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Abstract

Tuberculosis (TB) is the leading global infectious cause of death. Understanding TB transmis-
sion is critical to creating policies and monitoring the disease with the end goal of TB elim-
ination. To our knowledge, there has been no systematic review of key transmission
parameters for TB. We carried out a systematic review of the published literature to identify
studies estimating either of the two key TB transmission parameters: the serial interval (SI)
and the reproductive number. We identified five publications that estimated the SI and 56
publications that estimated the reproductive number. The SI estimates from four studies
were: 0.57, 1.42, 1.44 and 1.65 years; the fifth paper presented age-specific estimates ranging
from 20 to 30 years (for infants <1 year old) to <5 years (for adults). The reproductive number
estimates ranged from 0.24 in the Netherlands (during 1933–2007) to 4.3 in China in 2012.
We found a limited number of publications and many high TB burden settings were not
represented. Certain features of TB dynamics, such as slow transmission, complicated
parameter estimation, require novel methods. Additional efforts to estimate these parameters
for TB are needed so that we can monitor and evaluate interventions designed to achieve
TB elimination.

Introduction

Tuberculosis (TB), an airborne bacterial infection caused by the organism Mycobacterium
tuberculosis (Mtb), has surpassed HIV/AIDS as the leading cause of death due to a single infec-
tious organism worldwide [1]. It primarily attacks the lungs but can also infect other areas of
the body [2, 3]. Those exposed to Mtb often develop latent TB infection (LTBI) and have a
5–10% lifetime risk of progressing to active TB [4, 5]. Worldwide, 2–3 billion people are
infected with TB; an estimated 10.4 million people developed active TB disease in 2015 [4].
Major innovations in strategies and tools to monitor the success of new strategies are needed
to achieve the World Health Organisation (WHO)’s ENDTB goals of reducing TB deaths by
95% and new cases by 90% by 2035 [4].

The reproductive number and serial interval (SI) are two key quantities in describing trans-
mission of an infectious disease. The reproductive number is defined as the average number of
secondary cases a primary infectious case will produce. In a totally susceptible population, it is
referred to as the basic reproductive number (R0); it is referred to as the effective reproductive
number (Re) if the population includes both susceptible and non-susceptible persons [6]. An
Re > 1 indicates that the disease will continue to spread while an Re < 1 indicates that the dis-
ease will eventually die out. Although the reproductive number is usually defined as the aver-
age number of secondary cases, it is occasionally defined as the average number of secondary
infections [7–10], a distinction that is important for a disease with a long incubation period
(the time between infection and developing symptomatic disease) and/or only a fraction of
infections progressing to disease. Depending on the setting, the reproductive number can be
expressed as a function of parameters such as infection rate, contact rate, recovery rate, making
it useful in determining whether or not a disease can spread through a population.

The serial interval (SI), defined as the time between disease symptom onset of a case and
that of its infector [11], is a surrogate for the generation interval – an unobservable quantity
defined as the time between the infection of a case and the time of infection of its infector [12].
The SI is an important quantity in the interpretation of infectious disease surveillance data, in
the identification of outbreaks and in the optimisation of quarantine and contact tracing.

These two quantities have been used to inform control policies during outbreaks [13] by
quantifying the transmission of infectious diseases such as influenza A (H1N1) [11, 12, 14],
Severe Acute Respiratory Syndrome (SARS) [12, 15] and Ebola [16, 17], where progression
to disease upon transmission occurs quickly. For example, Wallinga and Teunis [18] in

https://www.cambridge.org/hyg
https://doi.org/10.1017/S0950268818001760
https://doi.org/10.1017/S0950268818001760
mailto:ym48@bu.edu


2004 demonstrated the impact of the first global alert against
SARS on the change of the effective reproductive number.

TB has a slower transmission rate due to its much longer incu-
bation period. Of the 5–10% of infections that develop into active
(symptomatic and infectious) TB disease, it is thought that the
majority occur within the first 2 years after infection [2, 5, 19],
although active TB disease can develop decades after initial infec-
tion [20]. This is much longer than the aforementioned infectious
diseases where cases show symptoms within days of infection.
Although there is an increasing consensus that some transmission
events may occur before the infector shows symptoms, many
likely occur after the infector is symptomatic, therefore, the longer
the incubation period is, the longer the SI (Fig. 1).

Development of TB disease can be caused by de novo infection,
reactivation of the same bacterial strain as a previous infection [5,
21] or by infection with a bacterial strain different from the ori-
ginal infection (reinfection TB). This complicates estimation of
the serial interval, unless molecular techniques are used to distin-
guish reinfection and reactivation [21]. To our knowledge, there
has been no systematic review of methods to estimate the serial
interval and reproductive number for TB. Therefore, in this
paper we systematically review the literature to examine the meth-
ods applied to the estimation of TB transmission parameters and
the estimates obtained from these methods. This compilation
informs the gaps in our understanding of TB and identifies
areas where further research is needed to develop methods to bet-
ter understand TB transmission.

Methods

We conducted two searches in PubMed for publications in
English – one for TB and serial interval; one for TB and repro-
ductive number.

Tuberculosis and serial interval

(‘Tuberculosis’[MeSH] OR ‘Mycobacterium tuberculosis’[MeSH]
OR ‘tuberculosis’[TI]) and (‘serial interval’[tiab] or ‘generation
interval‘[tiab] or ‘serial distribution’ [tiab] or ‘secondary infec-
tions’ [tiab] or ‘secondary cases’ [tiab]).

TB and reproductive number

(‘Tuberculosis’[MeSH] OR ‘Mycobacterium tuberculosis’[MeSH]
OR ‘tuberculosis’[TI] OR ‘pulmonary, tuberculosis [MeSH]’)
and (‘reproductive number’[tiab] or ‘reproduction number’[tiab]
or ‘reproductive rate’[tiab] or ‘reproduction rate’[tiab] or ‘repro-
duction ratio’[tiab] or ‘reproductive ratio’[tiab] or ‘reproduction
value’[tiab] or ‘reproductive value’[tiab] or ‘R0’[tiab] or ‘second-
ary infections’[tiab] or ‘secondary cases’[tiab]).

Titles and abstracts of the publications referenced in the arti-
cles we found were reviewed for inclusion for either parameter.

For the SI, as limited number of publications met our inclusion
criteria, we also reviewed the titles and abstracts of publications
that cited the serial interval articles that we included in a full-text
review.

Two reviewers (two of YM, HEJ, LFW) independently
screened all titles and abstracts, resolving discrepancies by con-
sensus. Each publication was then independently reviewed by
two reviewers (two of YM, HEJ, LFW) for inclusion. From the
included articles, the same pairs of reviewers extracted the follow-
ing details for all parameter estimates (if available): point esti-
mates, confidence intervals, ranges, sample size and location/
setting. We summarised the methods for analysis and aggregated
those with similar estimation approaches.

Results

Serial interval

The serial interval query returned 171 articles (Fig. 2), of which
163 were excluded as they did not present any estimates. Leung
et al. [22] reported the serial interval as the time from identifica-
tion of primary case to secondary case as median 1.4 years (range:
0.4–5.2 years). This study used household transmission data from
Hong Kong and focused on MDR- and XDR-TB. Vynnycky and
Fine [23] analysed a population of white males in England and
Wales in the 20th century using a mathematical compartmental
model to estimate the SI as dependent on the age when infection
occurred, distinguishing reinfection and reactivation in the model.
In this model, the risk of developing disease was calibrated on
incidence data. The estimates were presented as a frequency dis-
tribution. The most frequent time to develop disease was esti-
mated at: between 20 and 30 years due to reinfection for those
infected in the first year of life; between 10 and 14 years due to
reinfection for those infected at age 10; <5 years due to recent
infection for those infected at age 20 and those infected at age
40. ten Asbroek et al. [24] analysed genetic data for a Dutch sam-
ple from 1993 to 1996 to link infectors and infected people using
DNA fingerprinting based on restriction fragment length poly-
morphism (RFLP) and estimated the serial interval at a geometric
mean of 0.57 years (95% confidence interval (CI) 0.44–0.73). In
this 4-year study, the probability of observing both the infector
and the infected person depended on the time interval between
isolates – the shorter this time interval was, the more likely that
this couple was observed. Therefore, the observed serial intervals
were weighted by the inverse of the difference between the length
of the study period and the time between isolates of the infector
and the infected person, allowing a rough correction for under-
representation of longer SIs (Table 1).

Two articles that cited the articles that met our inclusion cri-
teria in the PubMed search reported estimates of the SI and
were included for full-text review. Borgdorff et al. [25] used the
same method on genetic data as [24] to estimate the median SI

Fig. 1. Important infectious disease intervals. The time between a and c is the serial interval; the time between b and c is the incubation period.
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as 1.44 years (95% CI 1.29–1.63 years) for a Dutch sample from
1993–2007. Brooks-Pollock [26] in 2011 analysed cross-sectional
household data for a sample in Lima, Peru from 1996 to 2002 and
reported the time between the diagnosis of the infector and the
infected person as an estimate for the SI with mean at 3.5 years
and the median at 1.65 years.

Reproductive number

Two hundred and thirty-seven articles were identified for the
reproductive number of TB. Additionally, six articles were
included based on reviewing titles and abstracts of the articles
that were referenced in the 237 articles, making the total number

Fig. 2. Flow diagram of articles included in the search of estimates of the serial interval.

Table 1. Estimates of the Serial Interval

Name of first
author
[publication] Objective Method Assumptions

Estimated serial
interval

Leung [22] Study household transmission of
MDR-TB

Data on all MDR-TB in Hong
Kong 1997–2006. Did contact
investigations and DNA
fingerprinting and linked index
to secondary cases

No censoring in this
estimate, not clear how
long people were
followed up for

1.4 (0.4–5.2) years
(median)

Vynnycky [23] Demonstrate how the lifetime
risk of disease, the incubation
period and the serial interval
changed

An age-dependent
compartmental model

Assumed values for
model input parameters
such as the annual risk of
infection

Estimated as
dependent on age of
infection and
summarised as
frequency distributions

ten Asbroek [24] To determine the serial interval
and incubation period of
tuberculosis within 4 years of
transmission

Descriptive approach on RFLP
data (used to link infectors and
infected people)

One source of infection
for each infected cluster

0.57 years (95% CI
0.44–0.73)

Borgdorff [25] Same as [24] Same as [24] NA Median: 1.44 years
(95% CI 1.29–1.63)

Brooks-Pollock
[26]

Estimate the relative
contributions of household and
community transmission, the
serial interval and the immunity
afforded by a previous TB
infection

Descriptive approach for the
serial interval

All members of the study
cohort have been
exposed to TB by living
with someone with
active disease

Mean serial interval: 3.5
years; median serial
interval 1.65 years
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of articles 243. Fifty-six articles met our inclusion criteria and are
described below. Three articles used either approximate Bayesian
or exact likelihood methods, 24 articles used either a mathemat-
ical model fit with empirical data or a descriptive/regression
approach on empirical data, and 29 articles used a simulation-
based mathematical model (Fig. 3). Explicit estimates were
extracted and summarised in Fig. 4. The estimates range from
as low as 0.26 for the Netherlands in 1993–2007 to as high as
4.3 in China in 2012.

Three articles (Table 2) used the same genetic RFLP data from
TB diseased individuals during an outbreak in San Francisco in
1991–1992 [33]. They all estimated the effective reproductive
number in a Bayesian framework. Tanaka et al. [30] used an
approximated computation method to obtain an estimate of 3.4
(95% CI 1.4–79.7). Stadler [31] in 2013 used an exact likelihood
method to obtain an estimate of 1.02 (95% CI 1.01–1.04) and
claimed that the difference from the estimate in [30] was due to
the lack of precision in the approximation of the posterior distri-
bution in [30]. Aandahl et al. [32] in 2014 reconciled the two
methods by specifying an informative prior for two parameters
in [30] and improving the convergence performance of the
Markov chain Monte Carlo (MCMC) sampler in [31]. The

reconciled estimates were: 2.1 (95% CI 1.54–2.66) for the approxi-
mate method in [30] and 2.05 (95% CI 1.55–2.63) for the exact
method in [31]. These papers used the same model but differed
in the methods used to obtain the estimates. The assumptions
of the model are listed in Table 2.

Twenty-four articles analysed the reproductive number with
empirical data (Table 3). Seventeen articles reported explicit esti-
mates, with five estimating the effective reproductive number and
12 estimating the basic reproductive number. The majority of
these articles used mathematical compartmental models with dif-
ferent variations in structure and parameterisation to address
issues such as seasonality [43], the effect of age [46, 51] and
HIV–TB co-epidemics [9].

Two articles [7, 40] used the Wells–Riley model or a modified
version of the model. In these models, the reproductive number
was expressed as a function of infection risk, which was further
expressed as proportionate to environmental factors such as the
number of infectious people in a given space, per-person breath-
ing rate and inversely proportionate to germ-free ventilation rate.
One article derived the reproductive number as a function of the
transmission index – defined as the ratio of the number of sec-
ondary cases to the sum of the number of source cases (infectors)

Fig. 3. Flow diagram of articles included in the search of estimates of the reproductive number.
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and non-clustered cases where clusters are defined as groups of
patients that had isolates with identical fingerprints [27]. The lar-
gest reproductive number (effective) was estimated in [38] using
the Chinese Centre for Disease Control and Prevention (CDC)
data from 2005 to 2012, where the annual reproductive number
ranged between 3.33 and 4.30 for years 2005–2012 in China.
The lowest (effective) reproductive number was estimated at
0.24 (95% CI 0.17–0.31) using RFLP data in San Francisco,
USA from 1991 to 1996 [49]. Vynnycky and Fine [51] in 1998
used an age-structured mathematical model and estimated the
effective reproductive number to be around 1 from 1900 to
1950 in England and Wales; the basic reproductive number was
estimated to have declined from about 3 in 1900 to 2 by 1950,
and first fell below 1 in about 1960. The assumptions of these
models are listed in Table 3.

One article defined the reproductive number as the number of
secondary infections caused by an infectious case [7]. As only a
fraction of the infected people develops active disease, the esti-
mated reproductive number was larger than those in the other
papers. The median of the reproductive number in this article
ranged from 14 to 45 as exposure time increased from 1 to 5
months.

Twenty-nine articles analysed the reproductive number
through simulation based on a mathematical modelling frame-
work (Table 4). These articles all used mathematical compart-
mental models with different variations to address issues such
as reinfection [68], the interaction between HIV and TB [64],
and drug-resistant and drug-sensitive TB [60]. The majority of

them focused on studying the effect of these issues on TB trans-
mission dynamics through simulations that were not based on a
specific population. In this case, parameters for the model were
based on estimates from studies performed in diverse settings
or sampled over a range of feasible values. The analytical expres-
sion of the basic reproductive number was derived to study the
disease-free equilibrium and endemic-persistent state of TB in
these papers. Five articles [10, 60, 64, 73, 76] included
drug-resistant TB cases as a compartment and four articles [58,
68, 72, 75] included HIV + TB cases as a compartment.

Discussion

We found very few publications that reported estimates for the
serial interval of TB. Estimates of the reproductive number were
limited to seven countries, with the majority of the publications
using mathematical compartmental models that did not base esti-
mates on actual data. This indicates a need for a better under-
standing of these crucial parameters of TB transmission, which
can help inform public health decisions in order to reach the
WHO’s End TB goals [4] of reducing TB deaths by 95% and inci-
dent cases by 90% by 2035.

Serial interval

We found only five articles that discussed the estimation of the SI
for TB and presented explicit estimates. ten Asbroek [24] esti-
mated the serial interval over 4 years as a geometric mean of

Fig. 4. Reproductive number from studies with explicit R
estimate from empirical data. Notes: (1) The range is for
years 2005-2012, with the reproductive number esti-
mated at 3.33, 3.72, 3.38, 3.97, 4.29, 3.32, 3.92 and
4.30, respectively. (2) For each location, the first R corre-
sponds to drug-sensitive population and the second cor-
respond to drug-resistant population. (3) R estimated for
35 states and union territories of India with estimates
ranging from 0.72 to 0.98; 0.92 is the overall estimate
for India. (4) For each location, the first R corresponds
to drug-sensitive population and the second correspond
to drug-resistant population. (5) Bordgorff in [27–29]
estimated the reproductive number for the
Netherlands from 1993 to 2007 at around 0.26 with
lower bound of the 95% CI around 0.20 and upper
bound around 0.32. (6) Broken lines indicate range;
solid lines indicate 95% confidence interval. (7)
Vynnycky and Fine [23] in 1998 estimated the basic
reproductive number to decline from about 3 in 1900
to 2 in 1950 and to below 1 in about 1960 for England
and Wales, which is not included in this graph.
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0.57 years (95% CI 0.44–0.73). Using the same method over a
longer study period (15 years compared with 4 years in [24]),
the estimated median was 1.44 years, which is comparable with
the median serial interval of 1.65 years in [26] with a 6-year
study period. This indicates that the study period could poten-
tially bias the serial interval estimates, even though the method
in [24] corrected for the underrepresentation of longer serial
intervals. In contrast with other infectious diseases that progress
much faster and have SIs measured in days, the SI of TB can be
weeks, years and even decades [23]. This unique feature of TB
makes it difficult to obtain an unbiased estimate of the SI as
lengthy follow-up is required to observe the long period between
presence of symptoms of the infector and the infected person.
Additionally, uncertainty regarding the presence and impact of
multiple infection events further complicates the observation of
this interval. Currently, the most common way of monitoring
TB is by looking at annual incidence rates in studies that are
often no longer than 5 years [79, 80]. This creates two issues:
right censoring as symptoms of the infected people can develop
long after the end of studies, and interval censoring as the symp-
tom onset time can fall during long intervals between two
observed time points. Another issue is patients’ and doctors’
delay. Patients may not seek medical assistance immediately
after symptoms develop and diagnosis may require lab-processing
time which causes delay in establishing the diagnosis [24], creat-
ing a left censoring issue. Survival analysis techniques can be con-
sidered to address these issues but may need substantial
modification. Further ambiguity exists due to the inconsistent
availability of genetic typing of strains to link cases, and the fur-
ther uncertainty about how to best link strains when genetic
information is available, as such information may not account
for mutation rate, or infection with multiple bacterial strains.

Reproductive number

The majority of the articles used mathematical compartmental
models (a brief introduction can be found in the appendix) to

describe the transmission dynamics of TB. These models have
been widely used to understand the dynamics of infectious dis-
eases including SARS, influenza and TB, and they either use
empirical data to estimate the parameters in the model or are
based on simulation.

The compartmental models using empirical data are distin-
guished from simulation-based models in two key ways. First,
empirical models use data to estimate some of the model para-
meters, while others are taken directly from the literature or
assumed. Simulation-based models do not use empirical data to
parameterise the models. For example, in [42] where empirical
data was used, the mortality rate due to drug susceptible TB
was estimated from Taiwanese Centre of Disease Control data
and the effective contact rate for TB was estimated based on the
literature; in [41] where simulation was used, the recruitment
rate was taken from the literature and awareness rate of TB was
estimated from data.

A second distinction between models based on empirical data
and simulation-based models is that the former often report expli-
cit estimates of the reproductive number for a specific region,
while the latter usually focus on studying the impact of a certain
feature on TB transmission dynamics. For example, in [37] where
empirical data were used, the reproductive number was reported
for India overall and by regions; in [60] where a simulation-based
approach was used, the impact of drug-sensitive and drug-
susceptible strains mixed together on TB transmission dynamics
was studied.

In developed countries, the reproductive number was some-
times estimated to be well below 1: for example, 0.55 in the
USA from 1930 to 1995 [52] and 0.26 in the Netherlands from
1993 to 1995 [27]. In developing countries, the reproductive num-
ber was as high as 4.3 in China in 2012 [38] and 3.55 in Southern
India from 2004 to 2006. In the Netherlands, the reproductive
number has been consistently estimated at well below one, ran-
ging from 0.24 [49] to 0.48 [39].

The same dataset in San Francisco, USA in 1991–1992 (pub-
lished in 1994) was used to estimate the effective reproductive

Table 2. Estimates of the reproduction number using approximate Bayesian computation and exact likelihood methods (all methods used data from San Francisco
on cases reported in 1994)

Name of first
author
[publication] Objective Method Assumptions

Estimated
reproductive
number (95%

credible interval)

Tanaka [30] Estimate TB transmission
parameters: net
transmission rate, doubling
time and reproductive
number

Approximate Bayesian
computation

Constant supply of susceptible
people; all genotypes are selectively
neutral; mutation and transmission
are independent; infinite alleles;
epidemic spreads until N individuals
are infected

3.4 (1.4–79.7)

Stadler [31] Estimate TB transmission
parameters: net
transmission rate and
reproductive number

Exact likelihood Constant birth-death rate; infinite
alleles; epidemic started at a random
time in the past; an isolate is
sampled from an individual with
probability P

1.02 (1.01–1.04)

Aandahl [32] Reconcile the different
estimates in [30, 31]

Improved the method in [30] by
specifying informative priors;
improved convergence
performance of the MCMC
sampler in [31]

Fixed mutation rate; used Gaussian
prior for the death/recovery rate

1) 2.1 (1.54–2.66) in
[30]

2) 2.05 (1.55–2.63)
in [31]
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Table 3. Estimates of the reproductive number from mathematical models with empirical data

Name of first author
[publication]

Location, time of
data Type of data Objective Methods Assumptions

Reproductive
number type

Estimated
reproductive
number

Zhao [34] China, 2005–2016 CDC data To investigate the
impact of age on
TB transmission

SEIR model with age
structure; use least
squares to get
parameters that align
with TB data in China;
use Latin hypercube
sampling to get CI

Although the susceptible
compartment was stratified
by age, the other
compartments were not
age-stratified thus assuming
no difference in age for those
compartments

Basic 1.786 (95% CI
1.775–1.796)

Liu [35] China, 2004–2014 Annual TB case
data

To use modelling
to investigate the
impact of different
vaccination
strategies
(constant or pulse
BCG) on TB
transmission

Compartmental models
with vaccination
compartments

Assumptions made for all
parameter values

Basic 1.19

Yang [36] Shaanxi, China,
2004–2012

Notifiable
active TB cases
by month

Study the
seasonality impact
on TB
transmission
dynamics

A seasonality TB
compartmental model:
subjects either entered
latent or diseased
compartment; contact
rate, reactivation rate
and disease-induced
death rate are periodic
continuous functions

Parameter values for
recruitment rate, natural
death rate, recovery rate

Basic Dependent on
parameter values

Nebenzahl-Guimaraes
[28]

The Netherlands,
1993–2011

Surveillance
and RFLP data

Determine if
mycobacterial
lineages affect
infection risk,
clustering and
disease
progression
among
Mycobacterium
tuberculosis cases

Descriptive and
regression approach;
DNA fingerprinting to
link cases

All secondary cases captured
in surveillance data; genetic
matching accurately reflects
transmission patterns

Effective Range: 0.17–1.04

Narula [37] India, 2006–2011 Quarterly
reported data
from Central TB
Division

Estimate basic R0
for TB

Compartmental model
with Bayesian melding
technique to estimate
parameters;
Susceptible, latent,
infected compartments
instead of SIR

Some parameter values
assumed with reference in
the differential equations

Basic 0.92, averaged for
India overall with
range 0.72–0.98

Zhang [38] China, 2005–2012 Monthly case
reporting data
from CDC

Estimate effective
R0 of TB by year

Compartmental model
adding hospitalised
compartment;
Chi-square test for
optimal parameters

An upper bound for number
of initially susceptible
people, natural death rate,
initial number of latent
individuals

Effective Range from 3.318
to 4.302 from year
2005 to 2012

1484
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Ypma [39] The Netherlands,
1993–2007

RFLP data Explore the high
heterogeneity in
the number of
secondary cases
caused per
infectious
individual for TB

Model ‘superspreading’
parameter as a negative
binomial distribution

Immigrants who have been
in the country for less than 6
months at diagnosis are
index cases themselves

Fingerprint
reproductive
number as a
function of the
effective
reproductive
number and the
probability that
the fingerprint of
the infected
person is different
than its infector

0.48 (95% CI 0.44–
0.59)

Andrews [40] Cape Town, South
Africa, 2011

Carbon dioxide
data, public
transit usage
data from
national survey

Estimate risk of TB
transmission on 3
modes of public
transit

Modified Wells-Riley
model for airborne
disease transmission

Duration of infectiousness of
1 year; used TB and HIV
parameters from studies in
the same area; natural
history parameters from the
literature

Basic Dependent on
duration of
infectiousness
and frequency of
transit usage

Okuonghae [41] Benin city,
Nigeria, 2008

Survey data Assess how control
strategies on
addressing TB
transmission
parameters can
minimise
incidence

Compartmental model
adding compartments
of disease awareness
level, identified
infectiousness

Model parameter values such
as recruitment rate, recovery
rate from the literature

Basic, under
treatment

Dependent on
parameter values

Liao [42] Taiwan, 2005–
2010

Monthly data
from CDC

Estimate MDR-TB
infection risk

Mathematical
probabilistic two-strain
model with
compartments for
drug-sensitive and
drug-resistant subjects;
dose–response model
for relationship
between R0 and total
proportion of infected
population

Some model parameter
values from data, some from
the literature; assumed 0.99
of people latently infected
were drug sensitive and 0.01
were drug resistant

Basic Hwalien County:
0.89 (95% CI 0.23–
2.17) for drug
sensitive; 0.38
(95% CI 0.05–1.30)
for multi-drug
resistant;
Taitung County:
0.94 (95% CI 0.24–
2.28) for drug
sensitive; 0.38
(95% CI 0.05–1.33)
for multi-drug
resistant;
Pingtung County:
0.85 (95% CI 0.21–
2.08) for drug
sensitive; 0.34
(95% CI 0.04–1.13)
for multi-drug
resistant;
Taipei City: 0.84
(95% CI 0.21–2.00)
for drug sensitive;
0.30 (95% CI 0.04–
0.97) for
multi-drug
resistant;

(Continued )
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Table 3. (Continued.)

Name of first author
[publication]

Location, time of
data Type of data Objective Methods Assumptions

Reproductive
number type

Estimated
reproductive
number

Liao [43] Taiwan, 2004–
2008; selected
three areas with
the highest
incidence, one
with the lowest
incidence

Monthly
disease burden
TB data from
Taiwan CDC

Examine TB
population
dynamics and
assess potential
infection risk

Compartmental model
with susceptible,
latently infected,
infectious,
non-infectious and
recovered
compartments;
incorporated
reactivation, relapse
and reinfection

Some parameter values
taken from the literature,
some estimated from data

Basic, estimated
as sum of fast,
slow and relapse

Highest R0 total in
Hwalien: 1.65 with
95th percentile
range 0.45–6.45;
Taipei lowest at
1.5 (0.45–4.98);
Taitung: 1.72;
Pingtung: 1.65

Liu [44] China, 2000–2008 Data from the
National
Bureau of
Statistics

Incorporate
migration to study
TB transmission

SEIR compartments for
rural residents, migrant
workers and urban
population

Model parameters calculated
from website data; migration
rates

Basic No explicit
estimate

Borgdorff [29] The Netherlands,
1993–2007

RFLP data Determine to what
extent tuberculosis
trends in the
Netherlands
depend on secular
trend, immigration
and recent
transmission

DNA fingerprinting to
link cases

All secondary cases captured
in surveillance data; genetic
matching accurately reflects
transmission patterns

Basic 0.24 (95% CI 0.21–
0.26)

Liu [45] China, Jan, 2005–
Dec, 2008

Monthly
notification
data from
Ministry of
Health

Develop a model
incorporating
seasonality and
define basic
reproduction ratio

Used periodic infection
rate and reactivation
rate to incorporate
seasonality in the
compartmental model;
considered fast and
slow progression

Parameters such as
recruitment rate, natural
death rate were assumed to
be constants; some
parameter values assumed
and some taken from the
literature

Basic Dependent on
parameter values
with range 0.4–2.6

Brooks-Pollock [46] Ukraine, 1959 and
2006

Mortality data Explore the effect
of age structure on
TB infection and
disease
prevalence, basic
reproductive
number and
impact of
intervention

Basic SEIR
mathematical model
with assumptions about
survivorship

A survivorship function
which could be described in
terms of age and life
expectancy

Basic Dependent on
progression rate
with range 0–0.85

Basu [47] KwaZulu-Natal,
South Africa

Extensively
drug-resistant
TB data
(XDR-TB)

Model XDR-TB
transmission
dynamics

Model XDR-TB
incorporating the
existing XDR detection
rate and treatment
system

Even mixing of air; range of
key parameters in the model

Effective 1.97, range 0.7–
4.6; 1.23, range
0.4–3.1 when
combining
screening and
therapy; 1.38,
range 0.6–3.3 with
South African
strategic plan
alone.
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Furuya [7] Japan, 2000–2005 Exposure data Quantify the risk of
TB infection in an
internet café
where people
without homes
stayed overnight

Wells-Riley model to
estimate the
reproductive number

Patients stayed in a confined
space for 150 days; some
values in the Wells-Riley
equation assumed, others
from the literature

Estimated as a
function of
exposure period

Dependent on
exposure period

Long [9] Southern India,
2004–2006

HIV-TB
co-epidemics
data

Model HIV-TB
co-epidemics and
explore
hypothetical
treatment effect

First model:
susceptibility to either
or both diseases
compartments; second
model: SII*SEI

A linear relationship between
treatment levels and the
associated parameters;
model parameters from the
literature

Basic R = 3.55 when no
active treatment
for TB

Borgdorff [48] The Netherlands,
1995–2002

RFLP data Assess progress
towards TB
elimination

DNA fingerprinting to
link cases; survival
analysis

All secondary cases captured
in surveillance data; genetic
matching accurately reflects
transmission patterns

Basic Dutch index
cases: 0.23,
non-Dutch index
cases: 0.25

Borgdorff [49] San Francisco,
USA, 1991–1996

RFLP data Determine
tuberculosis
transmission
dynamics in
San Francisco and
its association
with country of
birth and ethnicity

Define effective
reproductive number as
a function of
transmission index,
which is a function of
number of secondary
cases and potential
source cases in a given
subgroup

Each cluster originates from
a single source case in the
database; either the first
case of a cluster was its
source case, or that the
probability of being a source
case declined exponentially
over time by 0.77% per day

Effective, recent
transmission

0.24 (95% CI 0.17–
0.31)

Davidow [50] New York City,
1989–1993

TB and AIDS
surveillance
data

Evaluate the
importance of
recent
M. tuberculosis
transmission

Estimated # of TB
infectious cases 1 year
ago and computed
short-term R0; R0 = the
average # of new
infections caused by
each case per year of
infectiousness*the
average duration of
infectiousness*the
probability of
progressing to active TB
within 1 year after
infection

Some clinical assumptions;
parameter values in equation
taken from the literature or
calculated from
neighbourhood-specific data

Short-term No explicit
estimates;
focused on
percentage of TB
cases due to
infection 1 year
ago

Vynnycky [51] England and
Wales, 1900

Surveillance
data; age and
time-specific
mortality rates

Describe
transmission
dynamics of all
forms of
pulmonary TB

Age-structured
mathematical model
with compartments for
endogenous and
exogenous diseases

General relationship
between: first primary
episode and age at infection,
risk of exogenous disease
and age at reinfection,
endogenous disease and
current age; risk of
reinfection and first infection
are identical; parameter
values from the literature

Basic and net
which is the same
as effective

Net R at about 1
from 1900–1950;
basic R0 declined
from about 3 in
1900, reached 2
by 1950, and first
fell below 1 in
about 1960

(Continued )
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number in two separate studies [30, 31] that yielded disparate
results. The estimates from these two papers were reconciled in
[32] to an estimated effective reproductive number of approxi-
mately 2.1 by specifying an informative prior for two parameters
in [30] and improving the convergence performance of the
MCMC sampler in [31]. One can contrast this estimate with
other estimates for the USA to see the range of values obtained.
A study of the entire USA in [52] estimated the reproductive num-
ber to be 0.55 using case rates of active TB in USA from 1955 to
1994. As shown in [81], TB incidence in San Francisco peaked
between 1991 and 1993, due to the TB/HIV co-epidemic, which
is consistent with the higher estimated reproductive number
(around 2.1) in [30–32]. When using TB case rates in the entire
USA from 1955 to 1994 as in [52], the potential geographical
and temporal heterogeneity in the estimates is not well represented,
resulting in an estimated reproductive number of 0.55. We would
expect a lower reproductive number, and in particular, a reproduct-
ive number below one, when using data from 1955 to 1994 because
by 1955, effective antibiotics were in use and BCG had also been
developed, both leading to a reduction in TB incidence across the
USA. In addition, Borgdorff [49] reported an effective reproductive
number of 0.24 using RFLP data in San Francisco from 1991 to
1996. In this paper, the ratio of secondary cases and source cases
was used to estimate the reproductive number, which may be an
oversimplified estimator of the reproductive number. Issues such
as linking the secondary cases and the sources cases have not
been addressed. These divergent results indicate the need for the
use of whole genome sequencing (WGS), which can be used to
effectively link source and secondary cases.

Similar to the more statistical analysis of the San Francisco and
the entire USA data, we observe that mathematical models lead to
inconsistent results, at least partially attributable to the varying
assumptions they make in their structure and parameterisation.
For example, even though both [38] and [42] used mathematical
compartmental models with different variations for similar regions
(China and Taiwan), they have quite different estimates: between 3.3
and 4.3 in China from 2005 to 2012 as compared with 0.9 for drug-
sensitive TB, around 0.38 for multidrug-resistant TB (defined as a
TB strain resistant to at least isoniazid and rifampicin) in Taiwan
from 2005 to 2010. Both articles used incidence data from
Chinese and Taiwanese CDC but formulated the compartments
in the models differently. In [38], compartments ‘exposed’, ‘infec-
tious and hospitalised’ and ‘infectious but not hospitalised’ were
included; in [42], compartments ‘latent’, ‘infected’ were used for
two sub-populations: drug-sensitive and multidrug-resistant. The
model parameters were also differently specified: in [38], some para-
meters were assumed while others were estimated using minimum
sum of square; in [42], some parameters were given a probabilistic
distribution and estimated with a root-mean-squared error method
while others were assumed. The difference between the estimated
reproductive numbers produced from these two modelling exercises
is striking, as the two regions and populations are quite comparable
in terms of demographics, economic status and access to healthcare.
One could similarly contrast the modelling approaches and esti-
mates obtained in [34] and [43], two other studies from China
and Taiwan from similar time periods that produced different esti-
mates. The differing model structures, as well as the parameter esti-
mates, including the recruitment rate, incidence rate, and mortality
rate, likely drive these observed differences. It is difficult to say
which model might be a more accurate reflection of reality.

The example above illustrates the challenges of interpreting
and using mathematical models for estimation of the reproductiveTa
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Table 4. Estimates of the reproductive number from mathematical models based on simulation

Name of first
author
[publication] Objective Methods, setting Assumptions

Basic or effective
R0 Estimated R0

Ren [53] Develop SEIR model
for imperfect
treatment with
age-dependent
latency and relapse

SEIR model TB infectious in latent
period;
age-dependence

Basic Dependent on
parameters

Jabbari [54] To set up a model
that can examine
two TB strains (DS
and DR) with
multiple latent
stages

Mathematical
compartmental model
with compartments for
latency stages

The drug-sensitive
strain will not play a
role in the process of
exogenous reinfection
for the drug-resistant
strain

Basic Dependent on
parameters

Okuonghae [55] Study the effects of
additional
heterogeneities from
the level of TB
awareness on TB
transmission
dynamics and case
detection rate

Expanding [34] by dividing
both susceptible and
latently infected
compartment by level of
TB awareness

Reasonable values and
bounds for parameters
such as transmission
rate, recovery rate
from the literature

Effective Dependent on
parameters such as
active case finding
rate and treatment
rate

Liu [56] Evaluate effect of
treatment for TB

Compartmental model
with treatment and two
latent periods
incorporated

Once the treatment of
active TB cases is
interrupted, there is
no more treatment;
specified model
parameter values and
their relationship with
one another

Basic Dependent on
transmission
coefficients

Silva [57] Study optimal
strategies for the
controlling active TB
infectious and
persistent latent
individuals

Compartmental model
considering reinfection
and post-exposure
interventions with the
addition of early latent
and persistent latent
compartments

Parameter values
taken from the
literature

Basic Dependent on
transmission
coefficient

Hu [58] Study the threshold
dynamics of TB

Compartmental model
with periodic functions for
reactivation rate and
infection rate; include
additional compartment
for treated people that do
not return to the hospital
for examination

NA Basic Dependent on
transmission
coefficient

Emvudu [59] Address the problem
of optimal control
for TB transmission
dynamics

Compartmental model
with an additional
compartment for loss to
follow-up

Half of the parameter
values were assumed;
others taken from the
Cameroon literature

Basic Dependent on
parameters such as
transmission rate

Sergeev [60] How drug-sensitive
and drug-resistant
strains mixed
together can
impacts long-term
TB dynamics

Compartmental with the
three compartments for
both latent and infected:
drug-resistant,
drug-sensitive and mixed
strains

Reasonable values for
many parameters; few
data exist to inform
model parameters

Basic; estimated
for drug-resistant,
drug-sensitive
and mixed strains

Dependent on model
parameters

Roeger [61] Model TB and HIV
co-infection

Compartmental model for
joint dynamics of TB and
HIV and compute
independent reproductive
numbers for the two
diseases

Probability of infection
is the same for those
treated with TB and
those susceptible;
assumed relationship
among model
parameters

Overall R0 as the
max of R0 for TB
and HIV

Dependent on model
parameters

Gerberry [62] Study the trade-off
between BCG and

Compartmental model
with additional
compartments for latently

Throughout the
duration of the
vaccine’s efficacy,

Basic Dependent on model
parameters

(Continued )
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Table 4. (Continued.)

Name of first
author
[publication] Objective Methods, setting Assumptions

Basic or effective
R0 Estimated R0

detection, treatment
of TB

infected and unvaccinated,
latently infected and
vaccinated; establish
thresholds for basic R0

latent TB completely
undetectable

Bhunu [63] Model HIV/AIDS and
TB coinfection

Compartmental model for
TB, HIV separately without
intervention; full model
with intervention

Parameter values from
Central Statistics
Office of Zimbabwe
and literature;
relationship amongst
parameters in the
model

Basic Dependent on model
parameters

Bhunu [8] Model the effect of
pre-exposure and
post-exposure
vaccines

Compartmental model
with additional
compartments for
susceptible (vaccinated or
not) and latent (history of
vaccine or not)

Homogeneous mixing;
recovered people
would not develop
disease from
reinfection, but could
be re-infected;
parameter values
taken from Central
Statistics Office and
literature

Basic Dependent on model
parameters

Sharomi [64] Address the
interaction between
HIV and TB

TB-only, HIV-only and full
model analysed with both
susceptible and latent
compartments divided
according to TB and HIV
status

Dually infected people
could not transmit
both diseases; some
parameters taken from
the literature, others
assumed

Basic Dependent on model
parameters

McCluskey [65] Address global
stability of high
dimensional TB
model

Use Lyapunov function to
demonstrate the stability
of the endemic equilibria
in mathematical models
for TB: SEIR, SEIS and SIR;
fast and slow progression
incorporated

Basic No explicit estimate

Martcheva [66] Address the issue of
an infected person
being subject to
further contacts with
infectious
individuals—‘super
infection’

Subdivide the latent stage
into one where the disease
progresses and one where
the disease development
is on hold

Relationship among
model parameters

Basic No explicit estimate

Aparicio [67] Express basic R0 as a
function of cluster
size

Divide individuals into
either active clusters or
otherwise

Homogeneous mixing Basic No explicit estimate;
expressed as a
function of
household size

Feng [68] Examine how
exogenous
reinfection changes
the TB transmission
dynamics

Include additional
parameters in the
mathematical model to
model exogenous
reinfection

Constant per capita
removal rate to focus
on the role of
reinfection

Basic No explicit estimate;
analytical expression

Beatriz [69] Assess the effects of
heterogeneous
infectivity

Divide infective period into
k stages

Homogenous mixing;
bilinear incidence rate

Basic No explicit estimate;
analytical expression

Castillo-Chavez
[70]

Use an age-structure
model to study the
dynamics of TB

Use age-specific
parameters in the
compartmental model;
transmission dynamics
studied for with and
without vaccine

Mixing between
individuals is
proportional to their
age-dependent activity
level; disease-induced
death rate neglected

Net and basic No explicit estimate;
analytical expression

Lietman [71] Test the hypothesis
that exposure to TB

Cross-immunity is
symmetric: same

Basic

(Continued )
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number. However, most estimates to date make use of this
approach. One shortcoming of these models is that they require
assumptions about parameter values that may be difficult to esti-
mate, such as the transmission rate, the treatment rate and the
recovery rate, which are often unobservable and not reliably

estimated. As a result, most of the articles assume values for the
parameters in the model based on evidence in the published
literature, where it exists, sometimes without measures of uncer-
tainty (e.g. standard errors). Model structure also varies substan-
tially from study to study, with no generally agreed upon

Table 4. (Continued.)

Name of first
author
[publication] Objective Methods, setting Assumptions

Basic or effective
R0 Estimated R0

leads to
disappearance of
leprosy

Add in leprosy
compartment in the
mathematical model

immunity for TB and
leprosy

Dependent on R0 of
leprosy and
cross-protection rate

Sanchez [72] Evaluate the effects
of parameter
estimation
uncertainty on the
value of R0

Latin hypercube sampling
used on parameters in the
compartmental model in
Blower [72] to evaluate
uncertainty of R0

Range for parameters
in the compartmental
model

Sum of R0 for
fast, slow and
relapse

Dependent on
parameters in the
model

Gumel [10] Study the
transmission
dynamics of TB with
multiple strains, in
the presence of
exogenous
reinfection

Included drug-sensitive
and resistant strains in the
compartmental model;
exogenous reinfection
incorporated

Homogenous mixing Effective R0 for
the two strains

Dependent on
parameters in the
model

Singer [73] Study the impact of
different reinfection
levels of latently
infected individuals
on TB transmission
dynamics

Compartmental model for
heterogeneous
population: one group
more susceptible to
infection than the other

Parameter range
uniformly distributed
according to previous
papers

Basic No explicit estimate

Trauer [74] Model TB
transmission for
highly endemic
regions of the
Asia-Pacific where
HIV-coinfection is
low

Compartmental models
with compartments for
immunisation, latency,
reinfection,
drug-resistance, etc.

Parameters fixed
values according to
papers and WHO

Basic Dependent on
parameters;
computed as 8.34 for
drug-susceptible and
5.84 for drug
resistant at baseline

Dye [75] To establish criteria
for MDR-TB control

Compartmental models
with compartments for
drug-susceptible,
drug-resistant, treatment
failure, etc.

Parameters calculated
from different
populations

Basic Dependent on
parameters; best
estimated of the
model parameters
yielded R0 = 1.6 (95%
CI 1.02–2.67)

Blower [76] Track the emergence
and evolution of
multiple strains of
drug-resistant TB

Non-compartmental
mathematical model

NA Basic Dependent on drug
susceptibility of TB

Blower [77] Model the
transmission
dynamics of TB

Compartmental models
with latently infected,
infectious, non-infectious,
recovered compartments

Some model
parameters assumed;
some taken from
references

Basic; defined as
the sum of slow
progression,
recent
transmission and
relapse

Median of 4.47,
range: 0.74–18.58

Blower [78] Understand, predict
and control TB

Compartmental models
with drug-sensitive and
drug-resistant
compartments

NA Basic Dependent on model
parameters

Aparicio [67] Evaluate
homogeneous
mixing and
heterogeneous
mixing models for
TB

Three types of
compartmental models: a
standard incidence
homogenous mixing
mode; a heterogeneous
mixing model; an
age-structured model

Assumptions on model
parameters

Basic Dependent on model
parameters
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approach to model TB and estimate parameters. For example, in
[35], compartments of different vaccine strategies were included
in the model and in [38], a compartment of hospitalisation was
included in the model. These models also often require assump-
tions about the parameters used to run the models, which are
likely to differ by country and time period. Sometimes sufficient
data are unavailable to parameterise a model and generalisations
need to be made that may not always be appropriate. The majority
of the existing publications use mathematical compartmental
models, which are not often ideal for statistical inference and esti-
mation due to strong assumptions for the model structure and
parameters used to run the models. While these models have
the flexibility of using different compartments to evaluate the
impact of policies, they are not ideal for real-time analysis
where the appropriate model structure and parameter values
required fitting the model may not be clear. The complexity of
the natural history of TB and important factors such as HIV
and drug resistance complicate these models and require add-
itional parameters for which the data are sometimes not available.
We believe that it is important to develop, as a complementary
approach to compartmental models, likelihood-based data-driven
analytic tools. Ideally, these estimators can be used with datasets
using minimal assumptions. In addition, as WGS data become
more ubiquitous [82], it will be important to develop methods
that use these data to estimate the reproductive number (Fig. 5).

This review found that the reproductive number estimates for
TB are very divergent – in reality, we would expect different
results in different parts of the world, reflecting diversity in TB
epidemics geographically. Therefore, it is important to have esti-
mates from a wide range of settings. An ultimate goal of methods
to estimate the reproductive number should be to use routinely
collected data (including potentially WGS data) to be able to
monitor the reproductive number in ‘real-time’ and evaluate
interventions through this process.

Our review is subject to a number of limitations. It is possible
that some useful papers could have been excluded due to our

selection of search terms and our inclusion of reports in only
English. These limitations are difficult to avoid in systematic
reviews, in which the potential for increased yield from a wider
search must be weighed against the increased feasibility of a tigh-
ter search. Additionally, our query was limited to searching in
abstracts and titles, making it possible that we excluded articles
where the keywords only appear in the text [25].

In conclusion, a limited number of studies have yielded explicit
estimates for the serial interval and reproductive number of TB.
When estimating the serial interval, it is difficult to observe the
symptom onset of the infector and infected person with precision.
Estimates of the reproductive number were limited geographically
(Fig. 6) with estimates only available for seven countries. Settings
with high TB burdens, especially high drug-resistant TB burdens
such as the former Soviet Union [83] are not included in these
papers. In addition, there was only one estimate from a high TB
and high HIV burden country [47]. The lack of estimates could
be because incidence and mortality rates are currently used to moni-
tor TB control. These rates are not suitable for monitoring transmis-
sion; reductions in mortality could be attributed to improvements in
treatment outcomes rather than any change in transmission and,
due to the long incubation period of TB, changes in transmission
could take years to impact incidence rates. In contrast, the repro-
ductive number can provide a direct estimate of TB transmission

Fig. 5. Shaded areas and stars indicate countries and cities with reproductive number estimates. Multiple estimates: China, Taiwan, USA, India; one estimate:
Ukraine, the Netherlands, South Africa, the UK. *indicates San Francisco corresponding to data used in [30–32].

Fig. 6. Examples of mathematical compartmental models.
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itself. Most studies used mathematical models with various assumed
model structures and parameters, making it difficult to compare the
estimates and draw useful conclusions about the TB transmission
dynamics by evaluating the reproductive number.

The WHO End TB goals [4] include reducing TB deaths by
95% and incident cases by 90% by 2035. To achieve these goals,
it is necessary to obtain improved estimates of the reproductive
number and the SI as they can be used for monitoring and evalu-
ating the effect of interventions on TB transmission. For example,
the serial interval of TB can be used to determine how long one
must monitor contacts of an infectious TB case to see if they will
develop symptoms [84]. The effective reproductive number can be
used to monitor the efficacy of interventions in reducing trans-
mission. As interventions decrease transmission, estimates of
the reproductive number should correspondingly decrease [41];
in particular, if the reproductive number can be maintained
below one, the disease can potentially be eliminated.

The limited number of articles that we found and the lack of
geographic representation, demonstrate a substantial gap in our
understanding of these crucial parameters of TB transmission
in diverse settings.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818001760
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