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Abstract

Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute
substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar
elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is
defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent
mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and
specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest
that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged
much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a

universal class of mobile genetic elements.

Introduction

The Staphylococcus aureus pathogenicity islands (SaPlIs)
are a novel class of phage satellites that are intimately
related to certain temperate (helper) phages, of whose life
cycles they parasitize. Following infection by a helper
phage or SOS induction of a helper prophage, the SaPI
genome excises from the bacterial chromosome, using
SaPI-encoded integrases (int) and excision functions (xis)
[1, 2], replicates extensively using its own replicon [3], and
is efficiently packaged into infectious particles composed of
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phage virion proteins [4-6]. Some SaPIs encode capsid
morphogenesis functions that remodel the phage capsid to
only fit their smaller genomes [7, 8]; others simply use full-
size phage capsids (for a recent review, see [9]). The hall-
mark of this parasitism is a key SaPI regulatory gene that
diverts the phage reproduction cycle to its own end. This
gene encodes a master repressor (Stl) that governs expres-
sion of the SaPI genome [10]. Unlike the classical phage
repressor, the SaPI Stl repressor is not cleaved following
activation of the SOS response; rather the repression is
lifted by the formation of a complex between the repressor
and a specific helper phage protein [11-13]. This serves to
couple the SaPlI life cycle with that of the helper phage,
ensuring that the SaPI is not activated unless the repro-
ductive cycle of a helper phage is in progress. Once
induced, different SaPIs use different strategies to initiate
specific packaging from the cognate SaPI genome [7, 14],
ensuring their high intra- and inter-generic transfer [15-17].
Moreover, SaPIs have a huge impact on the biology of their
helper phages by interfering with phage reproduction using
different and complementary strategies [18-20]; they are
also key elements driving phage evolution [21].

Not surprisingly, SaPI-like elements are not unique to
staphylococci, and we have recently demonstrated that they
are widespread in Gram-positive (GP) cocci [22]. This new
family of mobile genetic elements (MGEs), that we have
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called generically phage-inducible chromosomal islands
(PICISs), has very well conserved features [9, 23]. All PICIs
have a conserved gene organization (Fig. 1), and encode a
pair of divergent regulatory genes, including the PICI master
repressor Rpr (called Stl in the SaPIs). Left of rpr, and
transcribed in the same direction, PICIs encode a small set of
genes including an integrase (inf) gene. Right of rpr, and
transcribed in the opposite direction, the PICIs encode an
excision function (xis), and a replication module consisting
of a primase homolog (pri) and a replication initiator (rep),
which are sometimes fused, followed by a replication origin
(ori). Next to these genes, and also transcribed in the same
direction, PICIs encode genes involved in phage inter-
ference, and sometimes, a terminase small subunit homolog
(terS) which is responsible for the high efficiency of the
SaPI packaging [7]. In the SaPIs, accessory genes (usually
involved in virulence; [9]) can be found either at the 3’ end
of the elements or between the inf and stl genes (Fig. 1).

In addition to this well-conserved gene organization, the
GP PICIs have other common features that distinguish them
from their cousin prophages: (i) unique attachment (att)
sites that are never occupied by prophages; (ii) the absence
of phage structural and lytic genes; (iii) size typically
around 15 kb; (iv) sophisticated strategies to interfere with
helper phage reproduction and (v) genes unique to PICIs.
Orthology analyses show that PICI genes belong to large
sets of orthologs, within which the first 8-10 are almost
always PICI genes, most of which never appear in other
genetic elements [22, 24].

The preliminary analysis of the PICIs present in the GP
cocci suggested that these elements could have evolved de
novo in the different genera [22], suggesting their existence
is strongly selected in nature. Therefore, and as happens
with the classical MGEs, we hypothesized that these ele-
ments are likely not just confined to the GP cocci but
widespread in nature. We now report the identification and
characterization of a large number of PICI elements in
various Gram-negative (GN) bacteria. Because they have
certain key features in common and because they are so
widespread, we suggest that their lifestyle may have strong
selective value and that they represent a novel agency of
horizontal dissemination of virulence and other important
mobile genes among bacteria.

Results

Identification of PICI candidates

Since PIClIs are a successful biological strategy in GP cocci,
we hypothesized that similar elements will be widespread in

GN bacteria. Using the aforementioned criteria defining the
PICI elements in the cocci (see material and methods for

more details), we have assembled a representative collection
of putative PICIs in the GN bacteria by genome searching;
their genomes and characteristics are depicted in Fig. 1 and
S1, and in Table S1. Following the nomenclature proposed
for the elements present in the GP bacteria, the individual
PICIs are designated with reference to their species — thus,
EcCIn or PmCIn would be used for PICIs of Escherichia

coli or Pasteurella multocida, respectively, where “n
would be used for the specific PICI-containing strain.

Features of PICI candidates

The putative PICIs described here have a number of features
in common. (i) Occurrence: they are very common among
GN bacteria, especially in members of the Enterobacteriaeae
and Pastuerellaceae (Gammaproteobacteria) (Table S1). (ii)
Exclusivity: the KEGG orthology analyses confirmed that the
GN PICI-encoded genes are PICI specific, not being present
in other families of MGEs (Tables S2-S4). These analyses
were performed using three unrelated PICI elements, two
from E. coli, EcCICFT073 and EcCIO42, and one from P.
multocida, PmCIATCC43137, as representatives of the GN
PICIs. (iii) Integration: in each analyzed species, the PICI attc
sites are never used by temperate prophages (Fig. S2,
Table S1). (iv) Transcriptional organization: contrary to the
PICIs from the GP bacteria, the PICIs in the GN species are
transcribed unidirectionally and rightward, unlike the vast
majority of temperate phages but similar to a few (for
example, phages Mu or Spl8, in E. coli O157 Sakai [25]).
This organizational differentiation suggests that the elements
from GN and GP bacteria comprise at least two different
lineages. (v) Replication origins: The region immediately 3’ to
the replication initiation gene in the GP PICIs represents the
replication origin [3]. Examination of this region for several
of the PICIs from the GN organisms reveals an organization
and functionality identical to that of the GP PICIs (Fig. 2a).
(vi) Capsid morphogenesis: some of the elements encode
homologs of the PICI capsid morphogenesis genes (Fig. 1).
(vii) Interference: The two PICIs analyzed in detail show
interference mechanisms similar to those previously identified
in the SaPIs and in other PICI elements from Gram-positive
bacteria, representing a fascinating example of convergent
evolution (see below). (viii) Accessory genes: Many of the
putative PICIs carry identifiable genes that do not appear to be
involved in the PICI lifecycle. These accessory genes are
carried exclusively by the PICIs. As noted, some are known
to be involved in virulence.

Induction and transfer
GP PICI DNA is packaged in particles composed of phage
virion proteins [5, 6]. While some GP PICIs express a small

terminase subunit (TerS) homolog [7], others are highly
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Fig. 1 Genome maps for PICIs. Genomes are aligned according to
the prophage convention, with the integrase gene (inf) at the
left end. Genes are colored according to their sequence and
function: int is yellow; transcription regulator (st/ or rpr (GP), and
alpA or merR (GN)) is dark blue; replication genes are purple;
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encapsidation genes are green, with the terminase small subunit
gene (ferS) in light green; superantigen and other virulence genes
are pink; genes encoding putative phage resistance proteins are black;
other accessory genes are red; genes encoding hypothetical proteins
are white
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Fig. 2 Characterization of GN PICI replication origins. a Comparative
map of the replication origins of several E. coli PICIs. The iterons are
represented by arrows, and their sequences are shown at left. Note that
there are always two sets of iterons flanking an AT rich region, which
could be the melting site. b Testing ECCICFT073 pri-rep-ori function.
pKO3Blue derivative plasmids pri-ori, pri-Aori or Apri-ori were tested
for maintenance in DH5a on selective agar at the permissive (30 °C) or
restrictive (44 °C) temperature. A One-way ANOVA with Tukey’s
multiple comparisons test was performed to compare mean differences
within rows. Adjusted p values were as follows: pri-ori 44 °C vs pri-
Aori 44°C <0.0001™, pri-ori 44 °C vs Apri-ori 44 °C <0.00017""

packaged because they carry the phage pac or cos sequence
[14, 22]. Some GP PICIs direct the formation of capsids 1/3
the size of the helper phage capsid, using different strategies
[7, 8, 22, 26, 27]. Some, but not all, of the newly identified
PICIs also contain a ferS homolog (shown in light green);
we have to date identified both the helper phages and the
interfering mechanisms for two of these: ECCICFT073 and
PmCI172.

EcCICFTO073

Since our genomic scrutiny had revealed the presence of
putative PICI-like elements in different E. coli strains, we
wanted to characterize some of them in more detail. For
that, we inserted a cat marker into the elements present in
strains IHE3034, 18098 and 042, and a fetA marker into the
element present in the CFT073 strain. The localization of
the antibiotic resistant markers in the PICI elements is
shown in Fig. S3. While the two first islands encode TerS,
the last two do not. The strains carrying the putative GN
PICIs were treated with mitomycin C (MC) and the transfer
of these elements after induction of the resident prophages
was tested. As shown in Table 1, the EcCICFT073 element,
but not the other three, was transferred at high frequency to
the non-lysogenic DHS5a (recA mutant), C600, 594 and
WGS3 strains. Moreover, MC induction of a CFT073 culture

resulted in PICI DNA amplification, although no “PICI
monomer” band appeared (Fig. 3). There was, however, a
band containing covalently closed circular (CCC) DNA,
indicative of PICI excision. On the basis of the following
tests, we suggest that these results are indicative of helper
phage induction of PICI excision, replication and packa-
ging: we inserted a fetA marker into the chromosomal lac
gene of the EcCICFT073 host strain, the uropathogenic
CFTO073 strain, and tested the transfer of this marker by the
resident prophages. Contrary to the transfer observed for the
EcCICFTO073 tetA element, we did not detect transfer of the
chromosomal tetA to the recipient strains, suggesting that
none of the resident prophages is a generalized transducing
phage. To further confirm that the transfer of EcCICFT073
tetA was PICI-specific rather than generalized transduction,
we mutationally inactivated the EcCCICFTO073 fetA int gene
and found that this abolished detectable excision and
transfer (Fig. 3; Table 1). We also mutated the pri gene and
found that this greatly reduced but did not completely
eliminate transfer (Fig. 3; Table 1).

We next tested for MC induction and PICI transfer with
the non-lysogenic C600 derivative carrying the
EcCICFT073::tetA element, and failed to detect amplification,
lysis, or transfer, confirming that the EcCICFT(073 transfer
depends on a helper phage. Finally, we identified the
EcCICFTO073 helper phage. The CFT073 genome contains at
least 5 prophage-like elements [28], of which #3 is actually
EcCICFTO073 and is listed as O-island 51. We deleted each of
the other 4 and found that deletion of #4 eliminated detectable
EcCICFT073::tetA induction and transfer (Fig. 3; Table 1),
whereas none of the other prophage deletions had any effect.

Functionality of the EcCICFT073 genes

Having established that the EcCICFTO073 island can be
phage-induced, we looked in more detail at the
EcCICFT073-encoded genes to confirm that these ORFs
encode proteins functional in the various aspects of the PICI
life cycle as previously defined for the SaPIs. There are 5
key features of the PICI life cycle: (i) excision, which may
be spontaneous, (ii) replication, (iii) specific packaging, (iv)
interference, and (v) induction. Of these, induction depends
on the helper phage and in the GP PICIs controls all of the
aforementioned features.

Integration

To test for int (excision/circularization/integration) function,
we initially performed PCR analysis with inward- and
outward-directed primers as shown in Supplementary Fig. 4.
Amplicons were obtained indicative of spontaneous excision
and circularization, suggesting int functionality. To clearly
prove this, we cloned the int-attp; segment into the

SPRINGER NATURE
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Table 1 Effects of PICI and

phage mutations on PICI Recipient strain

transfer® Donor strain C600 WG5S DHS5a 594
CFT073 c1501::tetA 8x10° 3.4x%10° 407x10° 42x10°
CFTO073 lacZ::tetA <1 <1 <1 <1
CFT073 c1499::car 1x10° 3.6x10° 2% 10° 2.1x10°
IHE3034 RS04635-RS04640::cat <1 40 <1 <1
042 1749::cat <1 <1 <1 <1
18098 ORF17-ORF18::car 80 110 <1 10
PICICFT073 mutants

CFT073 c1501::tetA Aint <1 <1 <1 <1
CFT073 c1501::tetA AalpA <1 <1 <1 <1
CFT073 c1501::tetA Apri-rep 50 87 45 37
CFT073 c1501:tetA Ac1499 3.8x10° 1.64 x 10° 2.37x10° 25x%10°
CFT073 c1501:tetA Ac1500 8.7x10° 2.17x10° 5.37x10° 6.87 x 10°
Other helper phages

C600 A EcCICFTO073 c1499::cat 22x%10° 1.3x10° 1.1x10° 1x10°
594 80 EcCICFT073 ¢1499::cat 1.33x10° 2.68 x10° 8x10° 1.02x 10°

594 80 AterS EcCICFT073 c1499::cat <1 <1 <1 <1

CFT073 Prophage mutants®

CFTO073 c1501::tetA Agl 1.01 x 10*
CFTO073 c1501::tetA Ag2 5.19x 10°
CFTO073 c1501::tetA Ag4 <l
CFT073 c1501::tetA Ag5 3.90x 10°
CFTO073 c1499::cat Ag4 <1

*Transductants/ml of lysate, using E. coli C600, WGS5, 594 or DH5x (recA mutant) as recipient strains. The
means of results from three independent experiments are presented. Variation was within + 5% in all cases

®Phages deleted in strain E. coli CFT073

wt Aint Apri Aphi4 AalpA  Ac1499

M 0 60240 0 60240 O 60 240 0 60 240 0 60 240 O 60 240 M ™Min
»

8.5 kb — e

e """-"ﬂ -

7.4 kb — we= +— CCC

Fig. 3 Phage induction of EcCICFT073. CFT073 strains were SOS
induced with MC (2 pg/ml). Samples were removed at the indicated
time points and used to prepare minilysates, which were resolved on
an 0.7% agarose gel (upper panel), and Southern blotted (lower panel)
with an EcCICFT073 probe. M: Southern blot molecular marker
(DNA molecular weight marker VII; Roche)

thermosensitive pMAK700 plasmid and tested it for integra-
tion in DH5« (recA mutant) by overnight growth followed by
plating on selective agar at the restrictive temperature. As
controls, we generated pMAK700 derivative plasmid mutants
in the int gene or in the attp; site. We obtained colonies only
from plasmids carrying an intact int-attp; complex, confirming
int functionality.

SPRINGER NATURE

Replication

The previous results suggested that the GN PICIs encode a
functional replicon. We have shown previously that the
Pri-Rep-ori segment of SaPIbovl, SaPIl1 or EfCIV583 can
drive autonomous replication of a plasmid in different GP
bacteria [3, 10, 22]. Since the putative PICIs seem to have
the same replicon organization (Fig. 2a), we cloned the
replication region of EcCICFT073, including the rep gene
and the putative ori site, into the thermo-sensitive plasmid
pKO3-blue [29], with rep under the control of an
arabinose-inducible promoter. We also constructed plas-
mids carrying mutations in the rep gene or in the ori site.
These plasmids were transformed into E. coli DH5a, and
5% 10° cells were plated on selective agar and incubated
either at the permissive (30°C) or the restrictive tem-
perature (44 °C). Strains carrying the putative PICI rep-ori
replicon generated colonies in E. coli DH5a (Fig. 2b),
while the strains carrying the Arep mutant plasmid did not.
Note that at 44 °C, the number of colonies obtained was
reduced compared to 30 °C, suggesting defects on plasmid
segregation. Since the deletion of the ori significantly
reduced the number of colonies obtained compared to the
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wt plasmid, these results confirm that the GN PICIs encode
a functional replication module.

Packaging

As with the phages, there are two strategies by which the
SaPIs can be packaged. Some SaPIs that use the headful
mechanism encode a homolog of the phage terminase
small subunit (TerSg) that directs the preferential packa-
ging of the SaPIs [7]. The TerSg has the same function as
the phage enzyme (TerSp), recognizing a specific (pac)
site on its cognate genome to initiate packaging. Other
SaPIs carry the helper phage cos sequence in the SaPI
genome, which ensures SaPI packaging depending on the
helper cos phage machinery [14]. The A cos sequence
contains three regions required to interact with the
packaging machinery: cosQ, cosN, and cosB. cosQ is
required for the termination of chromosome packaging.
cosN is the site at which terminase cuts the DNA. Initia-
tion of DNA packaging requires cosN and the adjacent
cosB site. cosB consists of three binding sites, R3, R2, and
R1, for A TerS [30] (Fig. S5). EcCICFT073 does not
encode a TerS homolog, suggesting that in order to be
efficiently packaged EcCICFTO073 probably uses the cos
packaging strategy. As shown in Fig S5, EcCICFT073
carries two cosN sequences that are identical to those
present in its inducing phage 4 (Fig. S5). Remarkably,
these EcCCICFTO073 cosN sequences resemble that present
in the archetypical E. coli A and $80 phages, used during
decades as models in phage studies. However, we were
unable to identify the phage cosB region in the
EcCICFTO073 element (Fig. S5), questioning if the island
carries a bona fide cos sequence. To test the ECCICFT073
and phage cos sites for function, we introduced indepen-
dently the A, ¢80, phage 4, and each of the two
EcCICFTO073 cos sites (containing the putative cosQ,
cosN and cosB) into plasmid pET28a, which was not
transferrable by A, and found that the cloned cos sites
enabled transfer of the plasmids by phages A and $80
(Fig. S5). Consistent with the presence of a completely
different cosB sequence, transfer of the plasmids carrying
the EcCICFTO073 cos sites was reduced compared to that
observed with the plasmids carrying the cognate phage
cos sequences (Fig. S5).

The results described above raised the exciting possi-
bility that phages A and ¢80 could work as helpers for
EcCICFTO073. To test that, and assuming EcCICFTO073 is
transferred using a cos mechanism, we generated one
additional version of the PICI in which the antibiotic
resistant marker did not change the size of the island. Note
that in the ECCICFT073 tetA island the size of the element
was increased by the insertion of the cassette in the middle
of the island (Fig. S3). In the new variant, the cat marker

replaced gene EcCICFT073 c1499 (Fig. S3), for which we
have not been able to find a phenotype. The new island,
generated in strain CFT073, was also introduced in the
CFTO073 mutant in the helper phage 4 and in the A and $80
lysogens. The different strains were SOS (MC) induced,
and the transfer of the EcCICFTO073 cat island analyzed.
The analysis of the lysates obtained from the different
CFTO073 derivative strains revealed that transfer of
EcCICFTO073 cat by helper phage 4 was higher than that
previously observed for the EcCICFT073 fetA island
(Table 1), supporting the idea that ECCICFTO073 uses a cos
mechanism for packaging. Remarkably, phages A and 80
transferred the ECCICFT073 cat at frequencies, for phage
80, significantly higher than those observed with the
helper phage 4 (Table 1).

We next generated a set of mutant strains in which either
one of each or both cos sites present in EcCCICFT073 were
deleted. Deletion of the EcCCICFT073 cosl1 site significantly
reduced transfer of the element by phages A and $80, while
deletion of the EcCICFT073 cos2 site slightly increased
phage $p80-mediated transfer of the island but significantly
increased transfer mediated by phage A; deletion of both cos
sites eliminated phage-mediated transfer of the island,
confirming the identity of these sequences as cos sites and
that both cos sites are functional (Fig. 4). This situation
mirrors SaPIbov4 [31], which also has two putative cos site
in its sequence.

Finally, we generated a phage 80 ferS mutant, and tested
for both phage and EcCICFT073 transfer (Table 1). Dele-
tion of the phage-encoded ferS gene abolished packaging
and transfer of both elements, confirming that ECCICFT(073
hijacks the phage proteins for transfer.

@@ Transduction

CFU/mL

Acos1
Acos1  Acos2 g Acos2

wt Acos1  Acos2 wt

EcCICFTO073 cat EcCICFTO073 cat

Phage $80

Phage A

Fig. 4 Functionality of the EcCICFTO073 cos sites. EcCCICFT073 cat
wt, or its derivatives carrying mutations in the cosl or/and cos2 sites,
were introduced in the lysogenic strains for phages A or ¢$80. The
different strains were MC induced (2 ug/ml) and the transfer of the
island quantified. A #-fest was performed to compare the wt against the
different cos mutants. Adjusted p values were as follows: Phage
Lambda  EcCICFT073  Acosl =0.002", Phage  Lambda
EcCICFT073Acos2 = 0.0266", Phage 80 EcCICFT073 Acosl =
0.003"", Phage ¢80 EcCICFT073 Acos2 = 0.0002"""

SPRINGER NATURE



2120

A. Fillol-Salom et al.

JP12677
(C600 EcCICFTO073 tetA)

JP15181 JP15182
(C600 EcCICFTO73 tetA (C600 EcCICFTO73 tetA
Ac1499) Ac1500)

Fig. 5 EcCICFT073 interferes with A reproduction. E. coli strains
C600, JP12677 (C600 EcCICFTO073 tetA-positive), JP15181 (C600
EcCICFT073 tetA-positive Ac1499) or JP15182 (C600 EcCICFT073
tetA-positive Ac1500) were infected with phage A (~500 pfu per
plate), plated on phage bottom agar, and incubated for 24 h at 37 °C.
Plates were stained with 0.1% TTC in LB and photographed

Interference

EcCICFT073 severely interferes with phage A reproduction
(Fig. 5). A conserved mechanism of phage interference in
many PICIs is the production of PICI-sized particles that are
too small to package an intact phage genome [27, 32]. To
test this possibility, we MC-induced the lysogenic strain
carrying phage A and EcCICFTO073, the virions were pel-
leted and the extracted DNA was analyzed. All of the
packaged DNA was phage-sized, ruling out the possibility
that the observed interference was generated by capsid size
redirection.

Next we searched for putative genes in the EcCCICFT073
element that could be involved in this interference.
EcCICFT073 encodes a putative capsid protein (ORF
c1499; AAN79968) and a head decoration protein (ORF
c1500; AAN79969.1). Since in SaPIbov5 the capsid protein
homolog (Ccm) blocks phage reproduction by generating
SaPI-sized capsids [8], we analyzed whether these proteins
could be involved in the observed interference using an
alternative mechanism. To do that, we deleted genes c1499
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or c¢1500 in the EcCICFT073 fetA element present in the
non-lysogenic strain C600, and tested the ability of A to
generate plaques in these strains. None of the mutants
allowed normal phage reproduction (Fig. 5), suggesting that
other EcCICFT073 genes are responsible for the observed
interference. Moreover, deletion of the ¢1499 or c1500
genes in the CFT(073 strain did not affect the transfer of the
island by the resident prophages (Table 1).

Induction

The main difference between the GP and GN PICIs lies in
the regulatory region (Fig. 1 and S1). While the GP ele-
ments encode a master repressor (called Stl in the SaPIs or
generically Rpr in the other GP elements) [10, 22], the
existence of a global repressor in the GN elements is
unclear. One attractive candidate is AlpA, homologs of this
protein being encoded by all the E. coli PICIs (Fig. 1 and
S1). AlpA is predicted to act as a DNA-binding transcrip-
tional regulator, and previous work suggested that it con-
trols the expression of int in a P4-like phage [33, 34]. We
hypothesized that AlpA could act as the main repressor of
the PICIs, blocking expression of the PICI genes. To test
this, we initially generated different transcriptional fusions
in which the lacZ reporter was fused either to EcCCICFT073
ORF3 or was located after the stop codon of alpA (see
scheme in Fig. 6a). Expression of the reporter was measured
in the presence or absence of alpA. Contrary to our
hypothesis, AlpA is not a repressor but seems to be an
activator of the EcCICFT073 genes. To confirm this, and
also to know if AlpA controls int expression, we fused the
promoter regions of alpA (plasmid PalpA) or int (plasmid
Pint) to lacZ, using plasmid pRW224 (see scheme in
Fig. 6¢c). Simultaneously, the alpA gene was cloned in
plasmid pBAD18 under the control of the Pgap promoter,
inducible by arabinose, generating plasmid pBAD-alpA.
Plasmids PalpA or Pint were introduced into the strains
carrying plasmids pBAD-alpA or pBADI8, and the
expression of the different promoter regions monitored in
presence or absence of arabinose. As expected, AlpA acti-
vates its own expression. Contrary to previous results [33,
34], AlpA does not seem to control int expression in
EcCICFT073.

Our results suggested that induction of the GN PICIs
requires the expression of the AlpA activator. In support of
this, inactivation of alpA significantly diminished induction
and transfer of the EcCICF073 island present in the
CFTO073 strain (Fig. 3, Table 1). Moreover, over-expression
of AlpA in the non-lysogenic E. coli C600 carrying the
EcCICFT073 island resulted in induction and uncontrolled
replication of the EcCICF073 element (Fig. 6¢). In support
of the previous results, this uncontrolled replication requires
the expression of the EcCICFT073 encoded pri and int
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genes (Fig. 6e). Note that in this case, and since the strain is
not lysogenic, just the closed circular (CCC) and the con-
catemeric (bulk) forms are observed because the element is
not packaged. As occurred with the SaPIs [10], the
uncontrolled replication of the EcCICFT073 affected
both the growth curve and the viability of the E. coli cells
(Fig. S6).

Finally, we introduced the pJP1290 plasmid, which
measures expression of alpA, in strains C600 and 594 (non-
lysogenic) and the C600 and 594 derivatives lysogenic for
phages A and ¢80, respectively. Since AlpA is absolutely
required for the transfer of the island, we hypothesized that
the helper phages would induce expression of alpA. To test
this, the different strains were MC-induced and the
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Fig. 6 Characterization of the ECCICFT073 alpA gene. a—c Schematic
representation of the different blaZ transcriptional fusions generated.
The relevant genes are shown. b—d Miller assay performed using the
plasmids represented in (a—c). Results (average +s.d.) of three inde-
pendent assays are shown. A 2-way ANOVA with Tukey’s multiple
comparisons test was performed to compare mean differences within
rows. Adjusted p values were as follows: pJP1290 vs pJP1291 =0.
0011™, pJP1288 vs pIP1289 = 0.0001""", PalpA <0.0001"*"", Pint >
0.9999 ™. ns, not significant. € ECCICFT073 excision and replication
after expression of the cloned alpA gene. A non-lysogenic derivative
of strain C600 carrying EcCICFT073 was complemented with plasmid
pBADI18 (empty plasmid) or plasmid pJP2037, which carries alpA
under the control of the Pgap promoter. As controls, non-lysogenic
derivatives of strain C600 carrying EcCICFT073 Aint or EcCICFT073
Apri were complemented with plasmid pJP2037. One milliliter of
each culture (optical density (OD)goonm =0.3) was collected 2h
after treatment with 0.02% arabinose and used to prepare
standard minilysates, which were resolved on a 0.7% agarose
gel, Southern blotted and probed for EcCICFT073 DNA. In these
experiments, because no helper phage is present, the
excised EcCICFT073 DNA appears as covalently closed circular
molecules (CCC). f Helper phages activate alpA transcription.
Different lysogenic and non-lysogenic strains, containing
plasmid pJP1290, were MC-induced and assayed for -galactosidase
activity. Results (average+s.d.) of three independent assays are
shown. Strains: C600 (non-lysogenic), JP10400 (C600 lysogenic for
phage 1), 594 (non-lysogenic), JP12507 (594 lysogenic for phage 80)
and JP15151 (594 lysogenic for phage 80 AterS). A 2-way ANOVA
with Tukey’s multiple comparisons test was performed to compare
mean differences within rows. Adjusted p values were as follows;
C600>0.9999™, Phage Lambda<0.0001""", 594>0.9999 ™,
Phage 80 < 0.0001""*, Phage 80 ArerS < 0.0001""". ns, not significant

expression of the blaZ reporter monitored. As expected,
alpA expression does not depend on the SOS response but
on the presence of a helper phage. Thus, alpA expression
was increased in the induced lysogenic strains, compared to
the induced non-lysogenic C600 and 594 strains (Fig. 6f).
Note that alpA expression was also increased in the lyso-
genic strain carrying the phage $p80 mutant in the ferS gene.
Since this phage mutant can’t mobilize the island, this strain
was used to propose that the EcCCICFT073 element hijacks
the phage machinery for packaging. However, another
possibility could be that terS was the ECCICFT073 inducer.
The fact that this mutant induces alpA expression rule out
this possibility. The identification of the phage-encoded
EcCICFO073 inducer is now under study.

PmCI172

In a complementary study aimed at characterizing pro-
phages present in the animal pathogen P. multocida, we
MC-induced different lysogenic strains, the particles were
pelleted and the extracted DNA was separated. As shown in
Fig. 7, two bands, one of phage monomer size and the other
of PICI monomer size, appeared in the analysis of strains
Pm86 and Pm172. This is the classical pattern observed
when a strain containing a PICI-helper phage pair is MC-
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induced, suggesting that P. multocida contains bona fide
PICI elements, which are packaged in small capsids as are
many of the analyzed PICIs [8, 27, 32, 35]. To confirm that
this was the case, we initially sequenced both the P. mul-
tocida strains as well as the DNA obtained from the induced
lysates. As expected, we identified a PICI element in both
strains, which incidentally were identical (Fig. 1; Table S1).
While two phages were present in strain Pm86 (Fig. S7),
strain Pm172 only contained one (Fig. S7). The latter phage
was also present in strain Pm86, suggesting this is the
helper phage for the PmCI172 and PmCI86 PICIs. This
phage belongs to the Mu family of phages, demonstrating
for the first time a Mu-like phage, belonging to the Myo-
viridae family, as helper phage for a PICI element.

Next, we confirmed that the PmCI172- and Pm&86-Mu
phage are a bona fide PICI-helper phage interaction by
performing a Southern blot analysis of the packaged DNA
observed in Fig. 7, using PmCI172- and phage Mu-specific
probes. Southern blot analyses revealed that the Mu
phage probe hybridized both with the PICI-sized (small)
and the phage-sized (large) DNA bands (Fig. 7), suggesting
that the phage DNA can be packaged in the PmClI-sized
particles. Packaging of a significant proportion of phage
DNA in the small particles generates defective phages,
confirming that PmCI172 and PmCI86 PICIs interfere with
phage reproduction using a very well conserved strategy,
production of PICI-sized capsids, which is a key feature of
the previously analyzed GP PICI elements [8, 27, 32, 35].

Finally, to confirm the existence of the PICI-sized cap-
sids, we subjected the virions to electron microscopy (EM).
The phage-sized particles had the characteristic size and
shape of this class of bacteriophages: hexagonal capsids of
approximately 59 to 63 nm length and 51 to 56 nm width
and long contractile tails, which are approximately 150 nm
long and 15 to 16 nm wide. (Fig. 7c). As expected, the
majority of the particles had small, hexagonal heads, about
38-39nm length and 37 nm wide, attached to approxi-
mately 150 nm long and 15 nm wide tail (Fig. 7c). This
result confirms that PmCI172 causes the formation of small
capsids, consistent with its smaller genome size. As occurs
with SaPIbov5, which encodes a capsid protein responsible
of the production of the SaPI-sized small capsids [8],
PmCI172 also encodes a major capsid protein homolog
(Fig.1), which could be involved in this process. Unfortu-
nately, the absence of tools to manipulate P. multocida has
impaired us deciphering in detail the biology of the
PmCI172 element.

Discussion

In this report we demonstrate that PICIs, of which the sta-
phylococcal SaPlIs are a subset, are not just confined to GP
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Fig. 7 Induction of PmCI172 and PmCI86. a DNA extracted from a
phage lysates of MC-treated cultures of P. multocida strains 172 or 86.
b Southern blot of the DNA shown in panel (a), using a phage- or
PmCl-specific probe. ¢ Electron microscopy analysis of the MC-

bacteria but are widespread among other bacteria. Although
all the GN PICIs identified in this study are in Gamma-
proteobacteria, and more specifically in members of the
Enterobacteriaeae and Pastuerellaceae, the fact that similar
elements can be found both in GP and GN bacteria confirms
the universality of this novel family of MGEs. PICIs are

P. multocida 172
Mu phage PmCI172

Southern blot

P. multocida 86

probe Mu phage PmCI172

probe

Southern blot

PmCI172 sized particles

induced P. multocida 172 lysate. Several different fields are shown,
containing normal Mu phage particles and PmCI172 particles
(arrows), which have smaller heads. Scale bars are 50 nm

phage satellites with a unique genomic organization which
is easy to see in KEGG genome maps and sets them apart
from other mobile genetic elements. They interact with
certain “helper” bacteriophages in a unique and highly
characteristic manner: in the GP cocci, the PICI encode an
SOS-insensitive master repressor, Stl, that maintains it in a
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quiescent state and is counteracted by a specific phage
protein, initiating the PICI life cycle [13, 22]. In the GN
bacteria, it seems the PICIs use a completely different
strategy coupling the phage and the PICI cycles. In this
case, the GN PICIs encode AlpA, an activator of the PICI
cycle whose expression depends on the helper phage. Why
GP and GN bacteria use different strategies to be induced is
a mystery. In both cases, however, PICI induction is fol-
lowed by PICI replication, encapsidation of PICI DNA in
infectious particles composed of phage proteins and finally
high transfer of these elements.

Like their GP counterparts, GN PICIs also severely
interfere with helper phage reproduction, this probably
being one of the raisons d’étre of these elements. The PICI
genomes are usually about 1/3 the size of their helper phage
genomes and among the GP PICIs, many encode proteins
that redirect the helper phage to form capsids 1/3 the size of
the phage capsid [7, 8, 27]. This strategy is also used by the
GN PICIs. Although we have not identified the genes
responsible for this process, none of the proteins encoded
by the PmCI172 element resemble previously characterized
proteins, suggesting that capsid size redirection is a con-
vergent evolutionary process characteristic of all the PICI
elements, which in turn defines the size of these elements.

As occurs with GP PICIs, GN PICIs have an important
role in virulence and several of the newly identified PICIs
present in GN bacteria contain recognizable accessory
genes. These are listed in Table S1. The identities of many
of these genes are based on annotations; just a few of them
have been tested experimentally. Several elements, includ-
ing islands harbored by variants of the notorious E. coli
O157:H7 encode RgdR, which regulates expression of the
type III secretion (T3S) system, encoded by the locus of
enterocyte effacement (LEE) of the E. coli pathogenicity
island, PAI-I. Deletion of this island in E. coli O157 strain
TUV93-0 resulted in a reduction in LEE expression and
T3S [36]. This deletion also reduced the capacity of the
bacteria to attach to epithelial cells and reduced the shed-
ding of E. coli O157 by sheep. RgdR also controls the
expression of other genes, including those involved in
motility, suggesting a global role in E. coli gene expression
[36]. It is especially relevant for this report that
EcCICFT073, and the related EcCI042, two of the rgdR-
containing elements in E. coli, correspond to O-island 51, a
15kb O157:H7 island annotated, as usual, as a defective
prophage [36]. In addition to RgdR, which is encoded by all
the analyzed E. coli PICIs, some E. coli PICIs encode allelic
variants of PerC. Remarkably, some but not all the PICI-
coded PerC homologs also activate expression of the LEE
pathogenicity island [37].

We suggest that all of the PICIs in the GN species are co-
ancestral and represent a separate but very similar lineage,
since their transcriptional organization is mirrored in rare
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phages from GN organisms. At the same time, the unique
organization of the replication origin is the same for both
the GP and GN lineages, which is consistent with co-
ancestry. Although this organization was not a criterion for
the identification of the PICIs, it is shared by all those
identified in this study and by no other known bacterial
replicon. Coancestry could mean that the divergent evolu-
tion of PICIs and host chromosomes has simply been par-
allel, or that the PICIs have been horizontally transferred
and have retained greater similarities than their host bac-
teria. Current studies in our labs are focused on deciphering
these interesting evolutionary questions. Our overall view,
therefore, is that the PICIs represent two or more families of
unique mobile elements whose biological features have
been strongly selected during long-term evolution, so that
they represent coherent clades that have diverged from and
evolved in parallel with temperate phages (or proto-phages)
and have spread widely among diverse bacterial genera. If
this spread has been via helper phage induction and
packaging, then it is likely that spread would have occurred
between species that share phage adsorption receptors,
leading to a chain of island-hopping (or rather host-hop-
ping) events that could, in principle, be tracked by com-
paring PICI gene similarities as a function of the relatedness
of host bacterial phage receptors.

The P2-P4 system in E. coli represents a theoretical
precedent for phage satellites, in which P4 utilizes P2 virion
proteins to form small capsids into which its small genome
is packaged [38, 39]. PICIs and P4 share some features in
common: (i) phage-mediated activation of their life cycles,
which in the case of P4 depends on the P2 Cox protein [40],
while for the GN PICIs the activator remains to be identi-
fied; (i1) autonomous replication, which in the case of P4
depends on the a protein [41] and its cognate ori site
(named ccr [42, 43]); (iii) carriage of the helper phage cos
sequence in their genomes, which allows these elements to
parasite the packaging machinery of their cognate helper
phages; (iv) interference with phage reproduction, a process
that in P4 depends on Sid, a protein that redirects capsid
formation generating P4-sized particles [44].

However, and in spite of these similarities, P4 and the
PICIs present in E. coli show important differences sup-
porting the idea that they have evolved independently: (i)
P4 and PICIs are fundamentally different both in genomic
structure (see Fig. S8) and in gene content. As occurred
with the PICIs, the KEGG analysis revealed that the P4
genes are exclusive of this family of elements (Table S5).
Importantly, only three PICI-coded proteins (AlpA, Pri-Rep
and Int) showed distant homology with the P4-coded pro-
teins, corresponding to proteins that have similar roles in
both elements. We have identified 4 allelic variants of AlpA
in the E. coli PICIs (Fig. S9), all of them being remotely
related to the AlpA-homolog (named Vis) encoded by P4
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(Fig. S9). In fact, these proteins seem to have a different
role in each of the elements: while Vis is required for P4
excision [45], AlpA controls induction of the EcCICFT(073
cycle. In the case of the Pri-Rep proteins, a similar scenario
is observed: 4 allelic variants are found in the PICI elements
from E. coli (Fig. S10), which are different in sequence
from the o protein of P4 (Fig. S10). The situation with the
Int proteins is even more interesting. We have identified
in E. coli 36 attc sites for phages, 8 for PICIs and 4 for P4
elements (Fig. S2). All the atic sites are exclusive to one
type of element except one, which is shared by PICIs and
P4. Importantly, and with the exception of the int gene, the
P4 and PICI elements that integrate in the same atfc con-
served their own features and are completely different both
in sequence and structure (Fig. S11). (ii) PICIs do not have
a plasmid state, nor encode genes to control plasmid copy
number or plasmid segregation. (iii) PICIs play an impor-
tant role in virulence, with many E. coli elements encoding
two activators of the LEE pathogenicity island. (iv) P2 and
P4 mutually cross induce one another through back-and-
forth transcriptional activation. Indeed, P4 forms plaques on
a P2 lysogen, but these are P2 plaques resulting from P4
induction of P2, whereas we have not been able to see
phage induction mediated by an incoming GN PICIL. (v)
In E. coli, P4 and PICI elements seem to parasitize two
completely different families of helper phages: Myoviridae
and Siphoviridae, respectively. Taken together, all these
similarities and divergences highlight the idea that although
these elements have evolved independently, their parallel
modus vivendi has been strongly selected in nature.

A similar scenario occurs with a family of pathogenicity
islands recently identified in Vibrio cholerae. These ele-
ments, denominated PLEs for phage-inducible chromoso-
mal island-like elements, are widespread genomic islands
that share some features with the classical PICIs, including
mobilization by helper phages and severe interference with
phage reproduction [46, 47]. In contrast to the GN PICIs,
PLEs are larger in size (18—19 kb) and have both different
genetic organization and gene content. Thus, although they
encode an integrase, they do not encode identifiable reg-
ulatory, replication or packaging modules, even though
infection by a helper phage leads to PLE excision, repli-
cation and packaging [46]. Whether these functions depend
on the helper phage machinery, or by contrast are provided
by still-unidentified PLE genes remains to be determined.
Further studies are required to understand the origins of, and
relationships among, these subcellular elements and their
cognate phages.

Although cos sites were long ago cloned into E. coli
plasmids, generating cosmids, which are widely used as
cloning vectors owing to their efficient transfer by phage A,
our results represent the first demonstration of naturally-
occurring phage A-mediated transfer. Since SaPIbov5 is also

transferred by helper cos phages, our results with the PICIs
represent a paradigm shift involving cos phages in gene
transfer. The PICIs are a special case because they undergo
phage-like replication, generating concatemeric post-
replicative DNA, which would have cos sites spaced one
genome apart. However, EcCICFT073 lacks the capsid
morphogenesis genes carried by most SaPIs and is therefore
packaged in full-sized phage capsids, which are designed to
accommodate the 45 kb phage genomes. This would mean
that the phage terminase skips two successive cos sites
during packaging; the mechanism by which this occurs
remains to be determined, although it is likely that the
expansion generated once the capsid is fulfilled controls this
phenomenon.

Bacteria are successful as commensal organisms or
pathogens in part because they adapt rapidly to selective
pressures. MGEs play a central role in this adaptation pro-
cess and are a means to transfer genetic information among
and within bacterial species. Here, and as is the case with
other classical MGEs like plasmids, transposon or phages,
we demonstrate that the PICIs are widespread in nature.
These findings represent the discovery of a universal agency
of horizontal dissemination of important accessory genes in
the bacterial universe.

Materials and methods
Identification of PICI candidates

The following criteria were initially used to identify puta-
tive PICIs in the GN genomes: (i) well-conserved gene
organization, including an integrase, a replicating module
and a master transcriptional regulator; (ii) unique attach-
ment (atf) sites that are never occupied by prophages;
(iii) the absence of phage structural and lytic genes; and (iv)
size typically around 12-15 kb. After this initial screening,
the analysis of orthologies points to elements that might
correspond to PICIs. Examination of the corresponding
KEGG genome maps (http://www.genome.jp/kegg; release
May 1 2016) was used to confirm the identifications. In
these analyses we examined the E. coli and the P. multocida
genomes that have been coded for KEGG because the
KEGG genome maps enable PICI-like elements to be
readily identified.

Bacterial strains and growth conditions

Bacterial strains used in these studies are listed in Sup-
plementary Table S7. E. coli strains were grown at 37 °C
or 30 °C overnight on Luria-Bertani agar and on Luria-
Bertani broth with shaking (180 r.p.m.). P. multocida
strains were grown at 37 °C overnight on Brain-Heart-
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Infufion agar and on Brain-Heart-Infufion broth with
shaking (250 r.p.m.). Ampicillin (100 uygml~"), Kana-
mycin (30 uygml~!), Chloramphenicol (20 ugml™') or
Tetracycline (20 ug ml™!), from Sigma, were added when
appropriate. Phage and PICI analyses were performed, as
described previously [11-13].

DNA methods

Gene insertion was performed as described [48]. The tet-
racycline resistance marker (fefA) or chloramphenicol
resistance marker (cafr) was amplified by PCR with primers
listed in Supplementary Table S6. The resulting PCR pro-
ducts were used to transform the recipient strain harboring
plasmid pKD46 [48], which expresses Lambda Red
recombinase. PCR was performed to verify the insertion of
markers.

Plasmid construction

Plasmids used in this study were constructed by cloning
PCR products amplified with oligonucleotide primers pur-
chased from Invitrogen. Clones were sequenced by Euro-
fins. Plasmids and primers are listed in Supplementary
Table S8 and Table S6.

Southern blot

Following plasmid (arabinose) or phage (MC) induction,
samples were taken and pelleted at the indicated times.
Samples were re-suspended in 50 ul lysis buffer (47.5 ul
TES-Sucrose and 2.5 pl lysozyme [10 ug/ml]) and incubated
at 37 °C for 1 h. Subsequently, 55 pl of SDS 2% proteinase
K buffer (47.25 ul H20, 5.25 ul SDS 20%, 2.5 pl proteinase
K [20 mg/ml]) was added and incubated at 55 °C for 30
min. Samples were vortexed with 10 ul of 10 x loading dye.
Cycles of incubation in dry ice with ethanol and at
65 °C were performed. Chromosomal DNA was separated
by agarose gel electrophoresis. Samples were run on 0.7%
agarose gel at 30 V overnight. Nylon membranes (Hybond-
N 0.45 mm pore size filters; Amersham Life Science) were
used for the transfer of DNA. DNA was detected using a
DIG-labeled probe and anti-DIG antibody.

B-galactosidase assays

Strains were grown at 37 °C in LB medium containing the
appropriate antibiotics. Following plasmid (arabinose) or
phage induction (MC), samples were taken and pelleted at
the indicated times. The Miller method [49] was used
to measure f-galactosidase levels. The average of at
least three independent experiments is shown in Miller
units.
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Electron microscopy (P. multocida)

Ten milliliters of filtered P. multocida Pm172 phage lysate
were centrifuged at 40,000 x g for 90 min at 4 °C. The
supernatant was carefully removed and the pellet was re-
suspended gently with 0.5 ml of 0.1 M ammonium acetate
(pH 7.3). The suspension was stored overnight at 4 °C for
negative staining and visualization by TEM. Three hundred-
mesh carbon-coated nickel grids were dropped onto
50-100 pL of phage suspension. The grids were allowed to
adsorb phage suspension for 2 min. The grids were washed
3 times with dH,O for 10", excess fluid was removed using
Whatman filter paper and the grids were negatively stained
with 2% ammonium molybdate for 30”. Excess staining
solution was removed with Whatman filter paper. The grids
were allowed to dry at room temperature for ~15-20 min.
The samples were examined by TEM (FEI Tecnai TF20) at
200 kV using Gatan Microscopy Suite Software.
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