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Poplar is an important model for gene discovery and 
characterization. These trees undergo extensive sec-
ondary growth to produce wood from the vascu-
lar cambium, but it has been challenging to visualize 
the earliest stages of development. Bossinger and 
Spokevicius (2018) have used a technique known as 
sector analysis to visualize cell fate, addressing a long-
standing debate on the origins of xylem and phloem in 
tree cells and providing an unprecedented look at ini-
tial wood formation.

Populus spp., commonly called cottonwoods, aspens or pop-
lars, inhabit much of the northern hemisphere yielding up to  
19 Mg ha–1 year–1 of biomass in Canada and the United States 
alone (Sannigrahi et  al., 2010). Having a sequenced gen-
ome (Tuskan et  al., 2006), numerous studies of global gene 
expression (e.g. Schrader et al., 2004) and collections of acti-
vation- (reviewed by Busov et  al., 2010) and transposon-
tagged (Fladung, 2011) mutants, they are an important model 
for gene discovery and characterization in angiosperm trees. 
Unlike other model plants such as Arabidopsis, Populus spp. are 
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perennial trees that undergo extensive secondary growth to 
produce wood involving the vascular cambium (a lateral meri-
stem). Bossinger and Spokevicius (2018) have used a technique 
known as sector analysis to visualize cell fate in the vascu-
lar cambium and provide an unprecedented look at the early 
stages of wood development.

Populus wood and the importance of 
secondary growth

Populus wood is an important feedstock for the pulp and paper 
industry (Christersson, 2008), and having a heating value of 19 
MJ kg–1 for hybrid species, it plays an important role in bio-
energy production through thermochemical conversion (e.g. 
gasification, pyrolysis, hydrothermal liquefaction) (reviewed by 
Sannigrahi et al., 2010; Slopiecka et al., 2012; Chen et al., 2016; 
Tekin et al., 2016). Additionally, Populus wood offers an excellent 
platform for biorefinery development, since the biomass is rich 
in sugars that can be extracted and used to produce fermentation 
products such as bioethanol and polyhydroxybutyrates (Dai and 
McDonald, 2014; Demartini et al., 2015). Thus, key components 
of secondary xylem, mainly cellulose, hemicellulose and lignin, 
have become the focus of many studies, but our knowledge of 
the early stages of wood development remains limited.

The vascular cambium is a cylindrical meristem that gives rise 
to xylem (wood) and phloem during secondary growth. While 

there is plenty of knowledge on the function and differentiation 
of primary growth meristems (apical and root meristems) based 
on studies in annual plants such as Arabidopsis, differentiation of 
the vascular cambium during secondary growth is still poorly 
understood despite the important role of this meristem in pro-
ducing secondary xylem and phloem. One of the challenges of 
studying cells in the cambial zone is the difficulty in morpho-
logically distinguishing cambial initials from mother cells and 
young xylem and phloem, making it hard to develop a model 
to describe division and differentiation patterns. What we know 
of vascular cambium differentiation is that cambial initials have 
the capacity to give rise to both xylem and phloem mother cells, 
which in turn give rise to xylem and phloem elements (Box 1). 
However, there has been a long-standing debate as to whether 
mother cells are derived from a single layer of cambial initials, 
or whether multiple layers of cambial initials exist across several 
radial files (starting with Sanio, 1873, and Raatz, 1892).

Along with the growing number of genomic and prote-
omic resources available for Populus has come a growing list 
of genes responsible for wood development and secondary 
growth with a major focus on cambial meristem activity, and 
wood quality based on cell wall properties (e.g. Obudulu 
et al., 2016; Kucukoglu et al., 2017; Li et al., 2017). Despite 
this, there is a need for a robust way to visualize cell dif-
ferentiation in a mature stem to follow xylem and phloem 
development from the cambial initials and mother cells on 
to mature tissue.

Box 1. Structure of the cambial zone

There are two zones that make up the vascular cambium: the division zone and the differentiation zone. 
The division zone is where the cambial initials undergo cell division, which can occur parallel to, or per-
pendicular to, the surface of the closest organ (periclinal or anticlinal cell division, respectively). After 
cambial initials divide, they enter the differentiation zone, forming either xylem or phloem mother cells 
and, in turn, xylem or phloem. Bossinger and Spokevicius (2018) used sector analysis to determine that 
cambial initials originate from a single layer of cells, adding compelling evidence to a 120-year debate.
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Sector analysis reveals cell fate in the 
cambial zone

Bossinger and Spokevicius have developed a system called sector 
analysis which uses the β-glucuronidase (GUS) reporter gene to 
follow cell fate in the tree stem. Cells are transformed in the cam-
bial zone of a living tree and, after several months of subsequent 
growth, the cell and any of its derivatives are revealed by histo-
chemical GUS staining. After creating hundreds of independent 
transformation events of cells in the cambial zone, this study 
provides a high-throughput and unprecedented look at the dif-
ferentiation of cambial initials and mother cells into xylem and 
phloem. Their evidence provides strong support for three major 
findings: (i) the vascular cambium is made up of a single layer 
of cambial initials, (ii) the differentiation of both phloem and 
xylem mother cells is controlled independently, and (iii) that on 
average four xylem cells are produced for every one phloem cell 
(ranging from 2:1 to 6:1). Unlike previous studies that proposed 
models for the differentiation of the vascular cambium based on 
anatomical analysis of past cell divisions, sector analysis labels a 
single cell and follows the fate of its derivatives throughout the 
stages of xylem and phloem development. This opens up the 
opportunity to analyse gene function in the cambial zone at a 
much higher resolution than previously possible.

Future directions

The research by Bossinger and Spokevicius (2018) not only 
answers basic questions about cambial meristem cell fate and dif-
ferentiation in Populus, but also provides a standard framework of 
wild-type cell differentiation in the tree stem. In our own research 
using activation tagged Populus (Harrison et al., 2007), we have 
identified several mutants with alterations in wood development 
including the ratio of xylem to phloem, wood biomass (which 
is increased) and altered wood properties such as lignin content. 
Testing these mutants with sector analysis would enable a closer 
look at the impact of these mutations on the vascular cambium 
and cell differentiation in the stem, and bring us closer to under-
standing the intricacies of gene function. Similarly, other studies of 
candidate genes involved in cambium development or wood for-
mation that use either natural variants or transgenic lines for func-
tional analysis could benefit from incorporating sector analysis to 
resolve the impact of genes on cell differentiation at the level of 
individual cell lineages as previously shown by Spokevicius et al. 
(2016). This is certainly a valuable addition to the Populus tool box 
for functional characterization of wood formation.

Keywords: Cambium initials, cell fate, poplar, stem cells, wood formation, 
xylogenesis.
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