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Abstract
Critical transitions are qualitative changes of state that occur when a stochastic dy-
namical system is forced through a critical point. Many critical transitions are preceded 
by characteristic fluctuations that may serve as model-independent early warning sig-
nals, implying that these events may be predictable in applications ranging from physics 
to biology. In nonbiological systems, the strength of such early warning signals has 
been shown partly to be determined by the speed at which the transition occurs. It is 
currently unknown whether biological systems, which are inherently high dimensional 
and typically display low signal-to-noise ratios, also exhibit this property, which would 
have important implications for how ecosystems are managed, particularly where the 
forces exerted on a system are anthropogenic. We examine whether the rate of forcing 
can alter the strength of early warning signals in (1) a model exhibiting a fold bifurcation 
where a state shift is driven by the harvesting of individuals, and (2) a model exhibiting 
a transcritical bifurcation where a state shift is driven by increased grazing pressure. 
These models predict that the rate of forcing can alter the detectability of early warning 
signals regardless of the underlying bifurcation the system exhibits, but that this result 
may be more pronounced in fold bifurcations. These findings have important implica-
tions for the management of biological populations, particularly harvested systems 
such as fisheries, and suggest that knowing the class of bifurcations a system will mani-
fest may help discriminate between true-positive and false-positive signals.
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1  | INTRODUCTION

Critical transitions are sudden, large, often irreversible, and usually un-
wanted changes in the state of dynamical systems (Dakos et al., 2008; 
Scheffer et al., 2009). Such events are caused by increasing external 
forces, which decrease a system’s resilience to perturbations (Scheffer, 
2009). If the system is pushed hard enough, it may move away from 
its original stabilizing kinetics and pass through a tipping point, which 
can lead to abrupt changes (Scheffer, 2009). These tipping points are 
commonly associated with bifurcations in the associated mean field 

dynamics. Such dramatic shifts have been identified in a wide range of 
systems from lasers (Tredicce et al., 2004) to neurons (Matsumoto & 
Kunisawa, 1978). In ecology, such shifts include the sudden collapse 
of ecosystems (Benedetti-Cecchi, Tamburello, Maggi, & Bulleri, 2015; 
Biggs, Carpenter, & Brock, 2009; Carpenter et al., 2011; Guttal & 
Jayaprakash, 2008; Seekell, Carpenter, Cline, & Pace, 2012) and pop-
ulation extinctions (Drake & Griffen, 2010). Significant recent effort 
has been invested in identifying statistical signatures preceding these 
tipping events (Biggs et al., 2009; Boettiger, Ross, & Hastings, 2013; 
Brock & Carpenter, 2012; Dakos, Kéfi, Rietkerk, van Nes, & Scheffer, 
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2011; Dakos et al., 2008, 2012; Folke et al., 2004; Scheffer et al., 
2012) and has yielded a suit of approaches that can be used to detect 
“early warning signals” of an approaching tipping point (Dakos et al., 
2012).

The pressures exerted on ecological systems take many different 
forms, such as climate-derived alterations of environmental conditions 
(Foden et al., 2013; Thomas et al., 2004), overexploitation of commer-
cially important species (Hutchings & Myers, 1994), and emerging 
infectious diseases (Bosch, Martínez-Solano, & García-París, 2001). 
The nature and intensity of these threats can significantly alter the 
speed at which a population declines toward extinction (Cardillo et al., 
2005), with, for example, catastrophic collapses attributed to disease 
outbreaks (Bosch et al., 2001) or overfishing (Hutchings, 2000). These 
pressures have the potential to destabilize a system to the point that 
a critical threshold is crossed. Forecastability of such an event could 
allow intervention before a population or ecosystem collapses (Biggs 
et al., 2009; Carpenter et al., 2011; Drake & Griffen, 2010). Thus, re-
liable identification of early warning signals is important for conser-
vation prioritization and management (Clements, Drake, Griffiths, & 
Ozgul, 2015).

In nonbiological systems, the rate at which a system approaches a 
tipping point has been shown to alter not only the timing of a critical 
transition but also the behavior of the system in the vicinity of the 
critical point (Ashwin, Wieczorek, Vitolo, & Cox, 2012; Tredicce et al., 
2004). Such changes in a system’s short-term behavior, driven by the 
rate of forcing, have the potential to affect the strength of generic 
leading indicators prior to a critical transition, for instance by reducing 
the time it takes a population to collapse so that the speed of forcing 
affects the amount of data available to detect early warning signals 
(Figure 1). Longer series of observations mean not only that more pre-
cise estimates of statistical properties (such as autocorrelation at first 
lag) can be made, but also that there is a greater period of time during 
which one can detect a system before it returns to equilibrium.

Alternatively, when the amount of data available to be collected 
is fixed (say from the start of historic sampling to the current day), 
rate of forcing could alter the strength of early warning signals by al-
tering how destabilized a system becomes over a given time period. 
As early warning signals are based on the change in leading indicators 
across a given time series, it is the relative instability of a system with 
respect to conditions at start of the time series that is important for 

F IGURE  1 Simulated population 
collapses with different rates of change 
of the harvesting parameter (a subset of 
six rates of forcing are shown), using the 
(a) the fold bifurcation model described 
in Dakos et al. (2012) and (b) the 
transcritical bifurcation model described 
in Kéfi et al. (2013)
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forecastability. Consequently, slow rates of forcing where time-series 
length is invariant limit the scope for detecting change in a leading in-
dicator, whereas faster rates of change over the same period can push 
a system further from equilibrium within the same amount of time. 
Understanding how the rate of forcing of biological systems affects 
the strength of early warning signals is thus important to their proper 
use for conservation intervention and planning.

Here we use models known to exhibit statistical signals of critical 
slowing down before to investigate how the rate of forcing of a sys-
tem alters the strength of early warning signals of population collapse. 
Using two models, one exhibiting a fold bifurcation and the other a 
transcritical bifurcation, we simulate populations subject to a range 
of forcing speeds and show that the rate of forcing has the potential 
to alter the detectability of generic early warning signals in biological 
systems, both through the length of time series available to analyze 
and by directly affecting the dynamics of a system prior to a collapse.

2  | METHODS

2.1 | Simulated time series

The first model describes a population that grows logistically and 
moves from an underexploited to an overexploited state via a fold 
catastrophe (Scheffer, 2009). This change is driven by an increase in 
the rate of harvesting of the population (c) (Dakos et al., 2012; May, 
1977). The abundance of the population was simulated using the 
stochastic differential equation

where r is the population’s growth rate, K is the carrying capacity, h 
is the half-saturation constant, and c is the harvesting rate. dW is a 
normally distributed (white noise process) stochastic perturbation 
with mean = 0 and σ = 0.5 that was applied at each time step with 
expectation μ(xt, t) and intensity σ(xt, t)

2. The abundance simulations 
were implemented with a time step (δt) of 0.025 using the Euler 
approximation.

The second model is modification of the fold bifurcation model 
above, where the population grows logistically and is forced through 
a transcritical bifurcation by overharvesting of individuals via a linear 
harvesting function (Kéfi, Dakos, Scheffer, Van Nes, & Rietkerk, 2013; 
Figure 1b). Thus, the abundance of a population was simulated using 
the stochastic differential equation 

Parameter values for both models are shown in Table 1.
To model various rates of change of the system, we simulated 100 

replicates of each of 11 different rates of change of the c parameters. In 
each of these 11 scenarios, the value of c increased linearly from 0 by 
a fixed factor at every whole time step. For the fold bifurcation model, 
those values were c = (0, 0.01, 0.02, …, 0.1), while for the transcritical 
bifurcation, those values were c = (0, 0.001, 0.0015, …, 0.005). These 

values were chosen so that simulated populations from the two models 
collapsed over similar time frames (Figure 1). These treatments gave a 
total of 1,100 simulated populations per model, which drove popula-
tions through critical transitions at varying points in time (Figure 1a).

2.2 | Calculation of early warning signals

We calculate commonly applied generic leading indicators of popu-
lation collapse using the “earlywarnings” package in R (Dakos et al., 
2012). These generic leading indicators are based on statistical signals 
of a time series and change predictably as a population approaches a 
critical transition (Dakos et al., 2012). The indicators we tested were 
the autocorrelation at the first lag (similarity of value at time t to the 
value at t − 1), density ratio (ratio of low frequencies to high frequen-
cies within a rolling window), first-order autoregressive coefficient 
(ar1), return rate (rate of return to equilibrium after a perturbation), 
and the standard deviation of the abundance time series. A number of 
these leading indicators are theoretically highly correlated (for exam-
ple, return rate is calculated as 1/ar1); however, especially with noisy 
data, these indicators have been shown to often perform differently 
(Clements et al., 2015). Following standard practice (Dakos et al., 
2012), indicators were calculated within a predefined time window 
(typically 50% of the time series) using a sliding window through time 
after the time series had been detrended (Gaussian detrending for the 
fold bifurcation model and linear detrending for the transcritical bi-
furcation model). For all simulated populations, we calculated early 
warning signals across the full population time series until 10 time 
steps before the first count of less than one individual (the time the 
population collapsed). To summarize findings across model simula-
tions, we present the Kendall’s tau correlation coefficients of leading 
indicators prior to a collapse—strong positive correlations between 
time and an indicator indicate a transition is being approached for all 
leading indicators except return rate, where a strong negative corre-
lation indicates an approaching transition (Dakos et al., 2008, 2012).
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TABLE  1 The parameter values for the fold bifurcation model 
(described in Dakos et al. 2012) and the transcritical model 
(described in Kéfi et al. 2013)

Parameter Description Units Value

Fold bifurcation model

r Population growth rate time−1 1a

K Carrying capacity – 100

h Half-saturation constant – 1a

c Harvesting rate × time−1 Various

σ Variance of white noise – 0.5

Transcritical bifurcation model

r Population growth rate time−1 1

K Carrying capacity – 100

c Harvesting rate × time−1 Various

σ Variance of white noise – 0.5

aIndicates parameter values taken from the relevant publications.
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We present two analyses of the data. In the first analysis, all time 
series were standardized in length to the length of the shortest time 
series (~240 time points for each model). This was achieved by an-
alyzing the final 240 time points prior to collapse for each popula-
tion independently. Standardizing the time series removed any effect 
of time-series length varying with the rate of forcing of the system 
(Figure 1). The second analysis used nonstandardized time-series 
lengths, which were determined by the timing of collapse of the pop-
ulation. We debate the different real-world scenarios each of these 
analyses represents in the discussion.

3  | RESULTS

3.1 | Simulations

In both models, the rate of system forcing altered the population dy-
namics and timing of extinction, and thus the length of the time series 
prior to collapse (Figure 1a, b). Because the rate of forcing altered the 
length of the time series available to analyze, we performed two anal-
yses on the population data—one where the length of the time series 
was standardized to investigate whether rate of forcing alone alters 

the strength of early warning signals, and one where the time-series 
length was allowed to vary with the rate of forcing to investigate the 
more realistic combined effects of both rate of forcing and time-series 
length. When the length of the time series was standardized, the rate 
of forcing significantly altered the strength of early warning signals 
in both models, with faster rates of forcing producing stronger early 
warning signals (Figure 2). This pattern was reversed when time-series 
length was allowed to vary, where slow rates of forcing produced 
longer time series which in turn led to stronger early warning signals 
(Figure 3a, Table 1). The one exception to this was in the transcritical 
bifurcation model, where the Kendall tau values of the standard devia-
tion remained largely unaffected by the rate of forcing (a finding not 
altered by either Gaussian or linear detrending, results not shown).

Time-series length also altered the distribution of Kendall tau 
values in the constant treatments, where theory suggests that there 
should be no detectable trend in the five leading indicators (Kendall 
tau values ≈ 0). While in both the standardized and nonstandardized 
time series, Kendall tau values were approximately uniformly distrib-
uted around 0, the variance was much larger in the standardized time 
series, suggesting it might be difficult disentangling false-positive from 
true-positive signals.

F IGURE  2 Strength of the trend in 
five leading indicators of population 
collapse when time-series lengths were 
standardized (see section 2) across 
(a) simulated population collapses 
exhibiting a fold bifurcation, and (b) 
simulated population collapses exhibiting 
a transcritical bifurcation. Violin plots 
indicate the distribution of Kendall tau 
values for each rate of forcing
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4  | DISCUSSION

The possibility of generic early warning signals gives hope that popula-
tion collapse may be predicted prior to its occurrence, a potentially 
useful tool for conservation prioritization and management. Such ap-
proaches could be particularly applicable to harvested systems such 
as fisheries (Vasilakopoulos & Marshall, 2015), where high-quality 

long-term data are regularly collected, and the forces exerted upon a 
system are inherently manageable (Clements et al., 2015; Worm et al., 
2006). Understanding how the rate of forcing of a system affects the 
rate of population collapse and the trends in generic leading indicators 
of stability, upon which the majority of early warning signals are based, 
is therefore critical for accurately inferring whether a population is at 
risk of extinction. Here, we demonstrate, using model simulations, that 

F IGURE  3 Strength of the trend in 
five leading indicators of population 
collapse when time-series lengths were 
nonstandardized (see section 2) across 
(a) simulated population collapses 
exhibiting a fold bifurcation, and (b) 
simulated population collapses exhibiting 
a transcritical bifurcation. Violin plots 
indicate the distribution of Kendall tau 
values for each rate of forcing

F IGURE  4 The length of time series for 
currently extant (in 2015, vertical dashed 
line) populations is determined by the 
monitoring effort in the preceding decades 
(solid black line) rather than the timing of 
the population crash. The total possible 
length of a time series is determined not 
only by the monitoring effort but also 
by the time to collapse, which in turn is 
governed by the rate of forcing of the 
system (dotted and dashed black lines)
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in general rate of forcing of a system has the potential to significantly 
alter the detectability of proposed generic early warning signals of 
population collapse. One possible exception to this appears to be the 
standard deviation of the time series, which in the transcritical bifurca-
tion model seems unaffected by the rate of forcing, suggesting that 
there are some differences in the response of each system based on 
the nature of the underlying bifurcation. Both fold and transcritical 
transitions are expected to generate early warning signals prior to 
population collapse (Clements et al., 2015; Dakos et al., 2012; Drake 
& Griffen, 2010), but our results suggest that not all leading indicators 
may not respond equivalently to various rates of forcing.

The rate of forcing of the system altered the trends of four of the 
five generic leading indicators in the models, regardless of the whether 
the time-series length was standardized (Figures 2a and 3a, Table 1), 
although this effect was much more pronounced when time-series 
lengths were allowed to varying with the rate of forcing (Figure 2b). 
The more pronounced result in the nonstandardized time series is un-
surprising, as longer time series necessarily contain more information 
of precollapse dynamics, and allowing for trends in leading indicators 
to be more easily identified. Of concern may be the fact that slow 
rates of forcing when the time series are standardized lead to large 
variance in the Kendall tau values of the five leading indicators tested, 
both in populations known to collapse, and also those which persist 
(rate of forcing = 0, Figure 2). This strongly suggests that disentan-
gling false-positive and true-positive early warning signals are liable 
to be problematic in real-world scenarios (Clements et al., 2015), and 
strengthens the case for the inclusion of alternative warning signals 
(such as those based on shifts in fitness-related phenotypic traits) 
alongside the generic abundance-based measures assessed here 
(Clements & Ozgul, 2016).

The results presented here, using standardized time-series lengths 
and lengths allowed to vary with the rate of forcing, mimic different 
potential real-world scenarios. In the first instance, the length of the 
time series available to detect early warning signals is limited by the 
time that it takes for a population to collapse (Figures 1 and 3). This 
scenario is unlikely to represent currently available conservation data 
because if one is seeking to detect early warning signals of population 
collapse, the population of conservation interest will not have already 
crashed. Thus, when the population of interest is still viable, the length 
of the time series is necessarily bounded by the length of the moni-
toring period (Figure 4). If, however, one considers a population that 
has not yet crashed, and will continue to be monitored into the future, 
the potential length of the time series prior to a crash occurring is 
limited by not only the monitoring effort but also the time a crash 
occurs (Figure 4). Consequently, the results presented using standard-
ized time-series lengths are more pertinent to detecting early warning 
signals of collapse for use in current conservation prioritization, while 
the results presented where time-series length is allowed to vary may 
be more analogous to data collected into the future.

In conclusion, we show that the predictability of population col-
lapse is likely to be not only a function of the rate at which a system 
is forced away from stability, but may also depend on the underlying 
dynamics. A more complete understanding of a system may therefore 

be required before we are able to identify whether signals generated 
by currently available generic leading indicators are likely reliable.
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