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Abstract

The transcription factor Nrf2 is an important modulator of antioxidant and drug metabolism, 

carbohydrate and lipid metabolism, as well as heme and iron metabolism. Regulation of Nrf2 

expression occurs transcriptionally and post-transcriptionally. Post-transcriptional regulation 

entails ubiquitination followed by proteasome-dependent degradation. Additionally, Nrf2-

mediated gene expression is subject to negative regulation by ATF3, Bach1 and cMyc. Nrf2-

mediated gene expression is an important regulator of a cell’s response to radiation. Although a 

majority of studies have shown that Nrf2 deficient cells are radiosensitized and Nrf2 over 

expression confers radioresistance, Nrf2’s role in mediating the radiation response of crypt cells is 

controversial. The Nrf2 activator CDDO attenuates radiation-mediated crypt injury, whereas 

intestinal crypts in Nrf2 null mice are radiation resistant. Further investigation is needed in order 

to define the relationship between Nrf2 and radiation sensitivity in Lgr5+ and Bmi1+ cells that 

regulate regeneration of crypt stem cells. In hematopoietic compartments Nrf2 promotes the 

survival of irradiated osteoblasts that support long-term hematopoietic stem cell (LT-HSC) niches. 

Loss of Nrf2 in LT-HSCs increases stem cell intrinsic radiosensitivity, with the consequence of 

lowering the LD5030. An Nrf2 deficiency drives LT-HSCs from a quiescent to a proliferative state. 

This results in hematopoietic exhaustion and reduced engraftment after myoablative irradiation. 

The question of whether induction of Nrf2 in LT-HSC enhances hematopoietic reconstitution after 

bone marrow transplantation is not yet resolved. Irradiation of the lung induces pulmonary 

pneumonitis and fibrosis. Loss of Nrf2 promotes TGF-β/Smad signaling that induces ATF3 

suppression of Nrf2-mediated target gene expression. This, in turn, results in elevated reactive 

oxygen species (ROS) and isolevuglandin adduction of protein that impairs collagen degradation, 

and may contribute to radiation-induced chronic cell injury. Loss of Nrf2 impairs ΔNp63 stem/

progenitor cell mobilization after irradiation, while promoting alveolar type 2 cell epithelial-

mesenchymal transitions into myofibroblasts. These studies identify Nrf2 as an important factor in 

the radiation response of normal tissue.
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INTRODUCTION

Nuclear factor, erythroid 2-like 2 (Nrf2), encoded by the gene NFE2L2 (HGNC:7782), is a 

member of the cap’n’-collar (CnC) family of basic leucine zipper transcription factors (1) 

and is conserved in mammals (2), birds (3), fish (4), insects (5) and worms (6). The CnC 

family is composed of SKN-1, Nrf1, Nrf2, Nrf2, Nrf3, CncC, Bach1 and Bach2 (2). Nrf2 

was originally identified as a key regulator of canonical antioxidant and drug-metabolizing 

gene expression (7, 8). Nrf2 heterodimerization with MAF-G (9) or the JUN CnC-bZIP 

factor (10) permits binding to cis antioxidant response elements (AREs) located in proximal 

promoters of Nrf2 target genes that now number over 400 (9), including those involved in 

carbohydrate and lipid metabolism, NADPH regeneration, heme and iron metabolism, as 

well as proteasome metabolism (8, 11). The functional ARE has been defined as 

TMANNRTGACT-CAGCRWWWW, where M = A or C, R = A or G and W = A or T (9). It 

is important to recognize that Nrf2 not only induces gene expression but also functions as a 

suppressor of gene expression (e.g., pro-inflammatory gene expression) (12).

Nrf2 is transcriptionally, post-transcriptionally [reviewed in ref. (13)] and post-

translationally regulated (14). Under nonstress conditions, Nrf2 undergoes rapid 

ubiquitination and proteasome degradation (14). Several Cullin- and Cull-in4/DDB1/

WDR23 (18). Post-translational regulation by the Cullin3/Keap1/Rbx1 E-3 ligase complex is 

the most studied. Oxidative and electrophilic stresses that modify critical cysteine residues 

cause a conformational change in Keap1 that abrogates Keap1’s ability to direct Nrf2’s 

ubiquitination [reviewed in refs. (12,19, 20)]. In addition to stress-related activation, a 

number of proteins [e.g., p21 (21), p62, PALB2, IKKB, DPP3 (22) and iASPP (23)] can 

competitively bind to Keap1 and inhibit Nrf2 ubiquitination. Inactivation of Keap1 allows de 
novo synthesized Nrf2 to translocate to the nucleus and either transduce or suppress target 

genes [Supplementary Fig. S1 (http://dx.doi.org/10.1667/RR15059.1.S1) and (12)].

Adaptive homeostasis is defined as ‘‘the transient expansion or contraction of the 

homeostatic range for any given physiological parameter in response to internal and external 

stimuli’’ (24). Adaptive homeostasis required of Nrf2 can be impaired as a result of 

circadian rhythm, aging or expression of specific hormones and cytokines. Pekovic-Vaughan 

et al. (25) found that Nrf2 was regulated by circadian rhythm and that stress-related tissue 

injury was enhanced during the circadian nadir of Nrf2 expression. Suh et al. (26) showed 

that expression of Nrf2 declines with age resulting in impairment of glutamate-cysteine 

ligase, catalytic subunit (GCLC) and glutamate-cysteine ligase, modifier subunit (GCLM) 

expression and age-related loss of glutathione synthesis. This initial observation has been 

validated and expanded in other investigations that have demonstrated an age-related loss of 

Nrf2 and Nrf2 target gene expression in mice, rats and humans, a consequence, in part, of 

negative regulation by Bach1 or cMyc (27–29). Angiotensin II, a hormone that is elevated in 

a number of diseases, is a potent inhibitor of Nrf2 expression, a consequence of angiotensin 

II-mediated ATF3/Nrf2 heterodimerization (30). TGF-β1 is another cytokine that is elevated 

in disease (31), blunt injury (32) and radiation injury (33, 34). TGF-β/Smad signaling 

induces ATF3, which in turn heterodimerizes with Nrf2 at proximal cis antioxidant response 

elements and displaces CBP from the ARE (35). The result is suppression of Nrf2 target 
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gene expression (36). Thus, the ability of Nrf2 to respond to stress can be compromised by a 

number of factors.

Nrf2 AND RADIATION-INDUCED INTESTINAL INJURY

Stem Cell Niche and the Radiation Response

Epithelial cells of the intestine undergo continuous turnover every four to five days. Renewal 

requires intestinal base columnar stem cells (CBC) located within the crypt basement 

membrane to cycle daily with an outcome of generating transit amplifying (TA) cells that 

migrate up along the villus and differentiate into enterocytes, goblet and enteroendocrine 

cells (37) (Supplementary Fig. S2; http://dx.doi.org/10.1667/RR15059.1.S1). TA progenitor 

cells can also generate Paneth cells that migrate down into the base and may provide stem 

cell niche signals to self-renewing CBC cells (37). In the absence of Paneth cells, 

mesenchymal cells may provide compensatory niche signaling (37). Tian et al. (38) 
identified two stem cell pools in the small intestine. Proliferating CBC cells that express 

Lgr5, Ascl2 and Olfm4 provide constitutive intestinal renewal. The second pool consists of 

quiescent Bmi1+ cells located at positions +3 to +6. Diphtheria toxin-specific ablation of 

Lgr5+ CBCs revealed that Bmi1-expressing cells function as a reserve stem cell pool for 

regeneration of the crypt (38).

CBC cells undergo radiation-induced p53-dependent apoptosis in a dose-dependent manner. 

The intestinal villus-crypt can tolerate doses of up to 10 to 12 Gy, although radiation-

induced apoptosis can be observed at doses as low as ~0.02 Gy (39). For doses less than 10–

12 Gy there is a dose-dependent/strain-dependent reduction of villus-crypt size that is 

subsequently followed by proliferation of remaining stem cells that regenerate the crypt 

(40). The identity of the cells that regenerate crypts after irradiation remains a critical 

question.

Barker et al. (41) found that crypt cells located at position +4 are significantly more 

radiosensitive than CBC et al. (42) examined the proliferation status, location and radiation 

response of Bmi1-expressing cells using Bmi1-CreER;Rosa26-YFP mice exposed to 

tamoxifen (42). Nonirradiated YFP-labeled cells were quiescent and located at position +4 

(ranging from +1 to +6) (42). A 12 Gy whole-body dose induced a proliferative response in 

the YFP-labeled cells that subsequently resulted in expansion of the Bmi1 + lineage to 

repopulate crypts and villi. This work has been expanded on by Kuruvilla et al. (43), who 

found that Bim1-mediated stem cell expansion after irradiation requires KLF4 (43).

The response of Lrg5+ CBC cells to radiation was investigated using Lgr5-eGFP-IRES-

CreERT2 mice (42). These mice harbor a knock-in allele within the first ATG codon of Lgr5 

that is composed of an eGFP-IRES-CreERT2 cassette. The knocked-in cassette results in 

loss of Lgr5 gene function and expression of eGFP (42). In contrast to the radiation response 

of the +4 Bmi1 CreER;Rosa26 YFP cells, CBC Lgr5-eGFP-IRES-CreERT2 cell numbers 

were significantly reduced 48 h after 12 Gy irradiation, although sporadic regeneration was 

observed 7 days postirradiation. Yan et al. (44) then expanded on these studies using RNA-

seq to characterize stem cell inter-relatedness. They found that the CBC signature genes 

(e.g., Lgr5, Ascl2 and Olfm4) were also expressed at low levels in Bmi1-GFP+ cells while 
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Lgr5+ cells express 4+ markers Bmi1, mTert and Hopx, but at low levels. These results 

suggest that crypt position and individual cell markers may be insufficient for cell 

identification.

Metcalfe et al. (40) approached the question of stem cell regeneration after irradiation using 

Lgr5DTR mice in which the diphtheria toxin receptor is knocked into the endogenous Lgr5 

locus. Administration of diphtheria toxin results in Lrg5+-specific cell death (40). A 

regenerating phenotype was produced after exposure to 10 Gy of radiation. In contrast, 

diphtheria toxin-mediated ablation combined with 10 Gy irradiation of Lgr5+ cells resulted 

in attenuation of the regenerative response (40). Metcalfe et al. (40) reconciles his results 

with that of Yan et al. (42) by citing the work of Buczackie et al. (45), who identified a 

distinct, nondividing radiation-resistant population of Lgr5+ cells that are also positive for 

Bmi1+/4+ markers. These cells reside in positions 1–6 and have the potential to regenerate 

crypts after exposure to 6 Gy or less (40).

The Role of Nrf2

Yang et al. (46) addressed the question of whether Nrf2 protected intestinal stem cells from 

radiation injury. Their approach was to administer 13 Gy to the abdomen of C57BL/6J mice 

rather than to the whole body. This targeting spares the majority of the bone marrow. All 

(100%) Nrf2-null mice survived for 30 days postirradiation, whereas only 80% of the wild-

type survived. Abdominal irradiation resulted in apoptosis and a significant loss of crypt-

villus anatomy in wild-type mice. Abdominal irradiation-induced death day 14 and is a 

consequence of loss of intestinal stem cells. Strikingly, the crypt-villus structure was spared 

in the Nrf2-null irradiated mouse. At the stem cell level, the number of Lgr5+ cells was 

greater in the Nrf2-null crypt compared to crypts in wild-type mice. These investigators 

found that loss of Nrf2 resulted in greater radiation-induced activation of NFkB compared to 

wildtype intestine. A control cohort of C57BL/6J mice received 7.5 Gy whole-body 

irradiation. The LD5030 for a C57BL/6 mouse is in the range of 8 to 9 Gy (47) and lethality 

is a consequence of bone marrow stem cell ablation. Of the wild-type mice that received 7.5 

Gy whole-body irradiation, 43% survived to day 30. In contrast, less than 10% of Nrf2-null 

mice survived a 7.5 Gy whole-body dose. This result is consistent with the results reported 

by McDonald et al. (47). The observation that the Nrf2-null mouse was to resistant to 

radiation after abdominal exposure is unexpected but intriguing and bears further 

investigation.

Triterpenoids are electrophiles (48) that undergo Michael reaction and inactivate Keap1 (19), 

thus allowing Nrf2 to avoid ubiquitination and proteasome degradation, and thereby 

producing elevated Nrf2 signaling. CDDO (1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl)) 

is a triterpenoid that results in robust Nrf2 activation. Kim et al. (49) fed mice a diet 

supplemented with 400 mg/kg CDDO for 3 days prior to whole-body irradiation. CDDO 

induced Nrf2 and the Nrf2 DNA repair target gene 53BP1. CDDO reduced radiation-

induced apoptosis, and attenuated radiation-induced loss of crypt length and cell density in 

the colon and small intestine. Mechanistically the results appeared to be due to enhanced 

signaling of the DNA damage response pathway (49).
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Nrf2 AND RADIATION-INDUCED HEMATOPOIETIC INJURY

Stem Cell Niche and the Radiation Response

Long-term hematopoietic stem cells [LT-HSCs: Lin−, Sca1+, c-Kit+, CD150+, CD48−, 

CD41− (50)] in bone marrow can be found adjacent to sinusoid vessel niches (50) that are 

supported by endothelial and nestin-expressing mesenchymal cells that produce SCF and 

CXCL12, as well as other factors (50, 51). Approximately 20% of LT-HSCs are also found 

adjacent to osteoblasts in bone endosteum niches (50,52). Endosteal trabecular niches gain 

importance after ablative doses of ionizing radiation. Forty-eight hours after exposing mice 

to 1.125 Gy irradiation, Dominici et al. (53) observed proliferation and expansion of 

osteoblasts located proximal to the endosteal surface of trabecular bone while noting 

extensive loss of endothelial niches. These investigators then identified osteoblast niches as 

the sites of engraftment after transplantation of GFP-expressing donor HSCs into the lethally 

irradiated mice (53). The Sp7/Osx transcription factor is a Runx2 target gene required for 

osteoblast differentiation (54). Recently, Himburg et al. (51) demonstrated that Sp7-

expressing cells secreting dickkopf-1 (Dkk1) promoted hematopoietic stem cell regeneration 

after ablative irradiation.

The Role of Nrf2

Rana et al. (55) found that Nrf2 was critical to osteoblast survival after ablative irradiation. 

Significantly fewer osteoblasts survived irradiation in Nrf2-null compared to wild-type mice, 

suggesting that the niche’s ability to recover from radiation injury is dependent, in part, on 

Nrf2. Within the niche, LT-HSCs and hematopoietic stem progenitor cells (HSPCs) exhibit a 

hypersensitivity to low-dose radiation (0.02 Gy), a consequence of elevated reactive oxygen 

species (ROS) that induces autophagy and mitophagy (56). Radiation-induced ROS 

stabilizes Nrf2, resulting in nuclear translocation and induction of Nrf2-mediated antioxidant 

gene expression. Failure to induce Nrf2 in Nrf2−/− mice increased HSC 

radiohypersensitivity, whereas inducing Nrf2 prior to irradiation in Mx-Cre-Keap1flox/flox 

mice treated with poly (I:C) abolished hypersensitivity (56). Additionally, Nrf2−/− LSK were 

sorted, irradiated at 0.02 Gy and engrafted in recipient mice. Analysis performed 6 months 

after engraftment showed a dramatic decrease in LT-HSC (56). Nrf2 expression also 

influences the effectiveness of myoablative doses of radiation: loss of Nrf2 lowers the 

LD5030 (47, 57). Conversely, pharmacological induction of Nrf2 increases the LD5030 (49, 

57).

Nrf2 Modulates Hematopoiesis

Short-term HSCs (ST-HSCs; Lin−, Sca-1+, c-Kit+, CD34+ Flt3−), multipotent progenitor 

cells (MPP; Lin−, Sca-1+, c-Kit+, CD34+ Flt3+), committed myeloid and lymphoid lineages, 

but not LT HSCs are increased in Nrf2-null mice compared to wild-type mice (58). While 

LT-HSCs cell numbers were independent of Nrf2, fewer of these cells were quiescent 

compared to wild-type controls, as measured by expression of proliferation and 

differentiation markers, a consequence of elevated cyclin D1 activity and loss of CXCR4-

mediated signaling (58). These defects in Nrf2-deficient HSCs resulted in accelerated 

hematopoietic exhaustion, as assessed in serial competitive transplantation experiments 
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using lethally irradiated mice (58, 59). Thus, an Nrf2 deficiency has the potential to reduce 

engraftment after myoablative irradiation.

Kim et al. (57) used Mx-Cre;Keap1flox/flox mice to study the effects of Nrf2 overexpression 

on HSC function. In LSK cells (Lin− Sca1+ c-Kit+; enriched for LT and ST HSCs, as well as 

MPP cells) loss of Keapl resulted in elevated Nrf2 target gene expression (57). Under 

steady-state conditions there was an increase in LSK cell numbers in Mx-Cre;Keap1flox/flox 

mice compared to control. Use of colonyforming unit assays revealed an increase in 

committed progenitors (GM-CFU and G-CFU). Competitive transplantation of LSK cells 

into lethally irradiated mice revealed increased engraftment of Mx-Cre;Keapflox/flox poly 

(I:C) treated donor cells compared to donor cells from Keaplflox/flox mice (57). These results 

were interpreted to indicate that prolonged Nrf2 signaling enhances hematopoietic 

reconstitution after myelosuppressive irradiation due to activation of Notch signaling. Use of 

tamoxifen-treated CMV-Cre:Keap1flox/flox mice and pharmacological activation of Nrf2 

confirmed the results obtained with of Mx-Cre;Keapflox/flox poly (I:C) treated mice (57).

Vav1-Cre:Keap1flox/flox mice were used to test the hypothesis that Nrf2 promotes HSC 

proliferation (60). Disruption of Keap1 exons 4 through 6 in LSK cells and LT HSCs 

elevated expression of Nrf2 and Nrf2 target genes. Similar to LSK cells in Mx-

Cre;Keap1flox/flox mice, there was a 1.4-fold enrichment of LSK cells in Vav1-

Cre:Keap1flox/flox mice (60). LT HSC numbers in Vav1-Cre:Keap1flox/flox did not increase; 

rather, the cells moved from a G0 quiescent state into G1. This exit from quiescence was not 

observed in Vav1-Cre:Keap1flox/flox::Nrf2−/− mice, demonstrating that the loss of quiescence 

was Nrf2 driven (60). Mechanistically, Nrf2-mediated loss of quiescence was a consequence 

of JAK-STAT signaling. These results suggested that the inability to increase cell number 

coupled with loss of quiescence would impair self-renewal, thereby limiting the ability of LT 

HSCs to reconstitute lethally irradiated bone marrow. This hypothesis was tested using a 

competitive transplantation assay. Indeed, LT HSCs obtained from Vav1-Cre:Keap1flox/flox 

mice exhibited a deficiency in reconstitution capacity compared to control (60). These 

results were confirmed using Mx-Cre;Keap1flox/flox mice treated with poly (I:C) or 

administered the Nrf2 activator 1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl) imidazole 

(CDDO-Im). In these model systems it appears that prolonged activation of Nrf2 reduces LT 

HSC self-renewal and quiescence while driving differentiation, thereby diminishing the 

ability of LT HSCs to reconstitute irradiated bone marrow (60). The differences between the 

study of Kim et al. (57) and that of Murakami et al. (60) are not currently understood and 

require further investigation.

Nrf2 AND RADIATION-ASSOCIATED PULMONARY INJURY

The Radiation Response

There are several excellent reviews with in-depth discussions on the subject of radiation-

induced pneumonitis and pulmonary fibrotic injury (61–63). In brief, radiation pneumopathy 

is composed of two pathophysiologies: pneumonitis and fibrosis. Pneumonitis is a mostly 

resolvable inflammatory reaction that develops within weeks postirradiation, whereas 

fibrosis takes months to years to develop and is progressive (61). Fibrosis is considered a 

disease induced by recurrent and/or nonresolving injury to lung epithelium that results in 
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cell death and/or phenotypic alterations to surviving cells, which leads to generation of 

myofibroblasts/fibrocytes and deposition of extracellular matrix (64–71). Radiation-induced 

pulmonary injury can be characterized by endothelium and pneumocyte apoptosis and 

senescence (71, 72) that are followed by recruitment of NADPH oxidase-expressing 

inflammatory cells and myofibroblasts to sites of injury, which in turn contribute to 

oxidative and cytokine stress. In published studies, it has been shown that suppression of 

TGF-β/Smad signaling, or overexpression of superoxide dismutase and/or overexpression of 

catalase abrogates development of radiation-induced pulmonary fibrosis (73–76). Such 

research supports the hypothesis that TGF-βl and oxidative stress are two drivers of fibrosis. 

Interestingly, as a side bar, Favaudon et al. (77) found that short pulses (less than 500 ms) of 

radiation administered at dose rates in excess of 40 Gy/s did not induce pulmonary fibrosis if 

the total dose delivered did not exceed 20 Gy.

The Role of Nrf2

The severity of radiation-induced pulmonary fibrosis is enhanced in the Nrf2-null mouse. 

Loss of Nrf2 increases radiation-mediated pulmonary tissue remodeling and collagen 

deposition (78). Loss of Nrf2 in irradiated lung impairs ΔNp63 stem/progenitor cell 

mobilization and proliferation, regeneration of alveolar type 2 cells (78), with an outcome of 

elevated FSP1 expression (79) and enhanced Masson’s trichrome staining of collagen 

deposition (78), two markers of fibrosis. In injured lung Δp63+/Krt5+ stem cells can be 

mobilized to proliferate significantly and differentiate into alveolar type 1 and 2 epithelial 

cells in vitro and in vivo. Diphtheria toxin targeting of these stem cells impairs regeneration 

of injured lung and pulmonary oxygenation while promoting fibrosis, as measured by FSP-1, 

Masson’s trichrome, and α-smooth muscle staining (80, 81). Thus, it has been hypothesized 

that ΔNp63 + stem/progenitor cell mobilization contributes to alveolar type 2 cell 

regeneration after radiation injury (78). However, it is important to note that if there are 

hypoxic regions in injured lung then HIFα/ Notch signaling reprograms Δp63+/Krt5 + cells 

to form basal-like metaplasia (82). Additionally, an Nrf2 deficiency promotes radiation-

induced alveolar type 2 cell epithelial-mesenchymal transitions into myofibroblasts (78). At 

a molecular level it has been shown that Nrf2 can form a nuclear complex with nuclear 

pSmad3 at CAGA sites located in the proximal promoters of TGF-β target genes (79), 

suppressing gene expression (79, 83). Thus, loss of Nrf2 promotes TGF-β/RSmad signaling, 

a key factor for promoting epithelial-mesenchymal transitions (84). Conversely, TGF-β/

RSmad signaling has been shown to suppress Nrf2-dependent gene expression. TGF-β/

RSmad signaling induces ATF3, which in turn complexes with Nrf2. The ATF3/Nrf2 

complex binds to ARE sites in the promoters of Nrf2 target genes, suppressing recruitment 

of CBP to AREs, with an outcome of suppressing Nrf2 target gene expression (37, 38, 85). 

Loss of Nrf2-dependent gene expression has been shown to promote myofibroblast 

development and increased oxidative stress (35, 86).

The molecular identity of radiation-induced pulmonary oxidant injury has been an enigma 

until recently. Mont et al. (87) provided direct biochemical evidence that isolevuglandin 

(IsoLG) adduction of proteins represents a radiation-induced, oxidant-mediated injury in 

lung. Genetic evidence linking oxidant challenge to IsoLG adduction has been provided in 

studies using genetically engineered mice, where it was shown that oxidative stress, 
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generated by either loss of Nrf2 or NADPH oxidase activity, promoted IsoLG adduction 

(87). Isolevuglandins (IsoLGs), also known as isoketals, are formed by free radical oxidation 

of arachidonic acid (88). IsoLGs rapidly adduct the ε-amino group of protein lysines. Mont 

et al. (87) identified over 100 proteins susceptible to IsoLG adduction, including lysines on 

histones H3 and H4. Adduction of these histones would be expected to negatively affect 

epigenetic regulation and may represent a mechanism that contributes to fibrotic 

reprogramming (64). Extracellular collagen present in fibrotic lesions has been identified as 

another target for adduction (87). IsoLG adduction of collagen impairs the ability of MMP1 

to degrade it, thus contributing to collagen accumulation. Chronic oxidative stress results in 

accumulation of IsoLG-adducted protein that can evolve into proteotoxic/apoptotic events 

(78), i.e., recurrent injury.

CONCLUSION

Research performed in mouse models has shown that Nrf2 expression affects recovery from 

radiation injury in a tissue-dependent manner. Whereas in the intestine an Nrf2 deficiency 

protects irradiated Lg5+ CBC cells, loss of Nrf2 in LT-HSCs and progenitor hematopoietic 

cells increases the radiation sensitivity, while promoting accelerated hematopoietic 

exhaustion. In the lung an Nrf2 deficiency promotes fibrotic TGF-β signaling and oxidative 

injury, and inhibits ΔNp63 stem cell mobilization and alveolar type 2 cell regeneration, 

thereby enhancing pulmonary tissue remodeling and fibrosis. Importantly, the Nrf2 

haploinsufficient mouse is as susceptible to radiation-induced lung injury as a homozygous 

knock-out mouse (79). While loss of Nrf2 can be radiosensitizing, inducing Nrf2 

overexpression has been shown to protect both intestine and hematopoietic tissue from acute 

radiation injury. However, conflicting results have been reported concerning engraftment of 

cells that overexpress Nrf2 after myoablative irradiation.

There can be significant variability in the expression of human NFE2L2 that can affect Nrf2-

target gene transcription (87). This variability can be a consequence of several mechanisms. 

As reviewed by Cho (89), there are 14 transcript variants reported for the human NFE2L2 

gene and three major protein isoforms (and nine minor). The frequency of NFE2L2 SNPs 

and other mutations is 1 per 73 bps. Functional polymorphisms in NFE2L2 that diminish 

expression of Nrf2 have been linked with several diseases [reviewed in ref. (90)]. Nrf2 

transactivation is subject to epigenetic regulation that can be suppressed, with a consequence 

of inhibiting Nrf2 target gene expression (1,91–93). An important unanswered question is 

whether Nrf2 expression affects normal tissue radiation sensitivity in humans as it does in 

mice. There are a number of questions that need to be resolved before a detailed molecular 

understanding of Nrf2, stem cell function and radiation response is obtained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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