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Abstract

Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform 

normal activities of daily living and hence compromises their quality of life. This is due largely to 

detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an 

impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and 

power of muscle shortening. Although numerous mechanisms underlie this reduction in 

contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. 

Consistent with this, recent data demonstrate that acute ingestion of NO3
−-rich beetroot juice, a 

source of NO via the NO synthase-independent enterosalivary pathway, markedly increases 

maximal muscle speed and power in HF patients. This review discusses the role of muscle 

contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that 

dietary NO3
− supplementation may represent a novel and simple therapy for this currently-

underappreciated problem.
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Introduction

Heart failure (HF) is a deadly disease affecting nearly 6 million men and women in the 

United States and millions more worldwide (1). It is also a highly-disabling disease that 

markedly impairs the ability of patients to perform normal activities of daily living (e.g., 

walking) and hence significantly reduces their quality of life. Indeed, one of the major 

systems for characterizing the severity of HF, i.e., the New York Heart Association (NYHA) 

Functional Classification, categorizes HF patients based largely on their ability to undertake 

physical activity. Historically, the exercise intolerance accompanying HF was viewed as 

being strictly a function of the diminished ability of the failing heart to provide adequate 

blood flow to peripheral tissues (2,3). Over the last three decades, however, considerable 

evidence has accumulated that deleterious changes within skeletal muscle itself also majorly 

contribute to the diminished exercise capacity of patients with “classic” HF, i.e., HF with 

reduced ejection fraction (2,3). Much more recently, similar muscle abnormalities have been 

reported in patients with HF with preserved ejection faction (3,4,5). In this brief review, we 

discuss these data, and in particular the evidence that alterations in intrinsic muscle 

contractile properties, i.e., in muscle strength, speed, and power, play an important role in 

limiting the functional capacity of patients with HF. From there we turn out attention to the 

possible significance of reductions in nitric oxide (NO) bioavailability in contributing to 

these detrimental changes. Finally, we describe recent research indicating that dietary nitrate 

(NO3
−), a source of NO via the NO synthase (NOS) –independent enterosalivary pathway, 

may provide a simple but effective means of combating this problem.

Causes of exercise intolerance in HF

HF as a “cardiomuscular” disease

As indicated above, it had long been held that decreased perfusion of skeletal muscle was 

the singular determinant of the reduced exercise capacity of HF patients. Indeed, this seems 

to be a common misconception among many clinicians even today. It is now abundantly 

clear, however, that secondary effects of HF on skeletal muscle morphological and metabolic 

characteristics play a critical, if not dominant, role in this impairment. These HF-induced 

changes in muscle include, but are not limited to, an increased percentage of type II, or fast-

twitch, fibers (7–11), an elevation in glycolytic enzyme activities (7,8), a decrease in 

capillarization (8,9), and a decline in mitochondrial respiratory capacity (7,8,11) resulting 

not only from a reduction in total muscle mitochondrial content but also from changes in the 

quality of mitochondria themselves (12). The sum total of these changes is a more fatigable 

phenotype characterized by a diminished ability to match aerobic ATP production to ATP 

demand during contractile activity, resulting in a greater decrease in phosphocreatine (PCr) 

and greater increases in inorganic phosphate (Pi) and H+ levels during exercise at any given 

intensity (7,13,14,15). Importantly, these metabolic abnormalities appear to be independent 

of any reduction in blood flow and hence in O2 delivery to muscle (13–19). In particular, 

increasing cardiac output and hence bulk limb blood flow via dobutamine infusion does not 

improve VO2peak or exercise capacity in patients with HF (13,14,19), nor does it correct the 

abnormalities in muscle metabolism observed during exercise (19). Thus, the primary 

limitation(s) to sustained exercise performance in HF patients appear(s) to reside outside of 
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the heart, and within the skeletal muscles themselves. Indeed, even what is perhaps the 

signature complaint of patients with HF – that is, of dyspnea on exertion – has been 

hypothesized to be due largely, if not entirely, to these changes in skeletal muscle 

characteristics (20). The resulting abnormal metabolic response to contractile activity is 

hypothesized to lead to greater stimulation of group III–IV afferent nerves in muscle and 

hence enhanced feedback stimulation of ventilation during exercise. Notably, the 

morphological and metabolic abnormalities found in the muscles of patients with HF do not 

improve following cardiac transplantation, which almost certainly contributes to the fact that 

even after transplant the exercise capacity of such patients remains significantly diminished 

compared to that of healthy control subjects (21,22).

Role of diminished muscle contractile function

The changes in skeletal muscle characteristics and thus metabolism and energetics described 

above are undoubtedly important in accounting for the reduced exercise tolerance found in 

patients with HF. Other factors, however, are also operative. In particular, a substantial 

number of studies have demonstrated that the muscles of HF patients are smaller and weaker 

than those of healthy individuals (23–30), with the plantar flexors in particular seeming to be 

adversely affected (31,32). Somewhat counterintuitively, given the changes in fiber type 

mentioned previously, HF also results in a significant decrease in the maximal velocity of 

muscle contraction, and hence an even greater reduction in maximal muscle power (which is 

the product of force and velocity) (30,33). These observations are salient for a number of 

reasons. First, many normal activities of daily living (e.g., getting out of a chair, climbing a 

flight of stairs, carrying groceries) are heavily dependent upon the ability of muscle to 

generate significant force and/or power. Second, HF-induced reductions in whole-body 

exercise capacity are closely associated with these alterations in muscle contractile 

performance (21,23,26,27,31,34,35). Senden et al. (36), for example, found that maximal 

power output during an incremental cycle ergometer test to fatigue in HF patients was 

significantly correlated with the strength and endurance of their knee extensors and flexors 

as assessed using isokinetic dynamometry. Other studies have demonstrated a significant 

relationship between the reduction in muscle function in HF patients and the reduction in 

VO2peak (27) and/or the elevated ventilatory demand during exercise (35). In keeping with 

such data, resistance exercise training has been found to significantly improve walking 

ability and VO2peak in HF patients (37,38), as well as to increase both objectively and 

subjectively measured physical function (39). Third, muscle function has been demonstrated 

to be a powerful predictor of long-term survival in patients with HF, even more so than 

VO2peak (39). Clearly, alterations in muscle contractile characteristics play a critical role in 

the morbidity and mortality of HF.

Mechanisms

The mechanisms responsible for the HF-induced reductions in muscle force, speed, and 

power described above have not been fully elucidated. In part, they may be due to a disease-

related reduction in habitual physical activity (33), and/or due to the muscle atrophy 

(“cardiac cachexia”) often found in patients with HF. Seminal research by Toth, Miller, and 

colleagues (34), however, has demonstrated that HF patients are weaker, slower, and less 

powerful than healthy control subjects even when both groups are carefully matched for age, 
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sex, level of physical activity, and medication use. Furthermore, such differences persist 

even when data are statistically adjusted for leg lean mass to account for possible muscle 

atrophy in the HF patients (34,41). Thus, physical inactivity and/or muscle wasting alone 

cannot account for the changes in muscle contractile function that are associated with, and 

contribute significantly to, the exercise intolerance characteristic of HF.

If the reductions in muscle force, speed, and power with HF cannot be fully explained by a 

more sedentary lifestyle or muscle atrophy, what factor(s) are responsible? The answer to 

that question would seem to reside at the molecular level itself. For example, using isolated 

single muscle fibers Szentesi et al. (42) have demonstrated that HF is accompanied by a 

reduction in isometric force per unit of cross-sectional area, which is paralleled by a decline 

in ATPase activity. These findings imply that HF results in a reduction in the number and/or 

rate of actomyosin crossbridge formation. Consistent with this, working in Toth’s laboratory 

Miller found that HF was associated with a selective loss of myosin in type I, type IIA, and 

type IIA/X fibers (43). In a follow-up study, these same authors demonstrated a HF-induced 

slowing of myosin cross-bridge kinetics in both type I and type IIA fibers, as well as a 

reduction in Ca2+ sensitivity in the latter fiber type (44). These alterations were ascribed, at 

least in part, to a reduction in Akt phosphorylation, which was significantly correlated with 

the decline in myosin heavy-chain protein content (45). Studies by others have demonstrated 

abnormalities in Ca2+-handling protein (i.e., ryanodine receptor type I, sarco(endo)plasmic 

reticulum Ca2+ ATPase (SERCA) 2a, phospholamban, and dihydropyridine receptor) 

regulation and/or content in the skeletal muscles of patients with HF (46,47), similar to those 

found in the failing heart (48). Importantly, changes in anabolic signaling and myosin heavy 

chain expression precede changes in whole-muscle function in HF patients, providing 

evidence of their cause-and-effect relationship (49).

Significance of NO

Along with the molecular alterations described above, another factor potentially contributing 

to the HF-related impairment of skeletal muscle function may be a decrease in NO 

bioavailability. Although initially identified as a vasodilator, i.e., as “endothelium-derived 

relaxing factor”, NO is in fact a key cellular signaling molecule with pleiotropic effects in 

many tissues. These include skeletal muscle, wherein among its other effects NO helps 

modulate contractile function (50,51). Specifically, during isometric contractions NO may 

(50,51), or may not (52), slightly suppress maximal force production. This may be due to 

nitrosation or S-nitrosylation of various proteins (53,54). During concentric activity, 

however, NO significantly increases the rate of force development, maximal shortening 

velocity, and maximal power of both single muscle fibers and isolated muscles (50,51). 

These stimulatory effects are thought to be mediated via activation of the classic NO-soluble 

guanyl cyclase (sGC)-cycle GMP (cGMP) pathway, and have been euphemistically 

described by Maréchal and Gailly (50) as a “slow-to-fast” shift qualitatively akin to the 

chronic transformation of muscle fiber type that occurs with, e.g., prolonged electrical 

stimulation. In failing cardiac muscle, however, increased production of reactive oxygen 

species (ROS) leads to more rapid destruction of NO, and hence reduced NO-sGC-cGMP 

signaling, which in turn is thought to contribute to reduced contractility in HF (55). Given 

other parallels between the effects of HF on cardiac and skeletal muscle (including, 
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somewhat paradoxically, an increase in inducible NOS, or iNOS, expression in both heart 

(56) and skeletal muscle (57,58)), it is possible that NO bioavailability is also diminished in 

the skeletal muscles of patients with HF, thus contributing to their reduced muscle function 

as described above.

That HF reduces NO signaling in skeletal muscle has not been directly demonstrated. There 

is, however, considerable evidence that HF leads to a decline in whole-body NO production 

and/or availability. Katz et al. (59), for example, have demonstrated that HF results in 

reduced urinary excretion of [15N]nitrate after infusion of L-[15N]arginine, indicative of an 

overall decline in NOS activity. In keeping with this, a number of studies have demonstrated 

that breath NO levels are lower in HF patients, both at rest (60) and especially during 

exercise (61,62,63), which is correlated with the magnitude of the impairment in exercise 

capacity (60,62). It is also well-established that HF leads to endothelial dysfunction in 

various tissues, including skeletal muscle, as a result of reduced NO production via 

endothelial NOS (64). These data, along with the central role that skeletal muscle myocytes 

are now known to play in NO/nitrite (NO2
−)/NO3

− metabolism (65,66), strongly suggest that 

HF reduces NO bioavailability within skeletal muscle, just as it does in the heart.

Dietary NO3
− as a source of NO

If an increase in ROS production and/or down-regulation of NOS-mediated NO synthesis 

with HF reduces skeletal muscle NO levels and thus contributes to muscle contractile 

dysfunction, what might be done to treat this problem? One intriguing possibility would be 

to attempt to increase NO production via the NOS-independent enterosalivary pathway (67). 

This pathway has been reviewed recently in this journal by Chirinos and Zamani (68), and 

hence will not be discussed in great detail here. In brief, however, in this pathway NO3
− in 

the diet (found primarily in green leafy vegetables, e.g., spinach, arugula, chard, and also 

beetroot) is reduced to NO2
− and then to NO. The initial conversion of NO3

− to NO2
− is 

performed by facultative anaerobic bacteria in the oral cavity, partially on first-pass but 

primarily after NO3
− has been taken up via the gastrointestinal tract, circulated via the 

bloodstream, and then concentrated and secreted by the salivary glands. The NO2
− that is 

formed is then also absorbed and circulated throughout the body, where it can be reduced to 

NO. A number of molecules have been found capable of catalyzing this second step, with 

deoxyhemoglobin/deoxymyoglobin, aldehyde oxidase, and xanthine oxidoreductase likely 

being particular important in skeletal muscle (66,69,70). Of note, production of NO via this 

pathway does not require O2 and proceeds more rapidly under acidic than neutral/basic 

conditions, which is precisely the opposite of the more well-known NOS pathway. This 

direct conversion of NO3
− to NO2

− and hence to NO therefore represents a very important 

mechanism for generating NO “on demand” under hypoxic/acidic conditions, such as 

commonly occur in contracting skeletal muscle. Indeed, recent research using homogenized 

rat skeletal muscle has directly demonstrated that acute exercise enhances NO production 

from NO2
− (66).
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Effect of dietary NO3
− on muscle function in HF patients

To test the hypothesis that reduced NO bioavailability contributes to the diminished muscle 

function found in HF patients, and to evaluate dietary NO3
− as a potential treatment, we 

recently studied nine middle-aged (average age 57±10 y) men (n=5) and women (n=4) with 

reduced systolic function (average ejection fraction = 28±11%) (71). Based on the NYHA 

criteria, the distribution of patients was 1/5/3/0 in classes I/II/III/IV, and all were treated with 

standard HF medications. Each was studied twice in the fasted state, using a double-blind, 

placebo-controlled, crossover design. In one trial, patients were tested 2 h after ingesting 140 

mL of a concentrated beetroot juice (BRJ) supplement (Beet It Sport®, James White Drinks, 

Ipswich, UK) containing 11.2 mmol of NO3
−, whereas in the other they were tested 2 h after 

ingesting the same volume of an NO3
−-depleted BRJ placebo that was indistinguishable in 

terms of color, texture, taste, and smell. Plasma NO3
− and NO2

− and breath NO levels along 

with heart rate and blood pressure were measured throughout each experiment. Muscle 

contractile function was assessed using isokinetic dynamometry, with each subject 

performing 3–4 maximal knee extensions using their dominant leg at angular velocities of 0 

(isometric), 1.57, 3.14, 4.71, and 6.28 rad/s (0, 90, 180, 270, and 360 °/s, respectively). This 

range of velocities was chosen to span the ascending limb of the inverse parabolic power-

velocity relationship, thus allowing us to determine (via curve fitting) the maximal velocity 

(Vmax) and power (Pmax) of knee extension based on the peak power (product of peak 

torque and velocity) achieved at each velocity. Following this testing, the patients also 

performed 50 maximal knee extensions at a velocity of 3.14 rad/s (180°/s), to determine the 

possible effects of dietary NO3
− on fatigue resistance during repetitive, dynamic muscle 

contractions.

We found that ingestion of BRJ containing 11.2 mmol of NO3
− resulted in a significant 

(P<0.001) elevation in plasma NO3
− concentrations (average = 508±143 μmol/L in the NO3

− 

trial vs. 29±11 μmol/L in the placebo trial). Average plasma NO2
− concentration also tended 

to be higher following BRJ ingestion (i.e., 0.57±27 vs. 0.44±0.24 μmol/L), although this 

difference was not significant due to high variability. On the other hand, the difference in 

average breath NO levels (i.e., 29±13 vs. 16±5 ppb) was statistically significant (i.e., 

P<0.01). This increase in whole-body NO bioavailability was accompanied by 9% (P=0.07) 

and 11% (P<0.05) increases in peak knee extensor torque, and hence power, at the two 

highest velocities tested, i.e., 4.71 and 6.28 rad/s (270 and 360 °/s), respectively (Table 1). 

As a result, calculated Vmax and Pmax were 12% (P=0.08) and 13% (P<0.05) higher NO3
− 

ingestion (Figure 1). Six of the nine HF patients were “responders”, with Pmax increasing 

by 17±10%, whereas the other three showed minimal change (i.e., −1±5%). Although peak 

power was initially 6% higher (i.e., 1.78±0.46 vs. 1.68±0.39 W/kg; P<0.05) during the 50 

contraction fatigue test, no difference was found in overall work performed (i.e., 28.8±9.8 

vs. 28.1±9.5 J/kg; P=0.38) because the patients tended to fatigue somewhat more rapidly 

following NO3
− ingestion. We also found no differences in heart rate (69±12 vs. 67±12 

beats/min; P=0.40) or systolic (105±9 vs. 103±15 mmHg; P=0.76) or diastolic (66±8 vs. 

66±8 mmHg; P=0.91) blood pressures.

In summary, the results of this study clearly show that dietary NO3
− ingestion can increase 

maximal muscle speed and power in patients with systolic HF. In fact, compared to healthy, 
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somewhat younger subjects that we studied in parallel (72), the HF patients had lower breath 

NO levels, both at rest and after BRJ ingestion, but demonstrated approximately twice as 

large of an increase in Vmax and Pmax after NO3
− intake, consistent with the hypothesis 

that the muscle dysfunction accompanying cardiac failure is due, at least in part, to a decline 

in NO bioavailability. Indeed, based on the study of Toth et al. (34) this improvement in 

muscle power resulting from dietary NO3
− intake would have been sufficient to immediately 

erase approximately one-third of the deficit normally associated with HF. Stated another 

way, the magnitude of the improvement that we observed is comparable to that resulting 

from several months of resistance exercise training in HF patients (73,74), which has been 

shown to result in significant improvement in Minnesota Living with Heart Failure 

Questionnaire score (37). Importantly, these improvements occurred in patients already 

receiving standard HF medical therapy, which by itself does nothing to enhance muscle 

contractile function (75–79). The results of our study compliment other recent studies 

demonstrating that dietary NO3
− (or NO2

−) supplementation enhances physiological 

responses and/or performance during aerobic exercise in patients with HF with either 

reduced (80) or maintained (81,82,83) ejection fraction. Nonetheless, it should be 

emphasized that, mechanistically, different factors are likely responsible for these benefits. 

In particular, while NO-mediated effects on the cardiovascular system are likely largely 

responsible for the improvements reported in these other studies, they would not explain the 

significant increases in muscle function we have observed during individual muscle 

contractions lasting <1 s. This interpretation is consistent with the fact that we found no 

overall enhancement of performance during the 50 contraction fatigue test, which takes ~1 

min to complete. Somewhat along the same lines, the improvements in muscle function we 

have observed in response to acute dietary NO3
− intake cannot be explained by the increases 

in muscle calsequestrin 1 and dihydropyridine receptor content that have been observed in 

rodent muscle following chronic NO3
− supplementation (84). We have therefore 

hypothesized that our findings are due to activation of sGC by NO, and hence an elevation in 

muscle cGMP levels. Studies to directly test this hypothesis are presently underway.

Summary and Conclusions

HF is an all-too-common disease with that severely compromises both the quantity and 

quality of life. The latter is due, in part, to exercise intolerance that reduces the patient’s 

ability to perform ordinary activities of daily living. This diminished exercise capacity is not 

simply the result of impaired cardiac output, but instead is caused by numerous changes in 

the mass, structure, metabolism, and function of skeletal muscle – in other words, in terms 

of exercise tolerance HF should really be considered a cardiomuscular disease. Among the 

HF-induced changes in muscle, one of the most prominent is a decline in the maximal force, 

speed, and power of muscle shortening. This decline in contractile performance, which is 

closely related to the reductions in whole-body exercise capacity and VO2peak, is due in part 

to changes in muscle protein content and/or function. Reductions in NO-sGC-cGMP 

signaling, however, may also play a role. In support of the latter hypothesis, we have 

recently demonstrated in a small number of HF patients that dietary NO3
−, a source of NO 

via the NOS-independent enterosalivary pathway, significantly increases the maximal speed 

and power of muscle contraction. Larger, multi-center trials are needed to confirm these 
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observations and to determine the effects of dietary NO3
− on physical activity levels and 

quality of life in patients with HF. If proven effective in such studies, dietary NO3
− 

supplementation would represent a novel therapy for muscle dysfunction in HF, an important 

symptom of the disease not presently addressed by any standard medications or therapies.
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Figure 1. 
Effect of acute ingestion of 11.2 mmol of nitrate on the maximal speed (Vmax) and power 

(Pmax) of knee extension in patients with HF due to systolic dysfunction. Placebo; open 
circles. Nitrate; closed circles. Values are mean ± SD; individual results are also shown. 

*P=0.08; †P<0.05. Data from Ref. 71.
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