamics, but are totally unconstrained by data. Third, the attractor 

network scenario has been challenged by the observation of a high degree of irregularity and 

strong temporal variations in the firing rates of many neurons, which seem hard to reconcile 

with fixed point attractors (Druckmann and Chklovskii, 2012; Barak et al., 2013; Murray et 

al., 2017).
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A recent study (Lim et al., 2015) provides us with the tools to potentially bridge these gaps. 

It used data from experiments in which neuronal activity is recorded in IT cortex in response 

to large sets of novel and familiar stimuli (Woloszyn and Sheinberg, 2012). The distribution 

of neuronal responses to novel stimuli allows the inference of the distribution of firing rates 

of neurons in stimuli that are being memorized. This distribution is close to a lognormal, at 

odds with bimodal distributions of firing rates used in the vast majority of theoretical studies 

(for a few exceptions, see Treves (1990a,b); Festa et al. (2014)). Comparison between the 

distributions of responses to novel and familiar stimuli allows the inference of the 

dependence of the learning rule on post-synaptic firing rates. The inferred learning rule is 

Hebbian, but shows two major differences with classic rules such as the covariance rule 

(Sejnowski, 1977): (1) The post-synaptic dependence of the rule is dominated by depression, 

such that the vast majority of external inputs leads to a net decrease in total synaptic inputs 

to a neuron with learning, leading to a sparser representation of external stimuli; (2) The 

dependence of the rule on post-synaptic firing rates is highly non-linear, as in the 

Bienenstock-Cooper-Munro rule (Bienenstock et al., 1982).

These results beg the question of whether associative memory can emerge in networks 

whose distributions of firing rates and learning rules are consistent with data. We therefore 

set out to study a recurrent network model in which distributions of external inputs, single 

neuron transfer function and learning rule are all inferred from ITC data (Lim et al., 2015). 

We show that: (1) learning rules inferred from visual responses in ITC lead to attractor 

dynamics, without any need for parameter adjustment or fine tuning; (2) Activity in the 

delay period is graded, with broad distributions of firing rates; (3) Learning rules inferred 

from data are close to maximizing the number of stored patterns, in a space of unsupervised 

Hebbian learning rules with sigmoidal dependence on pre and post-synaptic firing rates; (4) 

In a large parameter region, our model presents irregular temporal dynamics during retrieval 

states that strongly resembles the temporal variability observed during delay periods. In this 

region, retrieval states are chaotic attractors that maintain a positive overlap with the 

corresponding stored memory, and the network performs as a associative memory device 

with fluctuations internally generated by the chaotic dynamics.

Results

We model local cortical circuits in IT cortex by a recurrent network composed of ‘firing 

rate’ units (Hopfield, 1984). The network is composed of N neurons whose firing rates are 

described by analog variables ri, where i = 1, 2, …, N represents the neuron index, as a 

simplified model for a local network in ITC (see Fig. 1 for a schematic depiction of the 

network). Firing rates obey standard rate equations (Grossberg, 1969; Hopfield, 1984)

τṙi = − ri + ϕ Ii + ∑
i ≠ j

N
Jijr j , (1)

where τ is the time constant of firing rate dynamics, ϕ is the input-output single neuron 

transfer function (or f-I curve), Ii are the external inputs to neuron i, and Jij is the strength of 

the synapse connecting neuron j to neuron i.
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The connectivity matrix is sparse, and existing connections are shaped by external inputs 

(‘patterns’) through a non-linear unsupervised Hebbian synaptic plasticity rule. In this rule, 

external synaptic inputs ξi
μ to neuron i during presentation of pattern μ (i = 1, 2, …, N and μ 

= 1, 2, …, p) are generated randomly and independently from a Gaussian distribution (see 

Fig. 1A,B and Methods). The assumption of independence of the patterns is consistent with 

the data (see Fig. S1). The external inputs shape the connectivity matrix through the firing 

rates ϕ(ξi
μ) generated by such inputs, and through two non-linear functions f and g that 

characterize the dependence of the learning rule on the post-synaptic rate (f) and pre-

synaptic rate (g), respectively. When p patterns are learned by the network, the final 

connectivity after learning gets structured as

Jij =
Acij
cN ∑

k = 1

p
f [ϕ(ξi

k)]g[ϕ(ξ j
k)], (2)

where cij is a sparse random (Erdos-Renyi) structural connectivity matrix (cij = 1 with 

probability c, cij = 0 with probability 1 − c, where c ≪ 1). This synaptic connectivity matrix 

can be obtained by a learning rule that changes the synaptic connectivity matrix by a factor 

ΔJij ∝ f [ϕ(ξi
μ)]g[ϕ(ξ j

μ)] when a pattern μ is presented to the network, starting from an initial 

tabula rasa Jij = 0, and neglecting the contributions of recurrent connections during learning. 

This rule is a generalization of Hebbian rules used in classic models such as the Hopfield 

model (Hopfield, 1982) or the Tsodyks-Feigel’man model (Tsodyks and Feigel’Man, 1988), 

with two important differences: patterns have a Gaussian distribution instead of binary; and 

the dependence of the rule on firing rates is non-linear instead of linear. In the following, the 

patterns that have shaped the connectivity matrix will be termed ‘familiar’ while all other 

random patterns presented to the network will be termed ‘novel’.

Inferring transfer function and learning rule from data

The model defined by Eqs. (1,2) depends on three functions ϕ, f and g that define the single 

neuron transfer function and synaptic learning rule, respectively. How to choose these 

functions? We used a method that was recently introduced by Lim et al. (2015) to infer the 

tranfer function (ϕ) and the post-synaptic dependence of the learning rule f from 

electrophysiological data recorded in ITC (Woloszyn and Sheinberg, 2012). The transfer 

function ϕ is obtained by finding the function that maps a standard Gaussian distribution to 

the empirical distribution of visual responses of neurons to a large set of novel stimuli (see 

Methods). The post-synaptic dependence of the learning rule f was obtained from the 

differences between the distribution of visual responses to familiar and novel stimuli, under 

the assumption that changes in such distributions are due to changes in synaptic connectivity 

in recurrent ITC circuits. Note that only the function f, and not g, can be inferred from data - 

this is due to the fact that the mean inputs to a neuron are proportional to [ϕ(ξi
k)] while the 

function g only appears in an integral (see Methods, Eq. (20)). Therefore, the knowledge of 

how the mean inputs change with learning as a function of its firing rate allows us to infer f 
but not g. As an additional step to the procedure described by Lim et al. (2015), we fitted the 
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resulting functions ϕ and f using sigmoidal functions (see Methods and Fig. 2). These 

sigmoidal functions provided good fits to the data (see Fig.2A–C, that shows fits of three 

representative ITC neurons; and Fig. S2–4 for all neurons in the data set). This fitting 

procedure gave us for each neurons three parameters of the transfer function: the maximal 

firing rate rm (median: rm = 76.2Hz), a measure of the slope at the inflection point βT 

(median: βT = 0.82), and the threshold (current at the inflection point, median: h0 = 2.46 - 

see Fig. 2D for a boxplot of these parameters). It also gives us for each neuron three 

parameters characterizing the function f: the threshold xf (median: 26.6 Hz), slope at the 

inflection point βf (median: 0.28 s) and saturation qf (median: 0.83). Finally, the fitting 

procedure also gives us the learning rate A (median: 3.55).

A number of features of these fitted functions are noteworthy: First, the vast majority of the 

visual responses of neurons are in the supralinear part of the transfer function, and therefore 

far from saturation. This is consistent with many studies showing supra-linear transfer 

functions at low firing rates, both in vitro (Rauch et al., 2003) and in vivo (Anderson et al., 

2000). Second, this has the consequence that the distribution of visual responses are strongly 

right-skewed, and in fact close to lognormal distributions, consistent with multiple 

observations in vivo (Hromadka et al., 2008; Roxin et al., 2011; Buzsaki and Mizuseki, 

2014; Lim et al., 2015). Third, the function f is strongly non-linear, and the threshold 

between depression and potentiation occurs at a firing rate that is much higher than the mean 

rate, leading to depression of the mean synaptic inputs to a neuron for the vast majority of 

shown stimuli. Fourth, the average of the function f across the distribution of patterns is 

negative, which leads to a decrease of the average visual response with familiarity (Lim et 

al., 2015).

The only parameters that are left unconstrained by data are two parameters characterizing 

the function g. In most of the following, we will take those parameters to be identical to the 

corresponding parameters of the function f (i.e. xg = xf and βg = βf; note that qg is fixed by 

the condition that the average of the function g across the distribution of patterns is zero, see 

Methods). We will also explore the space of values of xg and βg (see below).

Dynamics of the network following presentation of a familiar stimulus

Having specified the model, we now turn to the dynamics of the network described by Eqs. 

(1,2), whose parameters are set to the median best-fit parameters according to the procedure 

described above. In particular, we ask whether the model exhibits attractor dynamics. To 

address this question, we used both numerical simulations of large networks (see methods) 

and mean field theory (MFT - see methods and methods S1). For the MFT, we assume that 

both the number of neurons and stored patterns are large (i.e. more specifically the limit p, N 
→ ∞), while the number of stored patterns p divided by the average number of synapses 

per neuron (Nc), α ≡ p/Nc remains of order one. We call α the memory load of the network. 

The results of the MFT only depend on N, c and p via this quantity (see methods and 

methods S1). From our MFT analysis, we obtain mathematical expressions for two ‘order 

parameters’ that describe how network states are correlated (or not) with stored patterns. We 

are specifically interested here in the situation when the network state is correlated with one 

of the stored patterns (e.g. following the presentation of this particular pattern).
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The first order parameter describes the ‘overlap’ m between the current state of the network 

(described by the vector of firing rates ri, for i = 1, 2, …, N) and the pattern of interest (see 

Methods for the mathematical definition of m). When m is of order 1, this indicates that the 

corresponding pattern is retrieved from memory. Consequently, each pattern stored in 

memory can be retrieved by initializing the network dynamics with a configuration that is 

close to that particular pattern, and letting the network evolve towards its attractor state. In 

this case, giving a partial cue to the network leads the dynamics towards an attractor state 

correlated with the stored pattern, a signature of associative memory. The other order 

parameter M describes the interference due to the other stored patterns in the connectivity 

matrix; it is proportional to the average squared firing rates of the network (see Methods). 

Equations for the order parameters as a function of α, ϕ, f and g are given in Methods.

The results of the simulation of a particular realization of a network of N = 50, 000 neurons 

with c = 0.005 (an average of 250 connections per neuron) storing p = 30 patterns (α = 

0.12), and the comparison with the results from MFT are shown in Fig. 3. In the simulations, 

the network was initialized in a state which was uncorrelated with all the stored patterns. For 

these parameters, the network converged to a ‘background’ state in which all neurons fire at 

low rates (average 7.98/s, standard deviation 2.92/s). Upon presentation of a novel stimulus 

(Fig. 3A), neurons were driven to stimulus-specific firing rates, with a distribution of firing 

rates that was close to a lognormal distribution (Fig. 3C), similar to experimental 

observations (Lim et al., 2015). The distribution is close to lognormal because the 

distribution of inputs to neurons is Gaussian, and the neuronal transfer function is close to 

being exponential at low rates (see Methods). After the end of the presentation of the 

stimulus, the network came back to its initial background state (Fig. 3A). Upon presentation 

of a familiar stimulus (Fig. 3D), the statistics of neuronal responses differed markedly from 

the response to novel stimuli: a few neurons responded at higher rates, but the majority of 

neurons responded at lower rates compared to a novel stimulus. The distribution of visual 

responses for familiar stimuli had consequently a lower mean compared to the distribution of 

responses for novel stimuli but a larger tail at high rates (compare Fig. 3C and F). These two 

features were consistent with data recorded in ITC by multiple groups (Li et al., 1993; 

Kobatake et al., 1998; Logothetis et al., 1995; Freedman et al., 2006; Woloszyn and 

Sheinberg, 2012).

After removal of a familiar stimulus, the network no longer came back to the initial 

background state, but rather converged to an attractor state that was strongly correlated with 

the shown stimulus (Fig. 3D), as shown by the strong overlap between the network state and 

the shown pattern (see blue curve in Fig. 3E). A small fraction of neurons exhibited 

persistent activity at high rates (4.3% of the neurons are above half maximal rate), but most 

neurons remained at low rates during the simulated delay period (Fig. 3F). The distribution 

of firing rates was again similar to a lognormal distribution at low rates, but the tail of the 

distribution was shaped by neuronal saturation and therefore exhibited a tiny peak close to 

maximal firing rates. Both overlap with presented pattern and distributions of firing rates 

could be computed by the MFT and were in close agreement with network simulations (Fig. 

3E and F). When the heterogeneity on the neuronal saturation is included into our model by 

randomly selecting maximal firing rates for each neuron from a log-normal distribution that 

fits the empirical distribution of the best-fit maximal firing rates (see Fig. 2E), the peak at 
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maximal firing rate disappears. Thus, in a heterogeneous network, distributions of firing 

rates during both presentation and delay periods become unimodal (Fig. 3F dashed lines).

Thus, our network behaved as an associative memory when constrained by ITC data, 

without any need for parameter variation or fine tuning. Furthermore, in addition to 

reproducing the distributions of visual responses for both novel and familiar stimuli seen 

experimentally, it also exhibited qualitatively some of the main features observed both 

during spontaneous and delay activity in IT cortex: broad distribution of firing rates in both 

spontaneous and delay period activity, and small fraction of neurons firing at elevated rates 

during persistent activity (Miyashita, 1988; Nakamura and Kubota, 1995).

Storage capacity, and its dependence on g

We now turn to the question of the storage capacity of the network, i.e. how many different 

patterns can be stored in the connectivity matrix. The calculation of the storage capacity of 

associative memory models such as the Hopfield model was one of the first successful 

applications of statistical physics to theoretical neuroscience (Amit et al., 1987). One of the 

main findings of such models is that the number of patterns that can be stored scales linearly 

with the number of plastic connections per neuron, i.e. the maximal value of α is of order 1. 

This maximal storage capacity αc has been computed in many variants of the Hopfield 

model (see e.g. Amit (1992)). To compute the storage capacity of our network, we found 

numerically the largest value of α for which retrieval states (i.e. states with positive overlap 

with one of the stored patterns, m > 0) exist. Fig. 4A shows how the overlap in retrieval 

states m varies as a function of the storage load α, computed using both MFT (solid line) 

and simulations (symbols with errorbars) when parameters of the functions ϕ and f are taken 

to be the median best-fit parameters, and those of the function g (except qg, that is set by the 

balance condition, Eq. 25) are taken to be identical to f. It shows that m gradually decreases 

with α, due to more ‘noise’ in the retrieval due to other stored patterns, until it drops 

abruptly to zero at a value of αc = 0.56. This value is remarkably close to the maximal 

capacity of the sparsely connected Hopfield model of binary neurons storing binary patterns, 

for which αc = 0.64 (Derrida et al., 1987).

We then explored how the capacity depends on the parameters of the function g, that 

describes the dependence of the learning rule on the presynaptic firing rate. Fig. 4B and C 

show that the capacity is close to being maximized when these parameters match those of 

the function f, i.e. xg = xf and βg = βf. Fig. 4B shows that the capacity is non-zero only when 

the g is sufficiently non-linear, i.e. βg > 0.1. It peaks around βg = βf, but remains high in the 

βg → ∞ limit when the function g becomes a step function. Fig. 4C shows that the capacity 

is non-zero only in a finite range of xf, between 10 and 30/s. It shows again that capacity 

peaks when xg is close to xf.

Learning rules inferred from ITC data are close to maximizing memory storage

The storage capacity of the network with median parameters is in the same range or higher 

than the capacity of classic associative memory models of binary neurons - for instance, the 

Hopfield model has a capacity of αc ~ 0.14 (Amit et al., 1987), while its sparsely connected 

variant has a capacity of αc ~ 0.64 (Derrida et al., 1987). The next question we addressed is 
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how this capacity depends on the parameters of this learning rule. We have already discussed 

above the dependence of the capacity on xg and βg. Here, we explore the dependence on the 

four remaining parameters characterizing the learning rule - A, xf, βf and qf. Using MFT, we 

explored systematically the space of these four parameters, and plot in Fig. 5 all possible 

cuts of this four dimensional space, in which 2 of the 4 parameters are varied, while the 

other 2 are set to the median values. In all these plots, the maximal capacity αc is plotted as 

a function of two parameters, using a gray scale (white indicate high capacity, black low 

capacity). The yellow dashed line indicates the line for which the function f is ‘balanced’ 

(i.e. its average across the distribution of patterns is zero). It marks the border between a 

depression-dominated region, for which learning leads to a decrease in average responses, 

and a potentiation-dominated region, for which learning leads to an increase of such 

responses. The red cross mark indicates the median parameters, while the dashed red 

rectangle indicates the interquartile range.

Fig. 5 shows that the median parameters are close to maximizing storage capacity. In fact, 

we found that the maximal capacity over this space is αc ≈0.85 (see Fig. S6–7 and methods 

S1 for details). These figures show also that most (but not all) of the interquartile range lie in 

a high-capacity region. It also shows that some parameter variations lead to little changes in 

capacity, while others lead to a drastic drop. Decreasing the learning strength A from its 

optimal value leads to an abrupt drop in capacity, while increasing it leads to a much gentler 

decrease (see Fig. 5D–F). A similar effect is observed for the slope of f; decreasing the slope 

(i.e. making f more linear) leads to an abrupt decrease in capacity, while increasing it beyond 

the median value leads to very little change in capacity (see Fig. 5B–D). Thresholds xf for 

which high capacities are obtained are much higher than the mean response to novel visual 

stimuli (Fig. 5A,B and D), leading to a sparsening of the representations of the patterns by 

the network. Finally, the optimal offset is close to the ‘balanced’ line, but slightly on the 

depression-dominated region, as the median parameter (Fig. 5A,C and F).

A chaotic phase with associative memory properties

Are fixed point attractors the only possible dynamical regime in this network? Firing rate 

models with asymmetric connectivity have been shown to exhibit strongly chaotic states 

(Sompolinsky et al., 1988; Tirozzi and Tsodyks, 1991). Varying parameters of the learning 

rule, we found parameter regions in which background and/or retrieval fixed point attractor 

states destabilize and the network settle into strongly chaotic states. Fig. 6A shows an 

example of such chaotic states, obtained for the median parameters as in Fig. 3, except for 

the learning rate which is three times its median best-fit value (A = 10.65). For such 

parameters, the background state is strongly chaotic. Presentation of a familiar stimulus 

leads to a transition to another chaotic state, in which all neurons fluctuate chaotically 

around stimulus-specific firing rates, such that the mean overlap with the corresponding 

pattern remains high (see Fig. 6 B). Remarkably, chaotic retrieval states remain strongly 

correlated with the corresponding patterns (see Fig. 6B), so that the network can still 

perform as an associative memory in spite of the chaotic fluctuations of network activity. 

Interestingly, the storage capacity for such parameters is larger than the capacity estimated 

from the static MFT (see Fig. 6C).
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In such chaotic retrieval states, single neuron activity exhibit strong firing rate fluctuations 

which vary from trial to trial (see thin colored lines in Fig. 6D–F showing three randomly 

selected neurons), but trial-averaged firing rates show systematic temporal patterns. For 

instance, the activity of the neuron shown in Fig. 6D ramps up in the first second of the 

delay period, before this activity plateaus at a rate of about 40/s. The neuron shown in Fig. 

6F shows a rapid activity increase during the presentation period, followed by a trough, 

followed by a second increase during the delay period. These temporal patterns of the trial-

averaged firing rate, together with a strong irregularity within trials, are reminiscent of 

observations by multiple groups in primate PFC during delay periods (Shafi et al., 2007; 

Brody et al., 2003; Murray et al., 2017).

To check whether these states are truly chaotic, we computed the temporal evolution of the 

distance between two network states with slightly different initial conditions (see Methods). 

Fig. 6G shows that an initial distance between two initial conditions of 4.5 · 10−6Hz 

exponentially grows and then plateaus to an average of ~ 13Hz. This sensitivity to initial 

conditions, and initial exponential growth of the distance between perturbed and unperturbed 

network states is the defining feature of a chaotic system (Guckenheimer and Holmes, 

2013). The divergence of the network states starts to be noticeable in the single neuron 

dynamics in about ~1s (see Fig. 6H). However, the overlap with the stored pattern remains 

high in both networks states (see Fig. 6I). Therefore, despite the growth of the distance 

between the two network states, their dynamics keep aligned to the 1-dimensional subspace 

(of the full N-dimensional network space) spanned by the retrieved memory, providing a low 

dimensional representation of each memory.

Across neurons, for both the background and retrieval state, the chaotic fluctuations in the 

rates have a distinctive times scale of about 100ms (see Fig. 7A). However, there is a broad 

diversity of time scales for individual neurons, ranging from about ~ 50ms to ~ 500ms (see 

Fig. 7A, light traces). Low firing rate neurons have slightly slower time scales than high 

firing rate neurons. Neurons are weakly correlated, for both background and retrieval states 

(see Fig. 7B). Lastly, the distributions of the mean firing rates are qualitatively similar to the 

ones described for the fixed-point attractor scenario (compare Fig. 3C and F with Fig. 7C), 

but with a higher proportion of neurons at very low rates.

Discussion

We have shown that a learning rule inferred from data generate attractor dynamics, without 

any need for parameter adjustment or tuning, except for the condition that the dependence of 

the learning rule on the presynaptic rate should be ‘balanced’ (i.e. have a zero average over 

the distribution of visual responses, see below). Furthermore, this rule produces a storage 

capacity that is close to the maximal capacity, in the space of unsupervised Hebbian learning 

rules with sigmoidal dependence on both pre and post-synaptic firing rates. Remarkably, 

similar to the learning rules inferred from ITC recordings, learning rules derived from 

memory storage maximization depress the bulk of the distribution of the learned inputs 

(those that lead to low to intermediate firing rates) while potentiating outliers (those that lead 

to high rates), leading to a sparse representation of stored memories. The attractor states 

generated by our model are characterized by graded activity with a continuous range of 
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firing rates (Treves, 1990a,b; Festa et al., 2014). Most of the distribution lies in the low rate 

region of the neuronal transfer function, leading to a strongly skewed distribution, with a 

small fraction of neurons firing at higher rates. These observations are consistent with the 

available data in ITC during delay match to sample experiments (Miyashita, 1988; 

Nakamura and Kubota, 1995).

For a range of parameters values consistent with learning rules inferred from data, our model 

presents irregular temporal dynamics for retrieval states, similar to the temporal and across 

trial variability observed during delay periods in multiple studies (Murray et al., 2017). In 

this regime, retrieval states are chaotic, yet they maintain non-zero overlap with the 

corresponding memories. Thus, the network performs robustly as an associative memory 

device, even though strong fluctuations are internally generated by its own chaotic 

dynamics.

Distribution of firing rates

Our model naturally gives rise to highly skewed distributions of firing rates, consistent with 

those that have been observed during presentation of visual stimuli in ITC (Lehky et al., 

2011; Lim et al., 2015) and during delay periods of DMS tasks (Miyashita, 1988; Nakamura 

and Kubota, 1995). By construction of the model, it also reproduces the decrease in the 

mean response with familiarity, and the increase in selectivity with familiarity. Our model 

shows for most of the explored parameter space a weak bimodality in the distribution of 

firing rates due to neuronal saturation in response to familiar stimuli, with a tiny peak close 

to neuronal saturation, when the network is homogeneous. When heterogeneity in maximal 

firing rates is implemented in the network, the peak at high firing rates disappears and the 

distribution of firing rates becomes unimodal.

Learning rule

The learning rule we have used in our network model was inferred from ITC data (Lim et 

al., 2015). It is an unsupervised Hebbian rule, as it only depends on the pre and post-

synaptic firing rates, and it leads to potentiation for large pre and post-synaptic rates. As 

other popular examples of Hebbian rules such as the covariance rule (Sejnowski, 1977) or 

the BCM rule (Bienenstock et al., 1982), it is separable in pre and post-synaptic rates. 

Unlike the covariance rule, but similar to other Hebbian rules (Bienenstock et al., 1982; 

Senn et al., 2001; Pfister and Gerstner, 2006), it is strongly non-linear as a function of the 

post-synaptic firing rate. It reproduces some of the phenomenology of the dependence of 

synaptic plasticity on pre and post-synaptic firing rates in cortical slices; in particular, large 

pre and post-synaptic firing rates lead to LTP (Sjöström et al., 2001). Large pre-synaptic 

firing rate in conjunction with low post-synaptic firing rate, lead to depression, consistent 

with ‘pairing’ experiments in which LTD is triggered by pre-synaptic activity, together with 

intermediate values of the membrane potential (Ngezahayo et al., 2000). Plasticity at low 

pre-synaptic firing rates could be due to plasticity mechanisms leading to ‘normalization’ or 

homeostasis. Indeed, our plasticity rule could be written as ΔJij = ΔJij
Hebb + ΔJij

hom where 

ΔJij
Hebb = Af (ri)(g(r j) − g(0)), ΔJij

hom = Af (ri)g(0). The ‘homeostatic’ component ΔJij
hom leads 

to a decrease in the efficacy of all synapses onto a post-synaptic neuron when the neuron is 
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firing at high rates, while it leads to an increase when the neuron fires at low rates (since 

g(0) < 0). Note that such a homeostatic mechanism would also automatically lead to a 

‘balanced’ dependence of the rule of the pre-synaptic firing rate, which is necessary for the 

network to be able to store a large nuber of patterns. The analysis described in the 

Supplementary Material shows that if g has a non-zero average, then the mean of the noise 

term due to other patterns stored in the connectivity matrix would no longer be zero, but 

rather scale as αcN〈g〉, where 〈g〉 is the average of g over the distribution of visual 

responses. This has the consequence that the network would be able to store only a finite 

number of patterns. A precise balance could be restored by the homeostatic mechanism 

mentioned above - for a non-zero 〈g〉, this homeostatic term would become 

ΔJij
hom = Af (ri)(g(0) − 〈g〉), which would ensure that the average synaptic strength (and 

consequently mean firing rate) onto a neuron remains constant with learning.

The synaptic connectivity matrix we used is assumed to be generated through multiple 

presentations of initially novel patterns. The simplest implementation of this plasticity rule 

consists in adding a term ΔJij to the current matrix, as described above, but only when a 

novel pattern is presented to the network. This would require a novelty detector that would 

gate plasticity, perhaps through neuromodulators. An interesting hypothesis is that novelty 

detection could be generated by the network itself, through its mean activity (which is 

significantly higher for novel than for familiar stimuli). This novelty signal could in 

principle then be used to trigger learning.

To derive the learning rule, we used a subset of the data recorded by Woloszyn and 

Sheinberg (2012), i.e. excitatory neurons that show negative changes at low rates and 

positive changes at high rates. Those neurons are approximately half (14/30) of the neurons 

that showed significant differences between the distributions of visual responses for familiar 

and novel stimuli. Out the remaining 16 neurons, 10 showed negative changes for all rates, 

while 6 showed the opposite pattern of positive changes for all rates. This heterogeneity in 

inferred learning rules could be due to a heterogeneity in neuronal properties - for instance, 

it could be that the ‘putative’ excitatory neurons recorded in this study form a heterogeneous 

group of cells, some of which might actually be inhibitory. Consistent with this, some 

inhibitory neuron classes have electrophysiological properties (and in particular, spike 

width) that are closer to pyramidal cells that to fast-spiking interneurons. Another possibility 

is that part of the apparent heterogeneity stems form the same underlying learning rule, but 

with heterogeneous parameters. For instance, inferred learning rules with negative changes 

at all rates are consistent with a sigmoidal post-synaptic dependence f, but with a high 

threshold xf that lies above the range of firing rates elicited in that particular experiment. 

Elucidating which of these scenarios hold in IT cortex will need recordings from more 

neurons, as well as recordings of single neurons with more stimuli.

Our approach is complementary to other studies that have inferred learning rules from in 
vitro studies, and then shown that these rules lead to attractor dynamics in large networks of 

spiking neurons (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015). In contrast to these 

studies, we showed that a network with a learning rule inferred from in vivo data can achieve 

a high storage capacity, and generate graded distributions of firing rates during visual 
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presentation and delay periods. An important difference between the studies of Litwin-

Kumar and Doiron (2014) and Zenke et al. (2015) is that they used an online learning rule 

that is constantly active, while our connectivity matrix is assumed to be frozen following the 

learning process. It will be interesting to investigate whether, and in which conditions spike-

timing and voltage based learning rules used in such studies can produce a firing rate 

dependence that is consistent with the rule used here.

Time-varying neural representations

In recent years, the standard attractor network scenario has been challenged by multiple 

observations of strong variability and non-stationarity during the delay period in prefrontal 

cortex (Compte et al., 2003; Shafi et al., 2007; Barak et al., 2010; Barak and Tsodyks, 2014; 

Kobak et al., 2016; Murray et al., 2017). Statistical analysis of recordings in this area during 

two different working memory tasks has shown that variability observed during delay 

periods is consistent with static coding of the stimulus kept in memory (Murray et al., 2017). 

Various models have been proposed to account for variability and/or non-stationarity 

(Barbieri and Brunel, 2007; Mongillo et al., 2008; Lundqvist et al., 2010; Mongillo et al., 

2012; Druckmann and Chklovskii, 2012).

Here we propose an alternative mechanism where chaotic attractors with associative 

memory properties naturally generate the time-varying irregular activity observed during 

delay periods in associative memory tasks. In this state, chaotic attractors correspond to 

internal representations of stored memories. Each chaotic attractor state maintains a positive 

overlap with the corresponding stored memory. In this scenario, the network performs as an 

associative memory device where temporal variability is generated internally by chaos. This 

model naturally exhibits the combination of strong temporaly dynamics yet stable memory 

encoding which has been demonstrated in PFC by various groups (Druckmann and 

Chklovskii, 2012; Murray et al., 2017). It will be interesting to compare this model to 

existing data, using for instance methods used in Murray et al. (2017).

There has been a longstanding debate whether the type of chaotic states seen in firing rate 

models can be seen also in spiking network models under the form of ‘rate chaos’. Recent 

studies indicate that this type of chaos can be observed provided coupling is sufficiently 

strong, as in firing rate models Ostojic (2014); Harish and Hansel (2015); Kadmon and 

Sompolinsky (2015). Thus, it is reasonable to expect that the type of retrieval chaotic states 

we observed in our network can also be realized in networks of spiking neurons.

Optimality criteria for information storage

Here, we have argued that learning rules that are inferred from electrophysiological 

recordings in ITC of behaving primates are close to optimizing information storage, in the 

space of unsupervised Hebbian learning rules that have a sigmoidal dependence on both pre 

and post-synaptic firing rates. Such learning rules are appealing because synapses do not 

need to know anything beyond the firing rates of pre and post-synaptic neurons to form 

memories, two quantities that are easily available at a synapse. However, one cannot exclude 

that the dependence of plasticity on neuronal activity takes other forms than the one 

investigated here. In particular, a potentially more powerful approach proposed by Gardner 
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(1987) relies in maximizing the number of attractors in the space of all possible synaptic 

matrices. Unsurprisingly, this approach leads in general to a larger capacity than the ones 

that can be achieved by unsupervised Hebbian rules, but it turns out that in sparse coding 

limit, the covariance rule reaches asymptotically the Gardner bound (Tsodyks and 

Feigel’Man, 1988; Tsodyks, 1988). These results have been obtained in networks of binary 

neurons, and it remains to be investigated whether similar results could be obtained in 

networks of analog firing rate neurons. An additional challenge in comparing the two 

approaches in such networks is that the stored attractors are in our case not identical to the 

pattern that was initially shown to the network, while in the standard Gardner approach, the 

two were constrained to be identical.

Another motivation for considering the Gardner approach is provided by a recent study that 

showed that synaptic connectivity in a network of excitatory binary neurons that maximizes 

storage capacity in the space of all possible matrices reproduces a number of basic 

experimental facts on cortical excitatory connectivity (Brunel, 2016): Low connection 

probability (Markram et al., 1997; Sjöström et al., 2001; Lefort et al., 2009), in spite of full 

potential connectivity (Kalisman et al., 2005); And strong over-representation of 

bidirectionnally connected pairs of neurons compared to a random Erdos-Renyi network 

(Sjöström et al., 2001). In contrast with the network studied by Brunel (2016), the synaptic 

connectivity of the model proposed here has the unrealistic feature that it does not obey 

Dale’s law. One could reconcile the present model with cortical connectivity by using a 

connectivity matrix that is a rectified version of Eq. (2) - such a connectivity matrix would 

then obey Dale’s law, be sparse and be more symmetric than a random Erdos-Renyi 

network, making it therefore consistent with slice data. Such a generalization is beyond the 

scope of the present paper and will be the subject of a future study.

Altogether, our results strongly reinforce the link between attractor network theory and 

electrophysiological data during delayed response tasks in primates. Furthermore, they 

suggest that learning rules in association cortex are close to maximizing the number of 

possible internal representations of memories as attractor states.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Nicolas Brunel (nicolas.brunel@duke.edu).

METHOD DETAILS

Mean field theory—Here we present the main results of our mean field analysis that 

quantifies the retrieval of a particular familiar pattern during the delay period. Detailed 

calculations for this case are presented in section 1 of methods S1. The analysis is performed 

in the limit p, N → ∞ and c ≪ 1.

In our model, memories are defined as the patterns of external synaptic inputs that were 

present when the corresponding stimulus was shown for the first time to the network. These 
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external synaptic inputs { ξ
k
}k = 1

p
, where k labels individual memories, are independent and 

identical distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. 

These memories are imprinted in the connectivity matrix using the learning rule described in 

Eq. (2). The firing rates ri(t) of neurons i = 1, …, N evolve according to the rate equations 

(Grossberg, 1969; Hopfield, 1984), i.e. Eq. (1).

During the delay period, the external stimulus Ii is set to be zero. The steady states or fixed 

point attractors for the dynamics are given by the following set of nonlinear equations

ri = ϕ ∑
i ≠ j

N
Jijr j i = 1, …, N . (3)

To describe the statistics of the firing rates in a fixed point described by Eq. (3), we first 

need to compute the statistics of the incoming current to a given neuron, hi = ∑i ≠ j
N Jijr j, 

assuming that the network state is correlated with one of the stored patterns (without loss of 

generality, we choose here the first pattern ξi
1), but uncorrelated with all other patterns. In the 

large N limit, the distribution of this current, conditioned on the value of ξi
1, becomes a 

Gaussian. The mean μ conditioned on ξi
1 is given by

μ(ξi
1) = Af (ϕ(ξi

1))q, (4)

where q is the covariance between a non-linear transformation of the pattern g(ϕ(ξi
1)) and the 

firing rates in the current network state ri,

q = 1
N ∑

i = 1

N
g(ϕ(ξi

1))ri (5)

The ‘overlap’ m described in the main text is the corresponding correlation coefficient, i.e. 

normalized by the square root of the variances of g(ϕ(ξi
1)) and ri.

The variance of input currents (due to the other stored patterns that act as a quenched source 

of noise on the retrieval of the pattern of interest) is given by

σ2 = αγM . (6)

Where γ depends on the learning rule and statistics of the patterns as
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γ ≡ A2
−∞

∞
𝒟zf (ϕ(z))2

−∞

∞
𝒟zg(ϕ(z))2 (7)

while M is the average squared firing rate

M = 1
N ∑

i = 1

N
ri

2 . (8)

The next step is to compute self-consistent equations for the ‘order parameters’ q and M, 

that fully describe the macroscopic behavior of the network. Inserting Eq. (3) in Eq. (5), 

using the fact that hi has a Gaussian distribution with mean μ and variance σ2, and replacing 

the sum over i by an integral over ξi, we obtain

q =
−∞

∞

−∞

∞
𝒟z𝒟yg(ϕ(z))ϕ(qAf (ϕ(z)) + αγMy) (9)

where the integral over z corresponds to an integral over the distribution of the patterns ξi
1, 

while the integral over y corresponds to an integral over the distribution of the ‘quenched 

noise’ due to other stored patterns.

Similarly, inserting Eq. (3) in Eq. (8) and using again the fact that hi is Gaussian distributed, 

we find

M =
−∞

∞

−∞

∞
𝒟z𝒟yϕ2(qAf (ϕ(z)) + αγMy) . (10)

For a given value of α, and functions ϕ, f and g, Eqs. (9,10) are solved numerically by using 

a gradient free approach where the equations are iterated as a discrete map from an arbitrary 

initial condition (i.e. q0 > 0 and M0 > 0) until convergence. Note that Eq. (9) always have a 

solution q = 0, which correspond to a background state which is uncorrelated with all stored 

patterns. Solutions of these equations with q > 0 indicate the presence of retrieval states.

The distribution of firing rates can be obtained as

pr(r) =

−∞

∞

𝒟ze
− (ϕ−1(r) − Af (ϕ(z))q)2

2αγM

2παγM
dϕ−1(r)

dr , (11)
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where the order parameters q and M are determined by the self-consistent equations (9) and 

(10). The overlap m is given by

m = q
(M − R2) ∫ −∞

∞ 𝒟zg(ϕ(z))2 , (12)

where R is the mean firing rate in the attractor state given by

R =
−∞

∞

−∞

∞
𝒟z𝒟yϕ(qAf (ϕ(z)) + αγMy) . (13)

Similar analysis can be performed in the presence of an external input (presentation period), 

for both familiar and novel stimuli. Details are presented in section 2 of methods S1. The 

calculations proceed along the lines of the calculations presented above, except that: (1) 

During the presentation of a familiar stimulus, the external input currents are set to Ii = I0ξi
1; 

(2) During the presentation of a novel stimulus, the external inputs are set to I⃗ = I0η⃗, where 

η⃗ is an independent and identical distributed standard normal pattern of currents (i.e. 

ηi
iid𝒩(0, 1) with i = 1, 2, …, N), uncorrelated with all learned patterns. For simulations in 

Figures 3 and 6 I0 = 1 during the presentation period.

Simulations—For most simulations shown in this paper, the probability of connections 

was set to 0.5% (i.e. c = 0.005) and the number of neurons to N = 50000, which implies an 

average number of connections per neuron of Nc = 250. The choice of a low connection 

probability was motivated by the fact that the MFT is exact in the sparse connectivity limit 

(see methods S1 and Derrida et al. (1987); Kree and Zippelius (1987)). We have also 

simulated networks with with various values of N and c (see Fig. S5). These simulations 

show that our theory gives good quantitative predictions for denser connectivities. The single 

neuron time constant was chosen as τ = 20ms, similar to time constants of single neurons 

(McCormick et al., 1985) and synapses (Destexhe et al., 1998), and with the decay time 

constant of cortical activity as measured in vivo (Reinhold et al., 2015). Open source built-in 

linear algebra methods in scipy and numpy Python packages suited for sparse matrices were 

used to generate the connectivity matrix. For simulating the networks dynamics, the Euler 

method was used with a time step size of 0.5ms. For a few parameter sets, we checked that 

results are unchanged when a smaller value of dt = 0.1ms is used. In the simulations, the 

background state was sometimes unstable, and the dynamics in this case converged to one of 

the ‘memory states’. This tended to happen in particular for small values of α.

In Fig. 6 G–I, the Runge-Kutta fourth-order method with dt = 0.1ms was used. In Fig. 7 the 

autoand cross-correlation functions are computed over 100 realizations of a 8s network 

simulation. For retrieval states, in each realization the input current is given by the current 

corresponding to the stored pattern plus a random vector whose entries are i.i.d. random 

Gaussian variables with zero mean and S.D. 0.2. For the background state, the initial 

condition of the dynamics are the firing rates obtained from passing an i.i.d. standard normal 
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vector through the transfer function Φ. The first second of simulation is not taken into 

account to compute auto and cross-correlation functions. Only neurons with mean firing 

rates between 1Hz and 65Hz are selected in order to avoid numerical artifacts arising from 

neurons whose mean firing rates stay close to zero or to the maximum firing rate during 

most of the simulation.

To measure the sensitivity of the network dynamics to small perturbations, we choose two 

slightly different initial conditions and follow the dynamics of the network following both 

initial conditions, to investigate whether these two initial conditions converge to the same 

state (indicating non-chaotic dynamics), or vice versa diverge exponentially (indicating 

chaotic dynamics). These two slightly different initial conditions are generated as follows

r k
(1)(0) = ϕ( ξ

k
) (14)

r (2)(0) = ϕ( ξ
k
) + η δ

‖ η ‖2
. (15)

where the index k corresponds to one of the p stored patterns (i.e. k ∈ {1, 2, …, p}), δ = 

10−3 is the distance between the initial conditions and η⃗ is an independent and identically 

distributed Gaussian vector. Thus, r k
(1)(0) is the firing rate produced by the kth stored 

pattern, while r⃗(2)(0) is a slightly perturbed version of this pattern. We define the distance 

between the two network states during the time evaluation of the dynamics by

dk(t) =
r k

(1)(t) − r k
(2)(t) 2

N
. (16)

This distance gives the typical difference between the firing rates of a single neuron between 

two network states produced by slightly different initial conditions at time t, for the retrieval 

state corresponding to pattern k, and has units of Hz.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis—We reanalyze the data recorded by Luke Woloszyn and David Sheinberg 

(Woloszyn and Sheinberg, 2012) using the method described in Lim et al. (2015). This data 

consists in trial-averaged firing rates of individual neurons in ITC (in a time window 

between 75 ms and 200 ms after stimulus onset) in response to 125 novel and 125 familiar 

stimuli measured, during a passive fixation task. We focused on the 30 putative excitatory 

neurons whose distributions of visual responses for novel and familiar stimuli were 

significantly different, using the Mann-Whitney U test at 5 significance level. In these 

neurons, the postsynaptic dependence of the learning rule, was inferred using the method 

described in Lim et al. (2015). In this subset of neurons, we focused on 14 excitatory 

Pereira and Brunel Page 17

Neuron. Author manuscript; available in PMC 2019 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons, the ones that show negative input changes for low firing rates and positive input 

changes for high firing rates. For these 14 neurons, the transfer function ϕ, and the 

postsynaptic dependence of the learning rule, f, are inferred using the method described in 

Lim et al. (2015).

The first step is to infer the transfer function ϕ. We assume that inputs to neurons during 

presentation of novel stimuli have a Gaussian distribution. The transfer function is then 

obtained as the function ϕ that maps a standard Gaussian to the empirical distribution of 

firing rates for novel stimuli (Lim et al., 2015). In practice, the function is obtained by 

building a quantile-quantile plot between the distribution of firing rates for novel stimuli and 

the assumed standard normal distribution of inputs (see Fig. 2 A and B and S2–3). The 

obtained transfer function (blue circles in Fig. 2) was fitted with the sigmoidal function

ϕi(ξ) =
rm

(i)

1 + e
−βT

(i)(ξ − h0
(i))

(17)

where rm
(i) is the maximal firing rate, βT

(i) measures the slope at the inflection point, and h0
(i) is 

the location of this inflection point. h0 is also the current leading to half maximal firing rate. 

These parameters were obtained by minimizing the squared error. We thus obtained for each 

of the 14 neurons the best estimators rm
(i), βT

(i) and h0
(i) with i = 1, 2, …, 14 whose statistics are 

summarized in Fig. 2D.

The next step is to infer the postsynaptic dependence of the learning rule, f. For this, we use 

the difference between the distributions of visual responses to novel and familiar stimuli 

(Lim et al., 2015). In the model, learning of a novel stimulus defined by inputs ξi
k that leads 

to firing rates ri
k = ϕ(ξi

k) leads to changes in recurrent inputs, due to changes in synaptic 

inputs

ΔJij =
Acij
cN f (ri

k)g(r j
k) (18)

This leads to a change in total inputs to neurons that is proportional to

Δhi = Af (ri
k) 1

cN ∑
j

cijg(r j
k)r j

k (19)

In the large N limit, Eq. (19) becomes

Δhi = Af (ri
k)

−∞

∞
𝒟zg(ϕ(z))ϕ(z) . (20)
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where z is the standard Gaussian measure, 𝒟z = dze−z2/2/ 2π. Eq. (20) give us the 

relationship between changes of total inputs to a neuron with learning of a particular 

stimulus, and the firing rate of the neuron upon presentation of that stimulus for the first 

time. This relationship can be inferred from the data by computing the difference between 

the quantile function of visual responses to familiar stimuli and the quantile function of 

visual responses to novel stimuli, and by plotting this difference as a function of visual 

response to novel stimuli (Lim et al., 2015). We then fitted the input change with a sigmoidal 

function given by

Δhi
fit(r) = C(i)

2 2q f
(i) − 1 + tanh(β f

(i)(r − x f
(i))) . (21)

where C(i) gives the amplitude of the total changes, q f
i  measures the vertical offset of the 

curve (for qf = 1, Δh is non-negative at all rates, while for qf = 0 it is non-positive at all 

rates), β f
(i) measures the slope at the inflection point, and x f

(i) is the rate at the inflection 

point. In the following, we refer to x f
(i) as the threshold since it is typically very close to the 

rate at which Δh changes sign. For each of the 14 neurons, the parameters C(i), q f
(i), β f

(i) and 

x f
(i) with i = 1, 2, …, 14 were estimated by minimizing the squared error. The inferred 

function f for each neuron is given by

f i(r) =
Δhi

fit(r)
C(i) = 1

2 2q f
(i) − 1 + tanh(β f

(i)(r − x f
(i))) . (22)

The parameter A is then obtained as

A(i) = C(i)

∫ −∞
∞ 𝒟zg(ϕ∼(z))ϕ∼(z)

, (23)

where ϕ̃ is the sigmoidal transfer function in Eq. (23) whose parameters are the medians of 

the fitted parameters. The function g was also chosen to be a sigmoid, given by

g(r) = 1
2[2qg − 1 + tanh(βg(r − xg))], (24)

with qg set such that the average change in connection strength due to learning of a single 

pattern is zero, i.e.
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−∞

∞
𝒟zg(ϕ∼(z)) = 0 . (25)

Note that g is unconstrained by data. For most of the paper, we set the slope and the 

threshold for g to the median of the fitted parameters for f, i.e. βg = β̃f and xg = x̃f. We also 

explored how the capacity depends on βg and xg, as shown in Fig. 3.

DATA AND SOFTWARE AVAILABILITY

Software was written in the Python (http://python.org) programming language. Network 

simulations and algorithms for solving the mean field equations and computing the capacity 

of the network are available at the GitHub repository: https://github.com/ulisespereira/

AttractorDynamics

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Learning and retrieval in recurrent neural networks with unsupervised Hebbian learning 

rules. (A) When a novel pattern is presented to the network, synaptic inputs to each neuron 

in the network (ξl, for neurons l = 1, …, N) are drawn randomly and independently from a 

Gaussian distribution. Synaptic inputs elicit firing rates through the static transfer function, 

i.e. ϕ(ξl). Some neurons respond strongly (red circles), others weakly (white circles). (B) 

The firing rate pattern produced by the synaptic input currents modifies the network 

connectivity according to an unsupervised Hebbian learning rule. The connection strength is 

represented by the thickness of the corresponding arrow (the thicker the arrow the stronger 

the connection). (C) After learning, a pattern of synaptic inputs that is correlated but not 

identical to the stored pattern is presented to the network. (D) Following the presentation, 

the network goes to an attractor state which strongly overlaps with the stored pattern 

(compare with panel A), which indicates the retrieval of the corresponding memory.
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Figure 2. 
Inferring transfer function and learning rule from ITC data. (A) Distributions of firing rates 

in response to novel stimuli, for three different ITC neurons. Blue histogram: histogram of 

experimentally recorded visual responses. Red: Distribution of firing rates obtained from 

passing a standard normal distribution through the sigmoidal transfer function shown in B. 

Gray vertical line: average firing rate. Green vertical line: learning rule threshold xf (see C). 

(B) Static transfer function ϕ derived from the distribution of visual responses for novel 

stimuli (see A), assuming a Gaussian distribution of inputs (see (Lim et al., 2015) and 

Methods) for the same three neurons shown in A. The data (blue circles) was fitted using a 

sigmoidal function (red line; see Methods, Eq. (17)), defined by three parameters: the 
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current h0 that leads to half the maximal firing rate (cyan dashed lines), a slope parameter βT 

(dashed yellow line in top plot), and maximal firing rate rm. (C) Dependence of the synaptic 

plasticity rule on the postsynaptic firing rate as a function of firing rate (i.e. f(r)). The data 

(black circles) was fitted with a sigmoidal function (blue line; see Methods, Eq. (22)), 

defined by three parameters: maximum potentiation qf; threshold xf (see green dashed line); 

and slope parameter βf (dashed yellow line in top plot). On the right axis is indicated the 

maximum potentiation of the fit qf. (D) Boxplot for the fitted parameters rm, βT and h0 of the 

transfer function. (E) Boxplot for the fitted parameters xf, βf, qf of the dependence of the 

synaptic plasticity rule on the postsynaptic firing rate, and A, the learning rate. The red line 

and green triangle indicate the median and the mean of the fitted parameters, respectively. 

Gray symbols indicate the parameters of the three neurons shown in A,B,C.
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Figure 3. 
Dynamics of the network before, during and after the presentation of novel (top row) and 

familiar (bottom row) stimuli, mimicking the initial part of a trial of a delay match to sample 

(DMS) experiment. (A) Firing rate of a randomly sampled subset of 100 neurons of a 

simulated network before, during and after the presentation of a novel stimulus. Vertical 

dashed lines indicate the beginning and the end of the presentation. Note that the firing rates 

of all neurons decay to baseline following removal of the stimulus. (B) Dynamics of the 

overlaps with the stored patterns. Green traces show overlaps computed numerically from 

the network simulation corresponding to each of the stored patterns. The yellow trace shows 

the overlap of the network state with the shown novel pattern. (C) Distribution of firing rates 

during the presentation (red) and delay (blue) periods. Smooth curves correspond to the 

predictions of the MFT, histograms are obtained from network simulations. (D) Similar to A, 

except that the shown stimulus is familiar. Note that this time firing rates do not decay to 

baseline during the delay period, but to a value that is strongly correlated (but not identical) 

to the visual response. (E) Dynamics of overlaps when a familiar stimulus is presented. The 

blue trace shows the numerically computed overlap with the pattern presented during the 

presentation period. The red trace shows the corresponding overlap computed from MFT. 

(F) Distribution of firing rates during the presentation (red) and delay (blue) periods in 

response to the presentation of a familiar stimulus. The vast majority of the neurons fire in 

the 0–10Hz range. A closer inspection of the tail of the distribution shows a tiny peak close 

to saturation in homogeneous networks (full lines), while this peak disappears when the 

heterogeneity in maximal firing rates is included (dashed lines).
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Figure 4. 
Storage capacity of the network, and its dependence on g. (A) Overlap as a function of 

memory load α (number of patterns stored divided by average number of connections per 

neuron). Grey: MFT. Red circles: Numerical simulations (average and standard deviations 

computed from 100 realizations with N = 5 · 104). The overlap stays positive until α ~ 0.56. 

Parameters of g are chosen to be identical to those of f. (B) Capacity vs βg. The capacity is 

maximized for βg ~ βf (dashed red line βg = βf). (C) Capacity vs xg. The capacity is close to 

being maximized for xf ~ xg (dashed red line xg = xf). Other parameters as in Fig. 3.
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Figure 5. 
Inferred learning rules from ITC are close to maximizing memory storage. Contour plots for 

the capacity of the network as a function of two parameters. In each plot, two parameters are 

set to the median best-fit parameters, and the other two are varied. The yellow dashed line 

indicates the curve where potentiation and depression are balanced in average (i.e. ∫ 

ξf(ϕ(ξ))) = 0). It separates the potentiation (i.e. ∫ ξf(ϕ(ξ))) > 0) and depression (i.e. ∫ 

ξf(ϕ(ξ))) < 0) regions. The parameter region corresponding to the interquartile range is 

indicated with a red dashed rectangle. The median best-fit parameters are shown as a red 

cross mark. The parameters of g: xg = xf and βg = βf.
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Figure 6. 
Chaotic background and retrieval states, for a network with parameters as in Fig. 3, except 

for the learning rate (A = 10.65) and memory load (α = 0.48 in all panels except in C). (A) 

Firing rate dynamics for a randomly sampled subset of 10 neurons of a simulated network 

when a familiar stimulus (i.e. one of the stored patterns) is presented. (B) Dynamics of the 

overlaps before, during and after the presentation of a familiar stimulus. Green traces shown 

all the overlaps computed numerically from the network simulation corresponding to each of 

the stored patterns except the one with the presented pattern, shown in blue. (C) Overlap vs 

memory load. Gray curve: MFT. Red circles: simulations in which the dynamics converge to 

fixed point attractors. Blue square: simulations in which the dynamics converge to chaotic 

states. (D–F) Dynamics of the firing rate of three example neurons in 10 different trials 

(random initial conditions - transparent traces). Trial-averaged firing rate (over 20 trials) is 

shown with an opaque trace. (G) Light gray traces: exponential initial growth followed by 

saturation of the distance between pairs of retrieval states corresponding to the same stored 

pattern but slightly different initial conditions (see Methods). Red curve: average distance 

between pairs of retrieval states with slightly different initial conditions. (H) Firing rate of a 
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single neuron starting from two slightly different initial conditions (continuous vs dashed). 

(I) Overlaps with the retrieved pattern (blue) and all other stored patterns (green) again for a 

pair of initial conditions (continuous vs dashed). As in Fig. 3, in A, B and D–F vertical 

dashed lines indicate the beginning and the end of the presentation period.
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Figure 7. 
Statistical properties of the chaotic background and retrieval states, for a network with 

parameters as in Fig 6. (A) Red: background state. Black: retrieval state. Thick traces: mean 

autocorrelation (AC) functions across 100 randomly sampled neurons with mean firing rate 

between 1Hz and half of the maximal firing rate (low mean firing rates; dashed) and 

between half of the maximal firing rate and 65Hz (high mean firing rates; solid). Light 

traces: AC function for neurons with the fastest and slowest decays, showing a broad range 

of individual AC timescales. (B) Mean cross-correlation (CC) functions across 200 

randomly chosen pairs of neurons with high (i.e. high-high), low (i.e. low-low) and with one 

neuron high and the other low (i.e. high-low) mean firing rates. Same color code than panel 

A. (C) Distribution of mean firing rates during the presentation (red) and delay (blue) 

periods for novel (dashed) and familiar (solid) stimuli.
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Key Resource Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Network simulations and algorithms for solving the mean 
field equations and computing the capacity of the network.

This paper https://github.com/ulisespereira/AttractorDynamics

Other

Data from electrophysiological recordings in ITC of 
behaving primates.

Woloszyn and 
Sheinberg, 2012; Lim 
et al., 2015

N/A
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