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Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of 

cancer related deaths worldwide. Among others, non-alcoholic steatohepatitis (NASH) and 

alcoholic steatohepatitis (ASH) are the two major risk factors as both of them may develop 

cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, patients with NASH 

progress to HCC at a rate around 0.5% annually, while 3–10% ASH patients may progress to HCC 

annually. The present study is to demonstrate the molecular differences in oncogenesis pathway 

between NASH and ASH. By using immunofluorescence study and quantitating the fluorescence 

intensity morphometrically in liver biopsied specimens from NASH and ASH patients, the protein 

expression of candidate molecules within hepatocytes cytoplasm are studied, including two HCC-

related molecules FAT10 and FOXO1, and one GPCR pathway related molecule ADRA2A. 

Compared with the control group patients, the expression levels of all the molecules were 

upregulated in the ASH group of patients(p<0.001 in all molecules), while FAT10 and ADRA2A 

were upregulated, FOXO1 did not change in the NASH group of patients.The most important 

finding is that compared with the ASH group of patients, the expression levels of all three 

molecules were significantly lower than in the NASH group of patients (p<0.001 in all molecules). 

These results confirmed our previous finding that there are significant differences of molecules 

change in ASH compared to NASH. Thus, we conclude that there are significantly different 

molecules and pathways involved during the pathogenesis of HCC development in ASH compared 

to NASH which could help explain why the tumorigenic rate is different in ASH and NASH.

Introduction

Liver cancer is the fifth most common cancer and the second leading cause of cancer related 

deaths worldwide [Ferlay et al., 2012]. The major risk factors include hepatitis B (HBV) and 

hepatitis C (HCV), obesity/metabolic syndrome, and alcoholism which all may progress to 

hepatocellular carcinoma (HCC). In the last two decades the rising rates of obesity/

metabolic syndrome have led to the increased development of the non-alcoholic fatty liver 

disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Experimental and epidemic 
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studies have shown relationships between NASH and HCC development. Alcoholic liver 

disease (ALD) and ASH are the major causes of HCC in US [Morgan et al., 2004][Ramadori 

et al., 2017][Testino et al., 2014]. NASH has similar histological features with alcoholic 

hepatitis, such as overt lipid deposition and fat storage in the liver parenchymal cells. Both 

ASH and NASH may progress to fibrosis, cirrhosis, and ultimately hepatocellular carcinoma 

(HCC), about 7–10% of NASH may progress to cirrhosis [Scaglioni et al., 2011] and 0.5% 

to HCC [Lindenmeyer et al., 2018], while 10–20% of ASH progress to cirrhosis [Schwartz 

et al., 2012][Dam-Larsen et al., 2004] and 7–10% to HCC [Schwartz et al., 2012], annually. 

Our previous published work showed that there are different molecules protein changes in 

ASH compared with NASH [Nguyen et al., 2018][ Lu et al., 2018]

The mechanisms by which NASH and ASH progress to HCC are not completely understood 

and the re are many theories including chromosomal loss of tumor suppressor genes, 

oxidative stress, decreased liver retinoic acid level, altered DNA methylation, and genetic 

susceptibility [Morgan et al., 2004][Stickel et al., 2002, 2015]. In our previous studies, we 

showed that in addition to the TLR/NFKB/CXCR4/7 [Liu et al., 2014][French et al., 2012]

[Nan et al., 2005][French et al., 2010] and PI3K/AKT/mTORC1 signaling pathways 

[Afifiyan et al., 2017], Tec kinase signaling pathway connects these two systems together in 

Mallory-Denk Bodies (MDB) formation both in ASH and NASH [Afifiyan et al., 2017]. 

During these studies we found that HLA-F-adjacent transcript 10 (FAT10), a ubiquitin-like 

modifier protein which functions as a proteasomal degradation signal [Schmidtke et al., 

2009][Rani et al., 2012][Hipp et al., 2005], plays an important role in MDB formation and 

tumorigenesis [Oliva et al., 2010][Oliva et al., 2008][French et al., 2012] and we proved that 

MDB forming cells express preneoplastic phenotypic features [Nan et al., 2006]. To confirm 

the roles of FAT10 and other related molecules in HCC tumorigenesis in NASH and ASH, 

we studied the changes of FAT10, FOXO1, and ADRA2A in liver biopsy specimens from 

NASH and ASH patients and control groups.

Methods

Formalin-fixed paraffin-embedded biopsies of ASH liver (n=39 in FAT10, 50 in FOXO1, 40 

in ADRA2A), NASH liver (n=30), and normal liver (n=20) were collected from Harbor-

UCLA Medical Center and from the Long Beach Veterans Affairs’ clinical trial in treatment 

of alcoholic hepatitis. The study was conducted following the principals of the Declaration 

of Helsinki and was designated as exempt by our institutional ethics review board and the 

data was analyzed anonymously. The primary antibodies were rabbit anti-FAT10, anti-

FOXO1, and anti-ADRA2A purchased (Abcam, Cambridge, MA). For each protein studied, 

the biopsy sections were stained first with protein-specific primary antibody followed by a 

secondary fluorescence antibody. Either donkey anti-mouse or anti-rabbit Alex Fluor 

(Jackson Labs, West Grove, PA) was used as the second antibody. The slides were also 

stained for ubiquitin (to identify MDBs) using Texas Red (Millipore, Temecula, CA) and 

nuclear stained by DAPI. The staining of all the specimens was conducted under the same 

situation to provide accurate comparison between groups. For each candidate molecule, we 

measured the intensity of the fluorescent staining of the liver cells in at least three different 

areas on each section with 40× magnifications and 800 ms standard exposure time by using 

a Nikon 400 fluorescent microscope. On each section area, 10 peak fluorescence intensities 
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were collected and the florescent intensity was quantitated by using the Nikon morphometric 

system. The mean value, standard error, and statistical differences of data achieved from the 

Nokia were analyzed by Graph pad statistical software. Controls vs AH, controls vs NASH, 

and AH vs NASH were compared by unpaired t-test with a p-value of<0.05 considered 

statistically significant.

Results

The protein expression level of several candidate molecules in specimens from patients with 

ASH, NASH, and normal controls were compared. Representative data are shown in Fig. 1–

3.

In ASH patients, levels of all tested candidate proteins including FAT10, FOXO1, and 

ADRA2A (Fig. 1–3) were markedly increased compared with the control group. In NASH 

patients, FAT10 and ADRA2A were upregulated when compared to control group, while 

FOXO1 level was not changed (Fig. 2).

The most interesting finding is that all three molecules, FAT10, FOXO1, and ADRA2A were 

significant lower in the NASH group specimens compared with the ASH group (Fig. 1–3).

Discussion and Conclusions

The increasing rates of obesity and the metabolic syndrome become a major health problem 

worldwide which is emphasized by the relationship from NASH to cirrhosis and even HCC. 

Wong et al. showed that NASH is the most rapid growing risk for liver transplantation in 

patients with HCC [Wong et al., 2014, 2015]. Chronic (longer than 10 years) alcohol 

consumption (greater than 80 gram/day) increases the risk for HCC approximately 5 fold 

[French SW. 2013]. ALD is the most common cause of HCC which accounts for around 

one-third of all HCC cases in US and Italy [Morgan et al., 2004][Testino et al., 2014]. It is 

believed that alcohol is a factor in the development of HCC through genotoxic (direct) 

pathway and cirrhosis (indirect) mechanisms.

Both ASH and NASH could progress to cirrhosis and even hepatocellular carcinoma (HCC), 

but the mechanisms remain unclear, although there are many theories. It is well accepted that 

the rates of those progressing to cirrhosis or HCC annually are lower in the NASH if 

compared with those in ASH. Our published data support that different molecules or 

pathways may be involved in ASH compared with NASH during the tumorigenesis [Nguyen 

et al., 2018][Lu et al., 2018] Our work also showed that the TLR/NFKB/CXCR4/7 [Liu et 

al., 2014][French et al., 2012] [Nan et al., 2010], PI3K/AKT/mTORC1 signaling pathways 

[Afifiyan et al., 2017], and Tec kinase signaling pathway connected each other during MDB 

formation both in ASH and NASH [Afifiyan et al., 2017].

FAT10 was found as a proteasomal degradation signal. Recent studies reported that FAT10 is 

expressed mainly in tissues of the immune system, including the spleen and thymus [Liu et 

al., 1999][Lee et al., 2003]. In addition, FAT10 is induced by proinflammatory cytokines in 

various tissues outside the immune system including the liver and colon [Ren et al., 2011]

[Lukasiak et al., 2008], but the physiological functions of this response remain unknown. 
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However, it is accepted that constitutive induction of FAT10 has deleterious consequences in 

cellular malignancy development [Gao et al., 2013]. And FAT10 was reported being up-

regulated in several tumor types including tumors of the liver and colon [Lee et al., 2003]

[Lukasiak et al., 2008][Qing et al., 2011][Yan et al., 2010]. Although the mechanism of 

FAT10 promalignant function remains unclear, many researchers have re-ported that the 

expression of FAT10 increased with Akt, NF-κB/STAT3 [Gao et al., 2013][ Liu et al., 2014], 

CXCR4/7[Gao et al., 2013], MAD2 [Theng et al., 2014], p53 [Choi et al., 2014], and β-

catenin/TCF4 [Aichem et al., 2016], in addition to its signal for proteasomal degradation 

[Schmidtke et al., 2014]. Previously, we reported that FAT10 plays an essential role in MDB 

formation and tumorigenesis [Oliva et al., 2008, 2010][French et al., 2012]. In the present 

study, we found that FAT10 increased in the ASH and the NASH specimen compared with 

control group, but significantly decreased in the NASH specimens compared with the ASH 

group.

Growing evidence strongly supports that FAT10 itself promotes carcinogenesis by directly 

increasing survival, proliferation, invasion, and metastasis formation of tumor cells. The 

upregulation of FAT10 expression in a number of different tumor types might be useful as a 

prognostic marker for the survival rate of the affected patients and for estimating the 

probability of recurrence. Potential therapeutic avenues aiming at FAT10-inducing pathways 

such as NF-κB/STAT3 signaling as well as targeting the FAT10 conjugation pathway seem 

to be promising as the genetic FAT10 knockout mice show less severe phenotypes [Canaan 

A et al 2006].

FOXO proteins belong to a sub-group of a superfamily of forkhead box (FOX) -containing 

transcription factors (TFs). Based on the phylogenetic analysis of the sequences of the 

known chordate FOX proteins, these TFs are classified into 19 subclasses, ranging from 

FOXA to FOXS [Kaestner et al., 2000][Jackson et al., 2010]. In mammals, four subfamily 

members of FOXOs have been identified: FOXO1, FOXO3, FOXO4 and FOXO6. FOXO1, 

FOXO3 and FOXO4 mRNAs are expressed ubiquitously in varying levels in mammals and 

negatively regulated by the PI3K/Akt pathway [Anderson et al., 1998][Furuyama et al., 

2000]. It was thought that FOXO1 was a classic tumor suppressor due to their tumor 

inhibitory effects, such as repressing the cell cycle, inducing cell apoptosis, suppressing 

tumorigenesis, and being related with certain cancers via FOXO mutation or translocation 

[Yadav et al., 2018]. Growing evidence shows that FOXOs also support tumor development 

and progression [Hornsveld et al., 2018][Shi et al., 2018], including being related to bad 

prognosis, facilitating/stimulating metastasis, maintaining cellular redox homeostasis and 

enhancing oxidative stress resistance, and subsequently involving the chemotherapeutic 

resistance. In summary, the roles of FOXO1 in tumorigenesis is complex, and further studies 

are needed. In our data, the dramatic increased changes of FOXO1 in ASH specimens 

compared with control group indicated the FOXO1 may be important in tumorigenesis of 

HCC in ASH patient. While the no change of FOXO1 in NASH specimen compared with 

control supported that a different mechanism is involved in HCC development in NASH 

patients. The similar pattern of protein changes of FAT10 and FOXO1 suggested that FAT10 

and FOXO1 may work together in HCC tumorigenesis in ASH patients (Fig. 4). One of the 

possible putative thoughts is that FAT10 may regulate FOXO1 via ubiquitination and 

proteasome degradation [Huang et al., 2011]
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ADRA2A (Adrenoceptor A2A) belongs to Adrenoceptors family α-subtypes which are class 

A G protein-coupled receptors (GPCRs). All three α2-subtypes adrenoceptors (ADRA2) 

including ADRA2A couple to inhibitory Gi proteins and modulate the downstream 

PI3K/Akt pathway to regulate multiple physiologic processes, such as neurotransmitter 

release, platelet aggregation, blood pressure, insulin secretion, and lipolysis [Ahles et al., 

2014][Fagerholm et al., 2011]. ADRA2A also plays an important role in modulating the 

inflammatory process via TLR4/NF-κB pathways [Leong et al., 2010][Wang et al., 2016]. In 

our published work, we proved the roles of TLR/NF-κB-CXCR4/7 pathway and PI3K/Akt 

pathway in human ASH and NASH specimen with MDB formation. It is possible that the 

ADRA2A plays a role in ASH or NASH via GPCR/PI3K/Akt and/or TLR4/NF-κB 

pathways (Fig.4). Our present data showed that the ADRA2A significantly increased in 

ASH specimens compared with control but not in NASH specimen. The difference of 

ADRA2A expression between ASH and NASH specimens may also explain the different 

rate in HCC tumorigenesis between ASH and NASH patients.

In summary, our present data and previous published studies demonstrates the different 

expression of proteins which represent different pathways, such as GPCR/PI3K/Akt and/or 

TLR4/NF-κB/STAT3 pathways, and explains the different rate of progression to fibrosis, 

cirrhosis, and eventually HCC in ASH and NASH patients. These findings may be very 

helpful to understand the pathogenesis of HCC and to discover possible therapeutic target 

points. Obviously, more detailed research is needed.
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Figure 1. 
Different Changes of FAT10 in ASH and NASH specimens. (A) Level of expression of 

FAT10 protein upregulated in ASH, NASH or normal controls. Expression is measured as 

fluorescence intensity and displayed as mean +/− standard deviation. Representative images 

of fluorescence intensity to measure FAT10 expression in normal control (B), ASH (C) and 

NASH (D) liver specimens. A line is drawn through the image to yield a fluorescence 

intensity graph; the intensity of the ten highest peaks are measured, excluding nuclear 

regions which are highlighted by DAPI (not shown). Three areas per slide are measured in 

this manner including Figure 2 and 3.
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Figure 2. 
Different Changes of FOXO1 in ASH and NASH specimens. (A) Level of expression of 

FOXO1 protein upregulated in ASH, NASH or normal controls. Expression is measured as 

fluorescence intensity and displayed as mean +/− standard deviation. Representative images 

of fluorescence intensity to measure FOXO1 expression in normal control (B), ASH (C) and 

NASH (D) liver specimens.
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Figure 3. 
Different Changes of ADRA2A in ASH and NASH specimens. (A) Level of expression of 

ADRA2A protein upregulated in ASH, NASH or normal controls. Expression is measured 

as fluorescence intensity and displayed as mean +/− standard deviation. Representative 

images of fluorescence intensity to measure ADRA2A expression in normal control (B), 

ASH (C) and NASH (D) liver specimens.
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Figure 4. 
Putative pathway for FAT10, FOXO1, and ADRA2A in the HCC tumorigenesis. The 

different expression of FAT10, FOXO1, and ADRA2A proteins in ASH and NASH suggest 

different pathways, including GPCR/PI3K/Akt and/or TLR4/NF-κB/STAT3 pathways in 

HCC tumorigenesis due to different causes.

Jia et al. Page 11

Exp Mol Pathol. Author manuscript; available in PMC 2018 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Results
	Discussion and Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

