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Abstract

Extracellular vesicles are emerging as potent vehicles of intercellular communication. In this 

review, we focus on a subclass of extracellular vesicles called exosomes. Previously considered an 

unimportant catch-all, exosomes have recently been recognized for their role in various diseases 

and their potential for therapeutic use. We have examined the role of exosomes after human lung 

transplantation and have delineated the composition of circulating exosomes isolated from lung 

transplant recipients diagnosed with acute and chronic rejection, primary graft dysfunction, and 

respiratory viral infection. The presence of lung-associated self-antigens (K-alpha 1 Tubulin and 

collagen V) and mismatched donor HLA in exosomes isolated from lung transplant recipients 

signifies that these exosomes originated in the transplanted lungs, and therefore dramatically affect 

transplant biology and immune pathways. Exosomes released from transplanted organs also carry 

other proteins, costimulatory molecules, and nucleic acids. Therefore, these molecules may be 

used as biomarkers for allograft rejection and immunity.

Keywords

exosomes; transplantation; autoimmune response; alloimmune response

1. Introduction

Extracellular vesicles (EVs) are secreted by cells from multicellular and unicellular 

organisms. EVs are originated from plasma membranes either ectosomal or endosomal in 

origin. EVs are released from all type of cells undergoing stress including during 

transformation, activation, drug treatments, surgeries and infections (bacterial, viral, fungal, 

etc.). EVs are categorized according to size, and are sorted into groups such as ectosomes, 

oncosomes, shedding microvesicles (MVs), etc. But this classification varies according to 

different reports. In this review, we discuss MVs (100 to 1000 nm in size), apoptotic bodies 

(>1000 nm in size), exosomes (40 to 150 nm in size), and oncosomes (secreted by oncogenic 
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cells; >1000 nm in size) [1, 2]. All the vesicles contain a subset of proteins, lipids, RNA and 

DNA corresponding to their origin from the parent cell. EVs are thought to be involved in 

intercellular communication by transferring information via small biological molecules (i.e, 

lipids, carbohydrates, proteins, small metabolites, and nucleic acids) [3, 4]. EVs are being 

explored for potential use for therapeutic applications, disease prognosis, and biomarker 

discovery for various diseases. [5]. The EV’s have been studied in cancer during the last two 

decades but study of EVs are limited in the field of transplantation. Since EVs are released 

by both immune and non-immune cells it is thought to play important roles in the regulation 

of immunity during disease, chronic illness, infections and solid organ transplants. In this 

review we will focus on allograft immunity following solid organ transplantation.

Transplantation is the last option for patients with end stage organ disease. Major organ 

transplants currently performed are kidney, heart, lung, liver, intestine and pancreas either 

alone or with kidney [6, 7]. Numbers of recipients seeking organ transplants are 

outnumbered as compared to availability of suitable donors. This varies for different organs.

A significant number of patients are on the waiting list for organ transplants which reflects 

the lack of organ donors. Success rate of the transplant depends on the organ transplanted 

donor/host compatibility and infections, etc. Transplants often undergo acute and chronic 

rejection which can be due to either cellular or humoral immune response or a combination 

of both. In addition, donor factors play a critical role especially during the early period 

following transplantation. Late allograft loss is most often due to chronic allograft damage 

resulting in progressive decline of graft function years after transplantation.

Although, in solid organ transplants, several mechanisms underlying acute or chronic 

rejection and leading to graft dysfunction have been reported which includes cellular 

immune response to mismatched donor human leucocyte antigens (HLA), development of 

donor specific antibody against mismatched HLA [8], as well as development of antibody 

tissue restricted self-antigens (SAgs) [9, 10]. Immune responses affecting mainly the small 

arteries and capillaries can result in cardiac allograft vasculopathy (CAV) [11–13] following 

heart transplantation, transplant glomerulopathy affecting glomerular basement membrane 

which histologically recognized as either by duplication, double contouring, or splitting [14, 

15] following kidney transplantation. The mechanisms leading to chronic rejection of 

different organ transplants are currently unknown though both humoral and cellular immune 

mechanisms play an important role leading to chronic rejection.

Identification of biomarkers involved in allograft function (stable vs rejection) will assist in 

identifying transplant recipients who are at risk for developing acute or chronic rejection 

thereby will allow to develop strategies for early intervention to prevent further damage.

It is our contention that EVs, especially exosomes, play an important role in immune 

activation or suppression of allograft immunity. Presence of allo-antigens, cell specific 

antigens, peptides, and costimulatory molecules on the surface of exosomes, as well as the 

presence of nucleic acids, lipids, small RNAs and transcription factors inside the exosomes 

are released following transplantation making exosomes as one of the attractive targets 

towards identifying biomarkers associated with allograft immunity. In the current review we 

Bansal et al. Page 2

Cell Immunol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will explain the details of allograft immunity mediated by different kinds of EVs 

emphasizing exosomes released following transplantation during rejection process.

2.1. Microvesicles (MVs)

Description of MVs were first given by Chargaff and West in 1946 in the context with a 

factor which is perceptible in platelet free plasma and have potential to generate thrombin 

leading to blood coagulation. MVs were earlier referred as “platelet dust” due to their origin 

from platelets in plasma/serum [16, 17]. MVs are released by cells that measure between 

100–1000 nm in size. MVs are released mostly during stress conditions by the budding/

blebbing mechanism of the plasma membrane, and are secreted into the cellular milieu. 

MV’s are vesicles encapsulated by a phospholipid bilayer and their size overlaps with that of 

bacteria and insoluble immune complexes.

Vesicles secreted by the plasma membrane reflect intercellular communication through the 

exchange of cellular material, but the exact nature and origin of these MVs, as well as their 

secretion and ultimate fate, remain largely unknown.

2.2. Apoptotic Bodies

“Apoptotic body” term was used by Kerr in 1972 followed by Robert Horvitz et al. 

Apoptotic bodies are released from cells that undergo apoptosis, and their surface 

composition consists of phosphatidylserine [18, 19]. These apoptotic vesicles are also often 

referred to as apoptotic bodies. Apoptotic vesicles are reported to be larger than the other 

secreted vesicles, with their size ranging between 1–5 μm. Apoptotic bodies consist of parts 

of cells which are undergoing death. Apoptotic bodies consist of DNA (damaged and 

degraded DNA sequences), metabolites, remnants of cellular organelles. Annexin V and 

phosphatidyl serine and fragmented DNA are the markers of apoptotic bodies.

2.3. Oncosomes

EVs, from tumor cells are termed as oncosomes, they are large vesicles 1–10μm. Term 

oncosomes was first described by Janus Rak’s group in 2008 from tumors of the brain [20]. 

Oncosomes are reported to play a role in the tumor microenvironment by transporting 

bioactive molecules across tissue spaces and through the blood stream. Oncosomes are 

capable of carrying microRNA (miRNA), DNA, protein and metabolities. Oncosomes carry 

mutated DNA and RNA sequences of oncogenes and activated oncoproteins which can lead 

to horizontal transfer of biological material through intercellular trafficking [21–23]. 

Cellular uptake of oncogenic cargo through packaged oncosomes induces changes in 

phenotypes and behavioral pattern of naïve and healthy cells [24]. All the changes in healthy 

cells are dependent on the contents transferred through oncosomes. Horizontal transfer of 

mutated nucleic acids and proteins can also lead to resistance to existing therapies. Recent 

reports have demonstrated the effect on revival of dormant stages of resistant cells in 

hormone resistant breast cancers [25]. In summary, oncosomes play a critical role in 

intercellular communication between tumor cells and the tumor microenvironment [26–29].

Bansal et al. Page 3

Cell Immunol. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. Exosomes

Exosomes are membrane-bound vesicles measuring 40–150 nm in size. Exosomes are 

released by most cells, including mast cells, dendritic cells, B and T lymphocytes, neurons, 

adipocytes, endothelial cells, and epithelial cells [30–32]. Diseased, unhealthy cells have 

been noted to secrete more exosomes than healthier cells. The density of exosomes ranges 

from 1.13–1.19 g/mL, and they have been found in many types of bodily fluids, including 

blood, urine, ascites, breast milk, saliva, amniotic fluid, lymph fluid, and cerebrospinal fluid, 

from both healthy and unhealthy individuals [33–39]. Exosomes are cup-shaped vesicles, 

encapsulated by a lipid bilayer, and feature surface proteins, antigens, and specific markers 

(e.g, CD9, CD81, tetraspanins, Alix, CD63, tumor susceptibility gene 101, heat shock 

proteins, and specific markers) depending on the cells that release them [40, 41].

The composition of exosomes depends on their origin and the clinical condition of the 

individual (eg, cancer, infection, transplantation) [42]. According to a current exosome 

content database, Exocarta (Version 4), exosomes from various organisms and cell types 

have been characterized as containing 4563 proteins, 194 lipids, 1639 mRNAs, and 764 

miRNA [43, 44]. Exosomes also contain biomolecules, including carbohydrates, proteins, 

lipids, nucleic acids (ie, DNA and RNA), and metabolites. The lipid and protein composition 

of exosomes have been studied, and researchers have found that exosomes originating from 

different types of cells have different lipid and protein compositions depending on the cells’ 

pathophysiological condition. These structural differences have been studied using Western 

blotting, fluorescence-activated cell sorting, electron microscopy, and mass spectrometry 

[45] (Figure 1).

All the different EV’s ie: MVs, apoptotic bodies, oncosomes and exosomes vary in their 

structure depending on the type of cytoskeletal proteins, cytoplasmic enzymes, cytokines, 

chemokines, cell specific antigens, cell signaling molecules, lipids and proteins present on 

the surface which is described in detail in Table 1. EV’s may be released from same or 

different cells but possess different functional aspects due to the difference in their 

architectural constituents and unique signaling molecules depending on the cells from which 

they are released. To study unique properties of different EV’s their difference in size and 

distribution have been made use of and differential centrifugation towards purifying EV’s 

have been employed by different research groups [46–50] (Table 1).

2.4.1. Origin of EVs—The origin and biogenesis of EV’s are different that essentially 

distinguishes exosomes from MVs, oncosomes and apoptotic bodies. As early as 1980, 

researchers studying the process of reticulocyte maturation observed extra-vesicular 

secretion [51]. These extracellular vesicles are subcategorized based on their size, and they 

are endosomal in origin, due to the inward budding of endosomes. Some large EVs (ie, 

multivesicular bodies) have been shown to fuse with lysosomes or the plasma membrane, 

thereby releasing the contents needed for degradation into the extracellular space [52].

Exosomes, the smaller vesicles, are released from MV bodies and deliver functional RNAs 

(e.g, mRNA and miRNA) to other cells, which assist in intercellular communication [53–

56]. The function of exosomes varies depending on their origin. Exosomes derived from 

antigen presenting cells can express major histocompatibility complex (MHC) class I and II 
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molecules on the cell surface, which enables them to activate CD8β and CD4β T cells to 

induce specific immune responses [57–59].

2.4.2. Biology and Function of Exosomes—The secretion of exosomes into 

biological fluids contributes to their diverse physiological responses. Exosomes are found 

first to be involved in removing unnecessary proteins during the cell maturation process 

[60]. Exosomes can deliver diverse biological molecules, including proteins, lipids, RNAs 

(including long-coding, short-coding, and non-coding RNAs), DNA, and metabolites, 

depending on the cellular origin of the exosomes. Importantly, exosomes carry and present 

major histocompatibility peptide complexes to the exosomal surface, as well as inside the 

exosomes, and can therefore modulate immune responses [61]. Exosomes released by 

dendritic cells are currently being explored for their potential as therapeutic agents against 

infection and cancer [62]. EVs derived from cancer cells have been shown to promote 

angiogenesis and coagulation, to modulate immune responses, and to remodel surrounding 

parenchymal tissue, leading to tumor progression. Tumor cells secrete EVs that can be 

microvesicles, exosomes, or oncosomes [5].

Mechanisms by which exosomes influence various biological functions are not fully 

understood but the key features are; 1) direct contact of the antigens and markers present on 

the surface of exosomes to antigen presenting cells of the host leading to immune activation 

or deactivation, 2) fusion of exosomal and cell membrane or endocytosis through which 

biological materials present inside exosomes are released into the cells.

Exosomes are thought to play a critical role in both primary tumor growth and metastatic 

evolution. Exosomes orchestrate multiple systemic pathophysiological processes, such as 

coagulation, vascular leakiness, and reprogramming of stromal recipient cells, to support 

pre-metastatic niche formation and subsequent metastasis. Clinically, Exosomes have been 

useful as potential biomarkers. Further delineation of their progression and development of 

novel therapeutic targets may aid in prevention of cancer and metastasis [52, 63].

2.4.4. Source and Release of Exosomes—Exosomes are released by cells through 

reverse budding of the limiting membrane of late endosomes, via multivesicular bodies 

containing intraluminal vesicles [64]. Endosomal sorting complex is involved in the 

formation of intraluminal vesicles which requires transport (ESCRT) machinery ESCRT0, 

ESCRTI, ESCRTII and ESCRTIII. All the events in the reverse budding of MVs until the 

formation and release of exosomes occurs in the sequential pattern involving ESCRT 

complex [65, 66].

Release of exosomes from cells can be influenced by many circumstances, both 

physiological and pathological. Proteomic analyses reflect the presence of some common 

proteins in exosomes from all cell types [67, 68], but some contents (eg. nucleic acids, 

certain proteins, and metabolites) are unique to exosomes. These contents are secreted by 

various cells, depending on the external insult (eg, infection, interactions of host and 

pathogen cells, immune responses, physiological conditions, or disease state of the body) 

[69]. Exosomes are released into multiple biological fluids, including urine and breast milk. 

Unique signatures have been identified from vesicles that originate from different cells under 
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various circumstances. Until recently, the origin of a particular biomarker found in urine, 

called aquaporin-2, has been a mystery. However, new reports [36, 70] have used mass 

spectroscopy to confirm that the presence of aquaporin-2 in urine signifies the presence of 

exosomes.

Ciprofloxacin, an antibacterial drug, has been shown to induce exosome release [71]. Cancer 

cells also release exosomes, which promote tumor growth, inhibits immune responses, and 

prompts complex communication between immune cells via nucleic acids (eg, DNA, RNA), 

proteins, and other metabolites in these exosomes [72]. According to a report by Mittra et al, 

patients diagnosed with blood cancer have fragmented dsDNA, which can integrate into the 

healthy cell genome via exosome-mediated transfer, leading to activation of the DNA 

damage repair pathway, followed by apoptosis [73]. Exosomes can contribute to cancer 

progression, leading to metastasis as well as activating DNA damage repair.

2.4.5. Exosomes in Allograft Immunity—Transplantation is the sole treatment option 

for many patients diagnosed with end-stage organ disease. However, long-term graft survival 

is hindered by rejection of the transplanted organ by immune and nonimmune processes. 

Acute and chronic rejection can occur after transplantation of any solid organ transplant, 

including kidney, heart, and lungs. Long-term immunosuppression has reduced the incidence 

of rejection. The mechanisms leading to rejection, especially chronic rejection, after solid 

organ transplant remain under investigation; however, both humoral and cellular immune 

processes are thought to play an essential role in the pathogenesis of rejection. During 

allograft rejection, the recipient’s immune system recognizes mismatched MHC antigens 

from the donor organ and activates T lymphocytes, a process known as allorecognition. This 

activation of T cells occurs through two distinct pathways: a direct pathway (ie, T cell 

stimulation by donor antigen presenting cells) and an indirect pathway (ie, T cell stimulation 

by self-antigen presenting cells) [74–80]. The recent discovery of T cell activation via 

exosomes is referred to as semi-direct pathway, but research on exosomes and their role in 

organ transplant is limited [81]. Exosomes released during the process of allograft rejection 

are currently being analyzed [82, 83]. The molecular and immune composition of exosomes 

isolated from urine varies, but exosomes isolated from urine can carry inter- and intracellular 

proteins as well as nucleic acid that reflect the state, stability and health of renal cells, 

physiological conditions, and pathological conditions [84–86]. Details of exosomes released 

during different organ transplants are provided in Table 2.

We have previously explored the role of exosomes after human lung transplantation and 

have demonstrated that exosomes contain not only mismatched donor HLA, but also contain 

the lung-associated SAGs, K-alpha 1 Tubulin (Kα1T) and collagen V (Col-V). Exosomes 

are released during allograft rejection, and Kα1T and Col-V are expressed on the surface of 

exosomes (Figure 2), suggesting that they can induce immune responses. More significantly, 

we have found that lung SAgs were not present in exosomes isolated from stable lung 

transplant recipients, suggesting that circulating exosomes with lung SAgs can be potential 

biomarkers for impending rejection. This also supports our conclusion that exosomes 

originate from the transplanted organ after immune insult or injury.
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We have also demonstrated that exosomes isolated from human lung transplant recipients 

undergoing rejection contain miRNAs known to induce inflammation, endothelial activation, 

antibody mediated chronic rejection, and Th17 differentiation [49]. This suggests that 

immune activation via the miRNA in exosomes can contribute to the pathogenesis of 

rejection. Recent studies have also shown that primary graft dysfunction, de novo donor-

specific antibody development, and respiratory viral infections also induce circulating 

exosomes after lung transplant (unpublished research). Based on these findings, we propose 

that stress to the transplanted organs can release exosomes, and that persistence of these 

exosomes in the circulation can lead to immune activation and ultimately increase the risk of 

chronic rejection.

We recently found that induction of exosomes is not unique to lung transplant recipients 

diagnosed with rejection; instead, exosomes are also found in heart transplant recipients 

diagnosed with CAV [11–13] (akin to chronic rejection) and in renal transplant recipients 

diagnosed with transplant glomerulopathy (a condition that increases the risk of chronic 

rejection). In human heart transplant recipients with CAV, induction of circulating exosomes 

is correlated with development of antibodies to the cardiac SAgs, myosin and vimentin; in 

renal transplant recipients with transplant glomerulopathy, exosomes in the circulation are 

correlated with development of antibodies to the renal tissue SAgs, Col-IV and fibronectin. 

Our recent animal experiments have demonstrated that administration of antibodies to 

cardiac myosin immediately following syngeneic murine heterotopic cardiac transplantation 

resulted in graft failure within 8 days, and circulating exosomes with cardiac myosin and 

vimentin were present in those animals before graft failure occurred [87]. Further 

immunization with exosomes isolated from animals following cardiac graft failure can also 

lead to graft loss after syngeneic cardiac transplantation, and these animals also experience 

de novo development of antibodies to cardiac myosin and vimentin [87]. Both of these 

studies strongly demonstrate the importance of exosomes induced and released into 

circulation in the immunopathogenesis of allograft rejection.

3. Conclusions

As recently as a few decades ago, exosomes were treated as garbage bins, and their scope 

and potential role in carrying small molecules were underestimated. Exosome biology has 

now emerged as an exciting field for studies in cancer and, more recently, in transplantation. 

Our findings from lung transplant recipients clearly demonstrate the importance of 

circulating exosomes in the transplant immunity processes. The presence of the lung SAgs, 

Kα1T and Col-V, was noted primarily in the exosomes isolated from lung transplant 

recipients diagnosed with rejection or other clinical conditions thought to increase the risk 

for rejection (eg, severe primary graft dysfunction and respiratory viral infection). Our 

results in the animal model of cardiac transplantation also support the importance of 

exosomes in the allograft immune processes. Exosomes possess immunoregulatory 

molecules and also carry cell-derived antigens. Therefore, exosomes can be used for 

vaccination to induce immunity and or tolerance prior to transplantation. Exosomes with 

different cell surface antigens and factors within can also be employed as potential 

biomarkers for early detection of rejection following solid organ transplants and in other 

diseases of interest including cancers.
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4. Future Directions

Exosomes are important not only in the field of cancer biology, but also in other pathological 

conditions such as infection and transplant immunology. The potential role of exosomes as 

biomarkers for lung allograft rejection as well as chronic rejection of other solid organs still 

needs to be validated. Unanswered questions include the presence of other factors, such as 

different antigens, costimulatory molecules, miRNA, and proteasomes, in the exosomes and 

their role in allograft immunity. Apart from the spread of small molecules during 

intercellular communication via exosomes, the fate of these exosomes, how they spread, and 

how they communicate with different cell types are other key questions that need further 

clarification. The role of exosomes in transplant tolerance is also of interest, and 

characterization of exosomes released during and after tolerance requires additional studies.
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Highlights

• Different types of extracellular vesicles, their composition

• Role for exosomes in allograft immunity

• Exosomes with tissue associated self-antigens as biomarker for rejection
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Figure 1. Origin and distribution of Extracellular Vesicles
Microvesicles, Oncosomes, Apoptotic Bodies and Exosomes.
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Figure 2. Exosomes biogenesis and composition
A) Exosomes biogenesis. B) Composition of exosomes following heart and lung 

transplantation
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