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Abstract

A model is proposed for characterizing exosome size distributions based on dynamic scaling of 

domain growth on the limiting membrane of multivesicular bodies in the established exosome 

biogenesis pathway. The scaling exponent in this model captures the asymmetry of exosome size 

distributions, which are notably right-skewed to larger vesicles, independent of the minimum 

detectable vesicle size. Analyses of exosome size distributions obtained by cryogenic transmission 

electron microscopy imaging and nanoparticle tracking show, respectively, that the scaling 

exponent is sensitive to the state of the cell source for exosomes in cell culture supernatants and 

can distinguish exosome size distributions in serum samples taken from cancer patients relative to 

those from healthy donors. Finally, we comment on mechanistic differences between our dynamic 

scaling model and random fragmentation models used to describe size distributions of synthetic 

vesicles.
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INTRODUCTION

The discovery of functional RNAs encapsulated in and/or associated with vesicles actively 

released by almost all cell types has generated widespread interest in extracellular vesicles 

(EVs), and specifically the exosome subpopulation of EVs, for their diagnostic potential as 

biomarkers accessible using minimally invasive sampling procedures,1,2 and their 

therapeutic potential as natural delivery vehicles for proteins and nucleic acids.3,4 

Nonetheless, the characterization of exosomes as a nanometer-sized EV subpopulation 

distinct from shedding vesicles, apoptotic bodies, RNA-binding protein complexes, and 

high-density lipoprotein particles, which also contain extracellular RNA, remains a 

formidable challenge.5–9 No single exosome-specific biomarker has been identified that can 

uniquely detect this EV subpopulation.10,11 Instead, a combination of biochemical and 

biophysical characteristics related to the biogenesis pathway of exosomes is applied: average 

vesicle size and/or size distribution; spherical, unilamellar morphology; enrichment of 

specific membrane proteins, including tetraspanins; and vesicle cargo.5–7,12,13 Although this 

combinatorial approach circumvents the lack of a unique, unequivocal exosome biomarker, 

it is limited to an extent by the semiquantitative nature of the exosome-defining criteria now 

applied to the individual biomarkers. For example, the vesicle size distribution typically 

associated with exosomes is 30–100 nm in diameter based largely on their distinctive, but 

artificial cup-shaped morphology seen in transmission electron microscopy images.5–7 

However, much broader size distributions have been reported,14,15 and spherical vesicles 

with the morphological properties of exosomes and diameters up to ~200 nm have been 

observed directly in cryogenic transmission electron microscopy (cryo-TEM) images.13,14,16 

Moreover, exosome size distributions are notably right-skewed to larger vesicles, a 

characteristic that is not captured by specifying either an average vesicle diameter or a range 

of diameters as a defining criterion for the exosome subpopulation of EVs.

In this work, we propose a dynamic scaling model for the size distribution of exosomes 

based on the established biogenesis pathway for exosome formation described below. We 

show that the scaling exponent in this model captures the characteristic asymmetry of 

exosome size distributions, independent of the minimum detectable vesicle size intrinsic to 

different measurements. We also show that this scaling exponent is sensitive to different 

signaling pathway inhibitor treatments of the cell source and can distinguish exosome size 

distributions in serum samples from cancer patients relative to those from healthy donors. 

Finally, we point out mechanistic differences between our dynamic scaling model and 
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random fragmentation models used to describe the size distribution of nanometer-sized 

synthetic vesicles formed using conventional preparation methods.

RESULTS AND DISCUSSION

Exosomes form via the reorganization of membrane proteins into tetraspanin-rich domains 

on the limiting membrane of multivesicular bodies (MVBs) and are subsequently released 

from cells by exocytosis in response to specific stimuli.6,17 The process involves nucleation 

of small domains on the MVB limiting membrane, followed by the growth of domains above 

a certain critical size by coarsening and coalescence. Invagination of domains large enough 

to deform leads to the formation of intraluminal vesicles (ILVs), which then detach from the 

MVB limiting membrane to become internalized vesicles or exosomes.17,18 We assume the 

exosome diameter is fixed at this point; therefore, the experimentally observed size 

distribution of exosomes released into the extracellular environment is related to the size 

distribution of domains that grow and subsequently invaginate and detach from the MVB 

limiting membrane.

We model domain growth as a competition between two driving forces: classical phase 

separation in which the increase in the characteristic length scale of a domain over time, l(t), 
exhibits power-law scaling,19

l(t) ∝ tξ ξ > 0 (1)

and a countervailing driving force that suppresses phase separation; for example, the 

inhibition of domain growth by coalescence when membrane curvature is coupled locally to 

the composition of the phase-separating constituents.20–22 Domain growth under the 

influence of these competing driving forces reaches a steady state characterized by a length 

scale that follows power-law scaling of the form,

lD ∝ λ−ξ (2)

where λ is the rate associated with the countervailing driving force. We take λ to be the rate 

at which domains on the MVB membrane undergo budding, invaginate, and detach to form 

ILVs/exosomes with diameter, D ∝ lD. Dynamic scaling described by eq 2 was originally 

reported for reaction-controlled domain (pattern) formation in phase-separating mixtures,
23,24 and thereafter, for the reaction-controlled interconversion of membrane components 

coupled to membrane curvature,25,26 and domain formation in which phase separation 

competes with lipid recycling.27–29 The scaling exponents for model systems fall within the 

range of ξ = 1/3 (small λ/strong segregation) and ξ = 1/4 (large λ/weak segregation),24–26 

although positive values of ξ that are smaller in magnitude have also been reported.20,30 We 

note that eq 2 with ξ > 0 predicts that larger domains persist longer in agreement with 

experimental observations.29
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We consider ILV/exosome formation to be a Poisson process for which the probability of 

observing n discrete formation events during the time interval, τ, is given by the probability 

density distribution function,

p(n ∣ λ, τ) = (λτ)n

n! e−λτ (3)

where λ ≡ 〈n〉/τ is the mean rate of ILV/exosome formation with 〈n〉 the average value of n 
and also the variance, σn

2 = 〈n〉. When 〈n〉 is computed over long times, λ is a constant. 

However, as the observation or averaging time becomes shorter, the observed rate of 

formation will deviate from the mean due to random variations in the time interval between 

successive events, or equivalently, random variations in the number of events within the 

defined time interval.31 This behavior, which is illustrated in Figure 1, can be described by 

considering the variance in the observed event rate, n/τ, around the mean, given by

σλ
2 =

σn
2

τ2 = λ
τ (4)

As τ → ∞, the expected variance in the observed rate → 0 and λ is a constant (=〈n〉/τ). If 

we now divide τ into a large number of disjoint subintervals, δτ, the distribution of the 

number of events within these subintervals will be described by eq 3, and the variance in the 

observed event rate around the mean in the subintervals will be described by eq 4 with τ → 
δτ. Thus, as δτ becomes shorter, the variance in the observed event rate increases. We can 

expect, therefore, a distribution of rates of ILV/exosome formation as a consequence of finite 

(short) time intervals, τ.

The probability of observing a certain rate of ILV/exosome formation given n events over τ 
is obtained from the Poisson distribution eq 3 by applying Bayes theorem and enforcing 

normalization,32

p(λ ∣ n, τ) = τ (λτ)n

n! e−λτ (5)

Setting n = 0 then gives the probability of observing the rate at which a domain on the MVB 

membrane forms an ILV/exosome conditioned on the formation of no ILVs/exosomes over 

the time interval, τ,

p(λ ∣ n = 0, τ) = τ e−λτ (6)
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Assuming an average time interval, τ̄, over which ILV/exosome formation on the MVB 

membrane does not occur,

p(λ) = ∫
0

∞
p(λ ∣ n = 0, τ)δ(τ − τ) dτ (7)

from which we obtain the probability density distribution of exosome diameters,

p(D) = p(λ) dλ
dD

= τ
ξD−1 + ξ/ξ exp [ − τD−1/ξ]

(8)

where the proportionality constant implied by eq 2 is determined by normalization,

∫
0

∞
p(D) dD = 1 (9)

The mean exosome diameter obtained from eq 8 is

〈D〉 = τξΓ(1 − ξ) (10)

where Γ(…) is the gamma function for noninteger arguments. For ξ > 0, the exponential 

factor in the probability density distribution function eq 8 rapidly approaches unity with 

increasing exosome diameter for D > 〈D〉, and the distribution function exhibits a power-law 

dependence on the exosome diameter. This power-law dependence with the scaling 

exponent, ξ, thus captures the characteristic asymmetry of exosome size distributions, which 

are right-skewed to larger vesicles. Equation 10 can be used to define the average time 

interval, τ̄, in terms of the experimentally derived mean exosome diameter, 〈D〉, which is 

substituted into the probability density distribution function eq 8. Thus, the experimental 

exosome size distributions are fit using effectively one adjustable parameter, the scaling 

exponent ξ, with the mean exosome diameter computed independently from the 

experiments.

As a test of our model, we apply the probability density distribution function eq 8 to 

describe the size distributions of exosomes derived from untreated TPC1 thyroid cancer cells 

and TPC1 cells treated with the signaling pathway inhibitors: LY294002 (PI3K-AKT 

pathway) and U0126 (MAPK pathway). 16,33 These size distributions were obtained from 

cryo-TEM images and measured independently by asymmetric flow field-flow fractionation/

multiangle light scattering (A4F/MALS).16 The cryo-TEM and A4F/MALS size 
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distributions for exosomes derived from untreated TPC1 cells are compared in Figure 2. As 

a consequence of the lower resolution of A4F/MALS for smaller vesicles, the A4F/MALS 

distributions are shifted to larger vesicle diameters relative to the cryo-TEM distributions.16 

Equation 8 suggests that the difference in resolution between the two measurements can be 

taken into account by normalizing the exosome diameters by 〈D〉. The extended tails of the 

two distributions plotted using this normalization are in good agreement, indicating that the 

scaling exponent is insensitive to the difference in the minimum detectable vesicle size for 

the two methods. Differences in the minimum detectable vesicle size, and as such, different 

vesicle size distributions have also been reported for nanoparticle tracking (NTA), resistive 

pulse sensing, and flow cytometry.34 The results in Figure 2 suggest the scaling exponent as 

a parameter independent of this lower detection limit makes possible quantitative 

comparisons of exosome size distributions obtained from multiple detection methods. We 

also note that the upper limit of vesicle diameters that can be observed by cryo-TEM, which 

is determined by the sample thickness, is ~250 nm.35,36 This limit corresponds to D/〈D〉 ≈ 5 

in Figure 2 and is not a factor here.

Focusing on the cryo-TEM data, we determine scaling exponents characterizing the size 

distributions of exosomes from treated and untreated TPC1 cells using the method of 

maximum likelihood, which is described in detail elsewhere.37 This method requires 

defining the lower bound or minimum exosome diameter, Dmin, of the power-law regime for 

each distribution. To this end, we choose the value of Dmin that minimizes the maximum 

distance between the cumulative distribution function (cdf) derived from the data and the cdf 

obtained from the power-law model that best fits the data for D > Dmin [Kolmogorov–

Smirnov (KS) statistic]. The second parameter in the probability density distribution 

function eq 8, the mean exosome diameter 〈D〉, is calculated directly from the experimental 

data. Comparing experimental and calculated distribution functions in Figure 3 shows that 

the asymmetry of each size distribution is accurately captured by the power-law behavior 

imbedded in eq 8. In addition, the peak in the size distribution for exosomes from untreated 

TPC1 cells is accurately described by eq 8, and reasonably well described for exosomes 

from the treated TPC1 cells. For diameters less than 〈D〉, the exosome size distribution is 

shifted slightly to larger vesicle diameters for the LY294002 treatment and to smaller vesicle 

diameters for the U0126 treatment. The mean diameters of exosomes from untreated TPC1 

cells and the U0126-treated cells are essentially identical, whereas the mean diameter of 

exosomes from the LY294002-treated cells is larger, but within one standard deviation of the 

other two (Table 1). The scaling exponents, on the other hand, are notably different with 

larger values corresponding to the inhibitor treatments of the TPC1 cell source (Table 1). 

These larger values of ξ indicate that the power-law behavior in eq 8 extends further into the 

tail of those exosome size distributions—i.e., larger exosomes are present in higher 

fractions. For the size distributions of exosomes from the untreated TPC1 cells and the 

LY294002-treated cells, the scaling exponents fall within the expected range of ξ = 1/3 

(small λ/strong segregation) and ξ = 1/4 (large λ/weak segregation) noted above for model 

membrane systems. However, the scaling exponent that characterizes the exosome size 

distribution for the U0126-treated cells falls outside this expected range. We note the much 

smaller number of cryo-TEM images in Table 1 for exosomes from the U0126-treated cells, 

Paulaitis et al. Page 6

Langmuir. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is less than half the number for the untreated cells, although the number of images in 

the power-law region is comparable to that for the LY294002-treated cells.

We tested the plausibility of our power-law characterization of the extended tail of the 

exosome size distributions using a semiparametric bootstrap approach.37 Specifically, we 

generated 15 000 synthetic size distributions for each case with an extended tail that obeys 

the power-law behavior in eq 8 with ξ and Dmin obtained from our analyses of the cryo-

TEM distributions (Table 1). Diameters less than Dmin were selected randomly from the 

experimental data. The extended tail of each synthetic distribution was then individually fit 

to the power-law model and the corresponding KS statistic calculated as described above. 

The fraction of synthetic data sets for which the resulting KS statistic is greater than that for 

the cryo-TEM data represents the likelihood that deviations from the hypothesized power-

law behavior are greater for the synthetic size distributions relative to the cryo-TEM 

distributions. If this fraction is large, then the difference between the extended tails of the 

cryo-TEM distributions and our power-law characterization based on eq 8 can be attributed 

to statistical fluctuations. As suggested elsewhere,37 we accept our power-law 

characterization as plausible if this fraction is greater than 0.10. The results of this KS test 

are given in Table 1. In each case, the fraction is much greater than 0.10. Thus, we conclude 

that the power-law behavior imbedded in eq 8 gives a plausible characterization of the tail of 

these exosome size distributions.

We now turn to assessing the effectiveness of our scaling exponent as a characteristic 

parameter that can distinguish the size distributions of exosomes isolated from different 

human serum samples. To this end, we use an extension of the maximum likelihood method 

described above to binned experimental data38 to analyze NTA measurements of the 

exosome size distributions in serum samples taken from a cohort of four patients diagnosed 

with early-stage squamous cell carcinoma (SCC) and from a cohort of five healthy donors.39 

The results are summarized in Table 2. We find that the scaling exponents, which 

characterize the size distributions of exosomes from the cancer patients (SCC exosomes), are 

on average significantly greater (p-value < 0.001) than the scaling exponents, which 

characterize the size distributions of exosomes from the healthy donors (HS exosomes). In 

contrast, the difference in 〈D〉 between the two cohorts is on average not statistically 

significant (Table 2). That the scaling exponent is more effective than the mean diameter in 

distinguishing these exosome size distributions is not surprising. The characteristic 

asymmetry of the distributions captured by ξ reflects the presence of larger exosomes in 

much greater numbers than would be expected from a normal or Gaussian distribution. Thus, 

the exosome size distributions are not well characterized by their mean values.

As noted above for the TPC1 cell-derived exosomes, the larger values of ξ obtained for the 

serum exosome size distributions from the cancer patients indicate the power-law behavior 

in eq 8 extends further into the tails of those distributions. This extended power-law behavior 

does not imply, however, the presence of larger vesicles produced by an entirely different 

biogenesis pathway–e.g., shedding vesicles.5–7 As shown in Figure 4, a single value of the 

scaling exponent accurately describes the tail of the SSC-EX1 exosome size distribution, 

which extends well beyond that for the HS-EX3 exosomes. We would not expect this power-

law behavior with the same scaling exponent to apply to the larger vesicles if these vesicles 

Paulaitis et al. Page 7

Langmuir. Author manuscript; available in PMC 2018 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



originated from an entirely different biogenesis pathway. In the context of our dynamic 

scaling model, the larger values of ξ reflect slower rates of domain budding, invagination, 

and/or scission—i.e., slower rates of ILV/exosome formation—that inhibit domain growth 

by coalescence on the MVB membrane. If we consider the inhibition of domain growth to be 

a consequence of the local coupling of membrane curvature to composition, then we might 

expect changes in ξ to correlate with changes in membrane composition and possibly the 

cargo of the exosomes. The suggestion that changes in the scaling exponent reflect changes 

in the membrane composition of exosomes is supported by recent work that points to high 

levels of phosphatidylserine-expressing exosomes in patient blood as a potential diagnostic 

for cancer.40

The proposition of dynamic scaling (eq 2) of the length scale of ILV/exosome-forming 

membrane domains in our model of exosome size distributions defines a scaling exponent 

that is opposite in sign from the scaling exponent in the Weibull extreme value distribution 

(EVD) function that has been used to describe size distributions of vesicles prepared by 

sonication, extrusion, or detergent dialysis, although the size range of spherical vesicles 

formed in these preparations is comparable to that for exosomes.41 The Weibull EVD 

description is based on a random fragmentation model in which an upper limit to the vesicle 

diameter is defined.42,43 The power-law behavior defined by eq 2 with ξ > 0 leads to a 

distribution function that can be derived from the Fréchet EVD in which a minimum vesicle 

diameter is defined.44 The Fréchet EVD was identified previously by us as the EVD function 

that best represents TPC1 cell-derived exosome size distributions when fitting the measured 

distributions to the probability density function for the generalized EVD.16 We note that 

fitting exosome size distributions using the Weibull distribution can give a negative and 

therefore unphysical minimum vesicle diameter for the distribution.34

CONCLUSIONS

The model proposed herein for characterizing exosome size distributions is based on a 

dynamic scaling ansatz that relates exosome diameters to the characteristic length scale of 

ILV-forming domains on the MVB limiting membrane. This dynamic scaling model contains 

two parameters: the mean exosome diameter and a scaling exponent that captures the 

characteristic asymmetry of exosome size distributions that are right-skewed to larger vesicle 

sizes. The mean exosome diameter is obtained directly from experiments as an average of 

the measured diameters. Thus, the scaling exponent alone is fit to the experimental exosome 

size distributions. We show that the scaling exponents so obtained are sensitive to the state 

of the exosome cell source and insensitive to the minimum detectable vesicle size intrinsic to 

different detection methods. Importantly, we also find statistically significant differences in 

the scaling exponents that characterize the exosome size distributions in serum samples 

taken from cancer patients relative to those from healthy donors. Conversely, statistically 

significant differences in the mean exosome diameters are not obtained. Our analysis further 

suggests that there is no need to invoke alternative biogenesis pathways to explain the 

presence of large vesicles in exosome size distributions. Collectively, these results establish 

the potential of dynamic scaling of exosome sizes, in general, and the scaling exponent 

specifically as a quantitative biophysical parameter for identifying and characterizing the 

exosome subpopulation of EVs. Finally, we speculate that changes in the scaling exponent 
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may reflect changes in the membrane composition of exosomes. In this regard, we can 

consider the scaling exponent to be a biophysical biomarker for exosomes comparable and 

complementary to biochemical exosome biomarkers, notably specific membrane proteins, 

such as tetraspanins.
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Figure 1. 
Distribution of the time intervals (scaled by ξ = 1/3) between successive exosome formation 

events simulated as a Poisson process (eq 3). A portion of the time sequence of events is 

shown in the inset.
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Figure 2. 
Probability distribution, p(D), of vesicle diameters from cryo-TEM images (circles) and 

independently from A4F/MALS measurements (squares) for exosomes released from 

untreated TPC1 thyroid cancer cells16 plotted as a function of reduced diameter, D/〈D〉, 
where 〈D〉 = 46.6 nm (cryo-TEM, n = 1387) and 〈D〉 = 61.9 nm (A4F/MALS). The line 

corresponding to the extended tail of the distributions is provided to guide the eye.
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Figure 3. 
Probability distribution, p(D), of vesicle diameters from cryo-TEM images (circles) for 

exosomes released from untreated TPC1 cells, LY294002-treated cells, and U0126-treated 

cells16 plotted as a function of reduced diameter, Γ(1 − ξ)D/〈D〉, where Γ(…) is the gamma 

function for noninteger arguments (see eq 10). The solid lines are calculated using the 

probability density distribution function eq 8. See Table 1 for all parameter values.
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Figure 4. 
Probability distribution, p(D), of exosome diameters measured by NTA for exosomes 

isolated from serum samples taken from a patient diagnosed with early-stage SCC (SCC-

EX1) and a healthy donor (HS-EX3). Open circles are the NTA data; solid lines are 

calculated using the probability density distribution function eq 8 with scaling exponents and 

average exosome diameters given in Table 2. Distributions are shifted up (SCC-EX1) and 

down (HS-EX3) by a factor of 10 for visual clarity.
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Table 2

Scaling Exponents and Mean Exosome Diameters Obtained from Eq 10 that Characterize the Size Distribution 

of Exosomes in Serum Samples from Four Patients Diagnosed with Early-Stage SCC (SCC-EX) and from 

Five Healthy Donors (HS-EX) Measured by NTA39a

serum sample scaling exponent, ξ mean diameter, 〈D〉

SCC-EX1 0.3643 135.1

SCC-EX2 0.3802 116.1

SCC-EX3 0.3984 99.8

SCC-EX4 0.3377 93.4

average 0.3702 ± 0.0257 111.1 ± 18.6

HS-EX1 0.2253 107.6

HS-EX2 0.2800 100.6

HS-EX3 0.3007 112.4

HS-EX4 0.2484 109.0

HS-EX5 0.2238 97.6

average 0.2556 ± 0.0340 105.4 ± 6.1

p-value <0.001 >0.5

a
Mean diameters are in units of nanometers.
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