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Abstract

Background—One of the key recommendations of the Second Panel on Cost-Effectiveness in 

Health and Medicine is to take a societal perspective when evaluating new technologies—

including measuring the productivity benefits of new treatments. Yet relatively little is known 

about the impact that new treatments have on labor productivity.

Objectives—To examine the relationship between new drug treatments and gains in labor 

productivity across conditions in the US, and to evaluate which randomized clinical trials (RCTs) 

collect productivity data.

Methods—We collect data on US-based RCTs with work-ability surveys from searches of 

Google Scholar, PubMed, Scopus, the Cochrane Central Registry of Clinical Trials, and 

ClinicalTrails.gov. Combining RCT data with survey data from the Medical Expenditure Panel 

Survey, we assess productivity changes from new drug treatments.

Results—During the last decade, some disease conditions have seen treatments that improve 

ability-to-work by as much as 60%. The annual increase in productivity gains attributable to new 

drug treatments was modest 1.1% (p = 0.53). Of the 5,092 RCTs reviewed, ability-to-work 

measures were collected in 2% of them. Work productivity surveys are more likely among more 

prevalent medical conditions that tend to affect individuals who work, earn higher wages, and 

experience larger reductions in hours worked as a consequence of disease diagnosis.

Conclusions—From our data, we estimate that drug innovation increased productivity by 5.5 

million work days per year and $233 billion in wages per year. These labor-sector benefits should 

be accounted for when assessing the socially optimal cost for new drug innovation.
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Introduction

One of the key recommendations of the Second Panel on Cost-Effectiveness in Health and 

Medicine is to take a societal perspective when evaluating new technologies.1 When 

considering the resource costs associated with the use of health care interventions, one 

should account for societal benefits from increased productivity, a dimension that is not 

traditionally captured by preference- or health-based measures. This societal perspective is 

important given that medical innovation is a global public good, and efficiently managing 

resource both across- and within-countries relies on a complete understanding of the health 

and non-health welfare impacts.

In the US, non-health considerations are particularly salient since most Americans obtain 

their health insurance through their employers. In 2015, employers covered on average 72 to 

83% of average annual premiums, which totaled $6,251 for single coverage and $17,545 for 

family coverage.2 Despite the significant subsidies that employers provide, little is known 

about the impact that medical treatments have on labor productivity. This issue is 

particularly salient for employees, who often take prescription drugs for primary or 

secondary prevention, with the goal of maintaining good function.

US-based estimates of the productivity losses due to poor health are large. In 2003, 885 

million days were lost due to own- or family-related illnesses that prevented employees from 

concentrating at work or coming into work.3 An additional 18 million adults ages 19 to 64 

remained unemployed due to health reasons. Both workers and firms bear the burden of 

these health costs: individuals experience the impaired or lost ability to work, and firms face 

the costs of rehiring and retraining replaced workers, which can include higher wages, lost 

revenues, and idle assets.4,5 Estimates of health-related productivity losses sum to around 

$226 to $260 billion every year.3,6,7

However, while the burden is large, it is less clear whether new treatments can alleviate it. 

Gains in labor productivity are often overlooked when assessing returns to medical 

innovation. Cost effectiveness studies, especially those on pharmaceuticals, have focused on 

gains in short- and long-term survival, quality of life, disease progression, consumer surplus, 

and total health spending.8–13 The few studies that do consider labor productivity gains tend 

to focus on particular conditions. For example, Thirumurthy et al. (2008) focus on anti-

retroviral medication, Berndt et al. (1998, 2000) and Timbie et al. (2006) consider mental 

health medications, and Garthwaite (2010) examines antiarthritic medication.14–18 Overall, 

we lack clear, unified evidence on the extent to which medical innovations have improved 

on-the-job productivity or reduced employee absences.19

In this study, we identify the relationship between new drug treatments and labor 

productivity across several disease groups. Using evidence from randomized clinical trials 

(RCTs), we assess when ability-to-work measures are collected and determine how those 

measures have changed over time.
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Methods

Data Sources

Our main data source is a systematic collection of work productivity data from RCTs. 

Following the literature, we identified 26 instruments that measured the effects of ill health 

on productivity because of absence from work or reduced performance while at work 

(Appendix Table 1). Twenty of the listed surveys have been identified in independent, 

systematic reviews on health-related productivity loss.20–21 Six additional surveys, which 

have been extensively validated among specific disease groups, included the Life 

Functioning Questionnaire for psychiatric illness; Occupational Role Questionnaire and 

Quality and Quantity Method in Productivity for back pain; Work Productivity Survey for 

rheumatoid arthritis; Work Role Functioning Questionnaire and Workstyle Scale for pain at 

work.22–25

Using each of these instruments as search terms, we conducted a search through Google 

Scholar (additionally including “randomized trial” in the search term), PubMed (focusing 

exclusively on “clinical trial” article types), Scopus (additionally including “randomized 

trial” in the abstracts), the Cochrane Central Registry of Clinical Trials, and 

ClinicalTrials.gov. Our inclusion criteria were RCTs among adults in the US between 2000 

and 2015 that included measures on work impairment, productivity, presentism, or 

absenteeism from one of the identified survey instruments. We further restricted included 

studies to those with either pre-trial ability to work baseline measures or changes in ability 

to work reported as a percent change.

The last inclusion criterion is important because work productivity surveys use differing 

scale ranges and directions to measure labor productivity. For example, the Endicott Work 

Productivity Scale assigns overall scores out of 100, whereas the Work Limitations 

Questionnaire index ranges from 0 to 28.6. The Work Productivity and Activity Impairment 

Questionnaire scores have higher numbers corresponding to worsening productivity, whereas 

the Short-Form Health and Labor Questionnaire defines higher values as corresponding to 

improvements productivity. By calculating percent changes where positive values reflect 

improvements in work productivity, we take into account coding idiosyncrasies across 

surveys. Each survey measures productivity from the same basic definitions of perceived 

impairment, comparative efficiency with others norm, unproductive time while at work, and 

absences from work.21 The overall improvement due to a new drug is then calculated as the 

difference in percent changes between the control and treatment groups. To reduce bias, two 

researchers independently collected the final data that is analyzed (Appendix Figure 1).

Next, to identify when labor productivity surveys are administered, we rely on a broader 

search of both published and unpublished trials from ClinicalTrials.gov (Appendix Figure 

2). The website, established by the Food and Drug Administration Modernization Act of 

1997 and made public in 2000, contains a registry of clinical trials for both federally and 

privately funded trials conducted under investigational new drug applications from 2000 

onward. We again focus on US-based, completed drug-related clinical trials, in phase 3 or 4, 

with randomized interventions between 2000 and 2015, treatment listed as the primary 

purpose, and adults being treated. Data variables include drug name, disease condition, trial 
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funding source, enrollment size, gender distribution, and type of randomization (e.g., single 

or double blind). We constructed an indicator equal to one if the RCT administered a work 

productivity survey, defined as including any of the 26 work instruments or the term “work 

productivity” in the trial entry. We also used the “condition” variable to sort the RCTs into 

one of 14 disease groups: infectious and parasitic diseases, neoplasms, metabolic diseases, 

diseases of blood organs and the circulatory system, mental disorders, diseases of the 

nervous system, diseases of the sense organs, diseases of the respiratory system, diseases of 

the digestive system, diseases of the genitourinary system, complications of pregnancy, 

diseases of the skin, diseases of the musculoskeletal system, and injuries (Appendix Table 

2).

Finally, we utilized survey data from the Medical Expenditure Panel Survey (MEPS). The 

MEPS data from 2000 to 2015 are nationally representative and the most complete source of 

data on the cost and use of health care. Importantly, the MEPS provides information on a 

respondent’s work, including employment status and self-reported wages, which we convert 

to $2015 dollars using the Consumer Price Index. It also offers details regarding any office, 

inpatient, outpatient, or emergency room visit that the respondent had within the year, and 

the ICD-9 diagnosis code associated with each visit. We limit this sample to adults ages 18 

to 64 and used the ICD-9 codes to again group individuals into the 14 aforementioned 

disease groups (Appendix Table 2). For each disease group, we calculated the prevalence of 

disease, the propensity to work conditional on having a disease, and average wages 

conditional on having a disease and working. Utilizing the two-year panel design of the 

MEPS survey, we also calculate the annual per-person change in hours worked among those 

who are newly diagnosed with a disease (i.e., individuals who do not have the disease 

diagnosis in the first year and receive it the following year). The change in hours serves as a 

proxy for diseases where the potential gain in labor productivity is high.

Statistical Analyses

We relied on two types of regression models: linear and logit. Our main analysis on labor 

productivity gains utilized a linear regression to estimate the trajectory of productivity 

improvements over time. Next, we considered whether the collection of work productivity 

information in RCTs was biased. We focused on two sets of potential predictors: RCT-

specific and disease-group characteristics. When assessing the predictive power of RCT-

specific characteristics, we relied on logit regression models. The logit models included 

disease group fixed effects to account for variation in disease-specific drug development, 

and year fixed effects to control for trends in work productivity over time. Utilizing variation 

within disease groups over time, we determined whether characteristics—such as enrollment 

size, trial phase, funding source, participant demographics, and trial design—are predictive 

the RCT having administered a work instrument. For the correlation between administering 

work productivity surveys and disease-group characteristics, we utilized linear models. We 

estimated how the probability of tracking work productivity correlates with disease 

prevalence, employment probability among those with a given disease, and average wages 

among working individuals with a given disease.
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Results

From the systematic data collection, we find that new drug treatments introduced significant 

gains in work productivity (N = 78). We classify the trials into disease groups and identify 

the average changes in work productivity (Figure 1). The most common diseases with data 

on labor productivity data were mental health diagnoses—including major depressive 

disorder and general anxiety disorder—and musculoskeletal conditions, including arthritis 

and fibromyalgia. These categories experienced average gains of about 18% to 27%, 

respectively. The smallest gains in work productivity were among drugs for digestive or 

gastrointestinal diseases (with an average 13% gain), such as Crohn’s and irritable bowel 

syndrome, and genitourinary diseases (with an average 15% gain), such as overactive 

bladders. Larger gains were achieved among infectious diseases (with an average 42.6% 

gain) and skin diseases (with an average 82.4% gain). In our data, Simeprevir, a drug used to 

treat chronic hepatitis C, had the largest returns to labor productivity: in addition to its well-

known health benefits, Simeprevir improved presenteeism by 142% and overall work 

productivity by 167%.26 Since chronic hepatitis C has been shown to reduce on-the-job 

work output and increase work days lost to sickness, affected individuals with access to 

Simeprevir can experience significant improvements in both health and labor.27

We also consider the overall change in work productivity over time (Figure 2). The universe 

of our labor productivity data is plotted, with each circle representing the difference-in-

difference change in work productivity from a separate RCT and the size of the bubble 

corresponding to the number of participants in the trial. Almost all drug treatments have 

improved ability to work, highlighting the productivity gains that have been achieved with 

effective medical care. The overall trend in work productivity improvements remains 

relatively flat with a slope of 1.1% (p=0.53). This analysis illustrates that on average, new 

treatments generated a 30% increase in work productivity, and subsequent innovations have 

maintained, if not slightly increased, this level of improvement.

Next, we turn to the ClinicalTrials.gov database to glean whether there are systematic 

differences between trials with and without labor productivity information. We collected 

information on 5,092 clinical trials, of which 115 had administered a work productivity 

survey. RCTs with work productivity information tend to have larger log enrollment (5.8 

relative to 5.3), more industry funding (79% relative to 68%), and more stringent masking 

through double blind set-ups (67% relative to 52%), as opposed to single blind set-ups or 

open labels (Table 1). Only about 21% of RCTs without work data and 30% of trials with 

work instruments reported trial outcomes. The summary means suggest that there are 

significant differences across trials with and without work productivity information, but 

many differences do not persist when we account for the predictive power of these 

characteristics simultaneously (Table 2). The logit regressions indicate that the collection of 

work information is correlated with only enrollment size and trial phase (with odds ratios of 

0.23 and 0.46, respectively). The remaining RCT characteristics are not predictive of the 

collection of work information, and controlling for time trends and disease-specific 

characteristics do not appreciably change the results.
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Considering disease-group characteristics, we utilize the MEPS data, which followed 

326,596 adults across the 16-year data period. On average, 47% in our sample had at least 

one doctor visit during the year. We collapsed the MEPS data into disease groups and 

matched it, by disease group, to the ClinicalTrials.gov RCT data. While work productivity 

information was most frequently gathered for drugs pertaining to skin and genitourinary 

conditions, those groups are clear outliers (Figure 3). Excluding them, there is a statistically 

significant relationship between the probability of reporting work information and the 

prevalence of the disease (slope of 0.15, p-value 0.03), the change in hours worked 

following a new disease diagnosis (slope of −0.04, p-value 0.09), share of disease-impacted 

people who are employed (slope of 0.13, p-value 0.12), and average wages among the 

disease-impacted employed (slope 3.30e-6, p-value 0.01). Those who are working with 

medical conditions span all industries and occupations, with approximately 53%, 24% and 

22% in white-collar, blue-collar and other (farming, service or military) jobs, respectively. 

The results suggest that new drugs are more likely to measure work productivity gains when 

the drug targets more prevalent diseases among working individuals earning high wages. It 

also suggests that the incorporation of labor market impacts into RCTs is more likely among 

diseases where the per-person loss in hours worked is higher. We note that the change in 

work hours reflects several factors, including reduced physical ability but concurrent need 

for increased income to access treatments.

Discussion

We examined over 5,000 clinical trials over a 15-year period but could only identify 115 

(2%) that evaluated treatment effects on labor productivity. However, some interesting 

insights did emerge. Importantly, we found that among RCTs with work productivity data, 

new drug developments have introduced large gains in work ability, and the gain in labor 

productivity remains consistently large over time. To understand the cumulative impact of 

new drug treatments, we used the MEPS to calculate the counterfactual hours worked per 

week and annual wages if the relevant population did not benefit from any of these new drug 

developments (Figure 5). Specifically, for each trial for which we have labor productivity 

information, we identified the 3-digit ICD-9 code of the disease for which the RCT targeted. 

For individuals affected by those 3-digit ICD-9 codes, we calculate the work hours and 

wages from 2003 to 2015 had the cumulative gains in disease-specific productivity not been 

introduced (N=26,742). For unaffected individuals (N=173,806), the counterfactual hours 

and wages equal the actual reported values. Respondents reported that average hours worked 

per week did not change from 2003 to 2015, and the average wage increased from $26,592 

to $44,473. However, if the respondents had not benefited from new drugs developments, the 

counterfactual hours worked would have fallen from 39.23 hours to 32.10 hours, and the 

group would have experienced a stunted wage growth from $26,592 in 2013 to only $36,323 

in 2015. These differences are magnified when accounting for disease prevalence. With 

about 203.9 million working adults in 2016, 13.33% of whom are affected by a disease for 

which we have documented drug-related improvements in ability-to-work, we find a total 

gain of approximately $210 billion in annual wages and 4.5 million work days (assuming 

40-hours worked per week).
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These implied gains in productivity are large, though we recognize that our analysis is 

limited to labor productivity changes as measured by RCTs. As shown, the collection of 

productivity data in the RCTs is not completely idiosyncratic; ability-to-work improvements 

are more often measured in larger trials considering drug treatments that impact workers 

earning higher wages. Moreover, while RCTs are often considered the gold-standard for 

comparative effectiveness research, real-world magnitudes may differ. There are several 

reasons why RCTs may overstate real-world returns in work productivity.28 The control 

group in RCTs often receive placebo treatments, as opposed to the next best alternative, so 

changes in labor productivity will appear larger in RCTs. Moreover, patients in RCTs tend to 

be healthier than those who ultimately receive treatment, and drug-adherence is usually 

higher. More comorbidities and poorer medication adherence will dampen actual returns. 

However, arguments can also be made in favor of real-world returns being higher than those 

measured in the RCTs. Although RCTs tend to focus on younger populations, older adults 

tend to earn more, so real-world wage increases are potentially larger. Alternatively, patients 

who experience the biggest gains in work productivity may be those with blue-collar jobs 

requiring manual labor, and the underrepresentation of socioeconomically disadvantaged 

groups in RCTs may understate work gains. Finally, the average trial length in our data is 

approximately 2.5 years, whereas true treatment effects, particularly for chronic conditions, 

can continue to produce benefits years after treatment is initiated. In light of these various 

factors, it is difficult to discern how magnitudes in the real-world compare to RCTs.

Conclusions

We have used RCTs to study gains in labor productivity from new drug developments. 

Although RCTs offer the benefit of randomization, allowing us to recover causal estimates 

between new drug treatments and changes in labor productivity, we recognize that RCTs are 

not without limitations. RCTs with labor productivity information disproportionately reflect 

diseases that affect individuals who are employed and earn higher wages. Despite these 

limitations, RCTs have demonstrated that labor productivity can be dramatically improved 

with the quality of health care and medical research. Our results indicate the increases in 

labor productivity due to new drug innovation is large, and a solitary focus on health benefits 

will miss important labor gains for the working age populations. With continually rising 

drug costs, it is paramount to take a societal perspective that includes labor productivity to 

better estimate the returns to innovation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Percent change in work productivity by disease group
Notes: Data from a systematic literature search. Each bar show shows the average percent 

change in work productivity, with 95% confidence intervals calculated from the standard 

error of the mean across studies within the disease category. We omit categories with only 

one study (i.e., neoplasm and respiratory).
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Figure 2. Percent Change in work productivity over time
Notes: Data from a systematic literature search. Each trial with work productivity data is 

represented by a circle, and the bubble size corresponds to the number of participants in the 

trial. The line is a fitted regression with diagnosis group fixed effects and slope 1.01 (p-value 

= 0.53).

Chen and Goldman Page 11

Value Health. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Availability of work productivity information by disease group
Notes: Data from ClinicalTrials.gov and MEPS. We consider relevant ICD-9 classifications 

among office, outpatient, emergency room, and inpatient settings, among adults ages 18 to 

65. Skin and genitourinary diseases are clear outliers. We fit a linear line, excluding those 

two points. The slope and p-values for the fitted regression lines are: 0.15 (p-value = 0.03) 

for plot (a), −0.4 (p-value = 0.09) for plot (b), 0.13 (p-value = 0.12) for plot (c), 3.30e-6 (p-

value = 0.01) for plot (d).
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Figure 4. Impact of Drug Innovation Counterfactual
Notes: Data from MEPS and a systematic literature search. Plot (a) shows the actual average 

hours worked per week (solid) and the counterfactual hours worked without any of the drug-

induced work productivity changes (dashed). Plot (b) shows a similar plot focused on the 

average salary per year in $2015 dollars.
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Table 2

Predictors of Labor Productivity Information among Drug Trials

All Trials

(1) (2) (3)

Log(Enrollment) 0.228*** (0.0862) 0.242*** (0.0881) 0.214** (0.0924)

Average Phase 0.456* (0.236) 0.465* (0.238) 0.520** (0.245)

1(Industry Funded) 0.421 (0.274) 0.386 (0.277) 0.323 (0.293)

1(Only Male) 0.234 (0.466) 0.239 (0.467) −0.0693 (0.504)

1(Has Results) 0.217 (0.200) 0.134 (0.220) 0.138 (0.225)

1(Single Blind) 0.0364 (0.352) −0.0593 (0.356) −0.134 (0.370)

1(Double Blind) 0.584* (0.304) 0.451 (0.312) 0.288 (0.322)

Year FE X X

Disease FE X

Observations 5,189 5,101 4,757

Dep Var Mean 0.0226 0.0226 0.0226

Notes:

Data from ClinicalTrials.gov. Logistic regressions with odds ratios reported. Standard errors in parentheses;

*
5% or

**
1% significance level. Columns (1) through (3) progressively control for year (15) and disease category (20) fixed effects (FE).
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