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ABSTRACT: Improvement in growth and fatness 
traits are the main objectives in pig all breeding 
programs. Tenth rib backfat thickness (10RIBBFT) 
and days to 100 kg (D100), which are good predic-
tors of carcass lean content and growth rate, re-
spectively, are economically important traits and 
also main breeding target traits in pigs. To inves-
tigate the genetic mechanisms of 10RIBBFT and 
D100 of pigs, we sampled 1,137 and 888 pigs from 
2 Yorkshire populations of American and British 
origin, respectively, and conducted genome-wide 
association study (GWAS) through combined ana-
lysis and meta-analysis, to identify SNPs associated 
with 10RIBBFT and D100. A  total of 11 and 7 
significant SNPs were identified by combined ana-
lysis for 10RIBBFT and D100, respectively. And in 
meta-analysis, 8 and 7 significant SNPs were identi-
fied for 10RIBBFT and D100, respectively. Among 
them, 6 and 5 common significant SNPs in two 
analysis results were, respectively, identified associ-
ated with 10RIBBFT and D100, and correspond-
ingly explained 2.09% and 0.52% of the additive 
genetic variance of 10RIBBFT and D100. Further 

bioinformatics analysis revealed 10 genes harbor-
ing or close to these common significant SNPs, 5 
for 10RIBBFT and 5 for D100. In particular, Gene 
Ontology analysis highlighted 6 genes, PCK1, 
ANGPTL3, EEF1A2, TNFAIP8L3, PITX2, and 
PLA2G12, as promising candidate genes rele-
vant with backfat thickness and growth. PCK1, 
ANGPTL3, EEF1A2, and TNFAIP8L3 could in-
fluence backfat thickness through phospholipid 
transport, regulation of lipid metabolic process 
through the glycerophospholipid biosynthesis and 
metabolism pathway, the metabolism of lipids and 
lipoproteins pathway. PITX2 has a crucial role in 
skeletal muscle tissue development and animal 
organ morphogenesis, and PLA2G12A plays a role 
in the lipid catabolic and phospholipid catabolic 
processes, which both are involved in the body 
weight pathway. All these candidate genes could 
directly or indirectly influence fat production and 
growth in Yorkshire pigs. Our findings provide 
novel insights into the genetic basis of growth and 
fatness traits in pigs. The candidate genes for D100 
and 10RIBBFT are worthy of further investigation.
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INTRODUCTION

Improving pig performance has always been 
considered an important issue for the pork in-
dustry. In a pig breeding program, economically 
important traits, such as tenth rib backfat thick-
ness (10RIBBFT) and days to 100 kg (D100), are 
frequently measured to indicate the pig carcass 
lean content and growth rate, respectively. Even 
though many difficulties exist in traditional artifi-
cial selection to improve the 10RIBBFT and D100 
together, given the weak positive genetic relation-
ship between 10RIBBFT and D100 (Bereskin 
et al., 1987; Bidanel et al., 1994), marker-assisted 
selection and even genomic selection could pro-
vide an efficient strategy for the improvement of 
these traits.

In recent years, the high-density SNP array 
was very rapidly developed. This new technique 
is able to simultaneously genotype hundreds of 
thousands of  SNP markers that cover the whole 
target genome. Additionally, the low cost for each 
individual genotyped makes it practical for large 
animal and human populations. One of  its at-
tractive applications is the genome-wide association 
study (GWAS), which allows researchers to detect 
the nucleotide variation associated with traits of 
interest by performing genome-wide mapping with 
higher resolution. Currently, GWASs have been 
successfully implemented in a growing list of  areas, 
not only on disease diagnosis or pharmaceutical 
research (Lutz et  al., 2015; Qayyum et  al., 2015) 
but also for agricultural practice (Goddard and 
Hayes, 2009). For swine, particularly, GWAS has 
made great progress in exploring various traits of 
economic importance such as growth and fatness 
traits (Fernández et al., 2012; Do et al., 2014; Guo 
et al., 2015).

The objectives of this study were to (i) con-
duct a GWAS in 2 Yorkshire populations with dif-
ferent genetic backgrounds to detect the candidate 
genes or genomic regions associated with D100 and 
10RIBBFT, and (ii) compare combined analysis 
and meta-analysis with a single-population GWAS 
analysis.

MATERIALS AND METHODS

Ethics Statement

The whole procedure for collecting ear tissue 
samples was carried out in strict accordance with 
the protocol approved by the Institutional Animal 
Care and Use Committee (IACUC) at the China 
Agricultural University. The IACUC of the China 
Agricultural University specifically approved this 
study (permit number DK996).

Animals and Phenotype

A total of  2,025 Yorkshire pigs used in this 
study were sampled from two breeding farms, 
including 1,137 progeny of  American Yorkshires 
and 888 progeny of  British Yorkshires. The pro-
geny of  American Yorkshires were born in 2011–
2015 and came from 106 sire families (10 to 70 
offspring in each family with an average of  13), 
and the progeny of  British Yorkshires were born 
in 2007–2013 and came from 129 sire families (10 
to 71 offspring in each family with an average of 
7). There was no genetic connectedness between 
the 2 populations according to the pedigree in-
formation. Performance testing was carried out at 
these 2 farms. Phenotypic records included D100 
and 10RIBBFT. Tenth rib backfat thickness was 
measured between the 10th and 11th ribs of  pigs 
at a weight of  approximately 100  kg by B ultra-
sound (HS1500; Honda, Japan). The descriptive 
statistics of  the phenotypic values of  10RIBBFT 
and D100 are presented in Table 1. According to 
the Shapiro–Wilk normal distribution test, both 
traits followed a normal distribution in the 2 pop-
ulations. The official conventional EBV based on a 
2-trait animal model, which was separately imple-
mented in each population, were obtained from the 
National Swine Genetic Improvement Center of 
China (http://www.cnsge.org.cn/); afterwards, cor-
rected phenotypic values were calculated as EBV 
plus the estimated residual for each individual in 
each population.

Table 1. Descriptive statistics and normality test of 10RIBBFT and D100 in 2 Yorkshire populations

Trait Source Unit No. Mean SD W-value1 P-value

10RIBBFT American line mm 1,137 12.31 2.145 0.9237 0.22

British line 888 11.69 1.42 0.9048 0.13

D100 American line d 1,137 167 11.11 0.9453 0.57

British line 888 150 5.13 0.9506 0.44

1W-value = Shapiro–Wilk test value.

http://www.cnsge.org.cn/);
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Genotyping and Quality Control

Genomic DNA was extracted from blood sam-
ples using a TIANamp Blood DNA Kit (catalog 
number DP348; Tiangen, Beijing). Genotyping 
was performed using a PorcineSNP80 BeadChip 
(Illumina, San Diego, CA), which includes 68,528 
SNPs across the entire pig genome. Genotype 
quality control was carried out using PLINK 1.9 
software (Chang et  al., 2015) separately for each 
population. First, individuals with call rates (CR) 
less than 90% were removed and then SNP with 
CR less than 90%, minor allele frequencies (MAF) 
<3%, or significant deviation from the Hardy–
Weinberg equilibrium (HWE; P < 10 × 10−6) were 
removed. After genotype quality control, 2,009 
individuals and 53,233 SNPs remained for further 
analysis.
Population structure. Because the genetic back-
ground of 2 Yorkshire populations in this study is 
different, a principal component analysis (PCA) 
was carried out to detect the population stratifi-
cation using GCTA software (Yang et  al., 2011). 
In order to keep the independence of SNPs, the 
adjacent SNPs with r2 > 0.2 were further pruned 
after genotype quality control, and in total 29,229 
SNPs were used in PCA. The linkage disequilib-
rium within each population was calculated using 
PLINK software as well. Meanwhile, a quantile–
quantile (Q–Q) plot was generated to assess the in-
fluence of population stratification on the GWAS.

Statistical Analysis

Single-population GWAS using a linear mixed 
model was carried out in each pig population sep-
arately. Based on the single-population analysis, 
the meta-analysis was conducted. Meanwhile, 
the combined analysis, which combined the two 
pig populations in the same linear mixed model 
used in the single-population analysis, was also 
implemented.

Combined Analysis and Single-Population Analysis

Both the single-population analysis and com-
bined analysis used the same linear mixed model. 
The main difference between them is that the latter 
utilizes the information of two populations sim-
ultaneously to contruct the genomic additive rela-
tionship (G) matrix.
Linear mixed  model. A linear mixed model was 
implemented to detect the association of SNP with 
growth and fatness traits. The model in this study is 

a single SNP regression model. The model includes 
a random polygenic effect to account for shared 
genetic effects of related individuals and to control 
for population stratification. The statistical model 
is described below:

 y 1 x Zg ec = + + +µ  b ,

where yc is the vector of  phenotypes (corrected 
phenotypic values); 1 is a vector of  ones; μ is the 
overall mean; b is the average effect of  the gene 
substitution of  a particular SNP; x is a vector of 
the SNP genotype (coded as 0,1, or 2); g is a vector 
of  random polygenic effects with a normal distri-
bution g ~ N(0, Gσa

2), in which σa
2 is the polygenic 

variance and G is the genomic additive relation-
ship matrix and was constructed using all mark-
ers following VanRaden (2008); Z is an incidence 
matrix relating phenotypes to the corresponding 
random polygenic effects; and e is a vector of  re-
sidual effects with a normal distribution N(0, Iσe

2), 
in which σe

2 is the residual variance. The software 
GCTA (Yang et  al., 2011) was used to fit the 
model, and 10,000 permutations were performed 
for multiple test correction to identify significant 
SNP. For each trait, the phenotypic values of  all 
individuals were shuffled in each replicate, and 
the maximum statistic value in each permutation 
was gathered to establish the empirical distribu-
tion of  test statistic for GWAS. The genome-wide 
critical value at the significance level of  0.05 was 
obtained at the 5th percentile in the ordered vector 
of  maximum. Similarly, the critical value for each 
chromosome (chromosome-wide) could be cal-
culated based on the maximum statistic on each 
chromosome.
Meta-analysis. Based on the results of  GWAS 
separately in the American and British Yorkshire 
populations through single-population analysis, a 
meta-analysis based on Fisher’s method was car-
ried out to combine P-value probabilities from 
each test into one test statistic (X2) using the 
formula

 X P
t

T

t
2

1

2= −
=

∑ ln( )

Where  Pi is the raw P-value of tth study for 
t = 1, …, T, in which T is the number of independent 
studies. When all the null hypotheses are true, this 
combined test statistic follows a χ2 distribution with 
2T of  degree of freedom. Therefore, the new P-value 
from the meta-analysis was calculated using

 P XTFisher Pr= − ≤1 2
2 2( )χ
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where χ2
2T is a χ2 variable with 2T of  degree of 

freedom. In our study, we used the common SNP 
in the American line and the British line by Fisher’s 
method to calculate a meta-analysis P-value. 
Afterwards, Bonferroni correction at a significance 
level of 0.05 was used to identify significant SNP. 
There were 47,498 common SNPs in the American 
and British populations, the threshold P-value 
for each SNP at a significance level of 0.05 was 
1.05 × 10−6 (0.05/47498).
Identification of candidate  genes. To identify 
functionally plausible candidate genes near the 
significant SNP, the genes located in or overlap-
ping the region between the 0.5 Mb upstream and 
0.5  Mb downstream of the significant SNP were 
obtained using Ensemble (http://www.ensembl.
org/Sus_scrofa/Info/Index; Sscrofa 10.2 genome 
version). Gene Ontology analysis was carried out 
using the DAVID bioinformatics resource (https://
david.ncifcrf.gov/). Pathway analysis was con-
ducted using the online KEGG (http://www.kegg.

jp/kegg/pathway.html) and GeneCards (http://
www.genecards.org/) tools.

RESULTS

Population Structure

As shown in Figure 1a, the 2 Yorkshire popu-
lations can be clearly identified through principal 
component analysis. Within each population, all 
individuals were classified nearly into one cluster, 
implying no significant or slight genetic differenti-
ation among them. However, although the genetic 
background of the 2 Yorkshire populations was 
different, they shared a similar linkage disequi-
librium (LD) pattern. Figure  1b and c illustrates 
that LD similarly decayed in both populations. 
The average linkage disequilibrium between adja-
cent SNP measured with r2 was 0.563 and 0.571 in 
American and British Yorkshires, respectively, and 
the correlation of r2 between the 2 populations was 

Figure 1. Population structure and distribution of LD for 2 Yorkshire populations. (a) Principal components analysis, (b) distribution of LD 
in the American Yorkshire line, and (c) distribution of LD in the British Yorkshire line; PC1 = first principal component; PC2 = second principal 
component.

http://www.ensembl.org/Sus_scrofa/Info/Index;
http://www.ensembl.org/Sus_scrofa/Info/Index;
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
http://www.genecards.org/
http://www.genecards.org/
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0.47. Supplemental Figure S1 indicates the impact 
of population stratification on GWAS. The x-axis 
and y-axis represent the expected and observed 
−log10(P-value) of all filter SNPs. The inflation 
factor λ, the regression of observed values on 
expected ones, can assess the population stratifica-
tion. As λ approaches 1.0, population stratification 
is reduced. Without any population stratification 
control (Supplemental Figure S1a and S1b), the 
average genomic inflation factor (λ) for 10RIBBFT 
and D100 was 2.03 and 2.74, respectively. When 
the additive genomic relationship (G) matrix was 
used in the linear mixed model, the average gen-
omic inflation factor (λ) for 10RIBBFT and D100 
decreased to 1.21 and 1.15, respectively, indicating 
that population stratification was properly con-
trolled (Supplemental Figure S1c and S1d).

SNPs Significantly Associated with 10RIBBBFT

The GWAS results of  all significant SNPs 
associated with 10RIBBFT in combined analysis 
and meta-analysis are illustrated in Table  2 and 
Figure 2a and c. For combined analysis, the empir-
ical P-value of  a permutation test at the genome-
wide significance level of  0.05 was 4.51  ×  10−6. 
Similarly, the empirical P-values at the chromo-
some-wide significance level of  0.05 were also 
obtained for each chromosome. For SSC1, SSC4, 
SSC6, SSC9, SSC11, SSC16, and SSC17, where 
the chromosome-wide significant SNPs were iden-
tified, the empirical P-values of  a permutation test 
at the chromosome-wide significance level were 
3.11 × 10−5, 1.23 × 10−5, 2.75 × 10−5, 2.22 × 10−5, 
1.87 × 10−5, 1.72 × 10−5, and 2.75 × 10−5, respect-
ively. A  total of  11 SNPs were identified to be 
significantly associated with 10RIBBFT in com-
bined analysis, explaining 2.77% additive genetic 
variance of  10RIBBFT. Among them, 4 SNPs 
reached the genome-wide significance level and 7 
reached the chromosome-wide significance level 
(Figure 2a). The 4 genome-wide significant SNPs 
were located on SSC6, SSC15, and SSC17, and the 
7 chromosome-wide significant SNPs were located 
on SSC1, SSC4, SSC6 and SSC9, SSC11, SSC16, 
and SSC17.

As shown in Table  2, a total of 8 SNPs were 
identified by meta-analysis to be significantly asso-
ciated with 10RIBBFT, which were located in SSC1, 
SSC4, SSC6, SSC9, SSC15, and SSC17 (Figure 2c). 
In addition, there were 6 common significant 
SNPs identified by both combined analysis and 
meta-analysis (Supplemental Table S1), explaining 
2.09% additive genetic variance of 10RIBBFT.

SNPs Significantly Associated with D100

The GWAS results of all significant SNPs 
associated with D100 in combined analysis 
and meta-analysis are illustrated in Table  3 and 
Figure 2b and d. For combined analysis, a total of 
7 SNPs were identified to be significantly associated 
with D100, explaining 0.67% additive genetic vari-
ance of D100. Among them, 3 genome-wide and 4 
chromosome-wide significant SNPs were identified 
(Figure 2b). The empirical P-value at the genome-
wide significance level of 0.05 was 6.27 × 10−6. The 
empirical P-values of a permutation test at the 
chromosome-wide significance level of 0.05 for 
SSC1, SSC6, SSC8, and SSC9, where the chromo-
some-wide significant SNPs were identified, were 
3.11 × 10−5, 2.75 × 10−5, 2.35 × 10−5, and 2 × 10−5, 
respectively. Meanwhile, 7 significant SNPs asso-
ciated with D100 were detected by meta-analysis, 
they were located on SSC3, SSC6, SSC8, SSC11, 
and SSC16 (Figure  2d), and 5 significant SNPs, 
which located in SSC3, SSC6, and SSC8, were 
overlapped with those from combined analysis, 
and 0.52% additive genetic variance of D100 was 
explained by them.

Identification of Candidate Genes

Based on 11 common significant SNPs associ-
ated with 10RIBBFT and D100 identified by com-
bined analysis and meta-analysis, 10 genes, which 
located within the region between the 0.5 Mb up-
stream and 0.5 Mb downstream of the significant 
SNP, were found and annotated (Tables 2 and 3). 
While Go analysis revealed that there were 6 anno-
tated genes had a highlight biology function with 
10RIBBFT and D100. Among these 6 annotated 
genes, 4 genes had function related to 10RIBBFT 
and 2 related to D100.

DISCUSSION

Candidate Genes

According to the results of gene annotation, 
a total of 6 genes were relevant to both traits. 
Generally, all these candidate genes could regu-
late or influence backfat thickness and body weight 
through different kinds of biological processes 
and pathways. For 10RIBBFT, 4 candidate genes, 
PCK1, ANGPTL3, EEF1A2, and TNFAIP8L3, are 
highlighted as promising biological candidate genes 
for 10RIBBFT. PCK1 is associated with gluconeo-
genesis and lipid and glucose metabolic processes. 
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Pena et al. (2016) found that PCK1 takes part in the 
metabolic step in lipid metabolism. In Iberian pigs, 
PCK1 is related to enzyme kinetic and functional 
properties modifying fat distribution (Latorre 
et  al., 2016). ANGPTL3 takes part in lipid diges-
tion, mobilization, transport, and lipoprotein me-
tabolism pathways. ANGPTL3 has been reported 
to have functions in the activity of lipoprotein 
lipase and lipoprotein metabolism in humans 
(Bauer et al., 2011; Adeyemo et al., 2012). It also 
has been identified by GWAS as a lipid-associated 
locus in pigs (Feng et al., 2006). As to TNFAIP8L3, 
it has key functions and is involved in some lipid 
pathway, like phospholipid biosynthesis, transport, 
metabolism, and lipoproteins metabolism pathway. 
TNFAIP8L3 has not been defined in pigs and mice, 
whereas in humans it was regarded as a lipid second 
messenger transfer protein (Cui et al., 2015). Our 
findings will be helpful for a better understanding 
of the role of TNFAIP8L3 in backfat thickness 
metabolism. Also, EEF1A2 has a close association 
with phospholipid transport and could positively 
regulate lipid kinase activity. In previous pig GWAS 
studies, the EEF1A2 gene has been reported to be 
associated with intramuscular fat content in long-
issimus muscle (Serão et al., 2011), and our study 
confirmed the previous investigation.

For D100, 5 significant SNPs were found to 
be intragenic or close to 5 genes. Among these 
genes, only PITX2 and PLA2G12A were rele-
vant with D100. PITX2 has a crucial role in skel-
etal muscle tissue development and animal organ 

morphogenesis, and the transforming growth 
factor beta signaling pathway (Shih et  al., 2007). 
PLA2G12A plays a role in the lipid catabolic 
process and the phospholipid catabolic process. 
Although PLA2G12A had been reported involving 
in lipid metabolism (Ballester et al., 2017) and rele-
vant with intramuscular fat (Puig-Oliveras et  al., 
2016), it could be helpful for fat deposition in the 
late stage of  pig production.

Population Stratification Control in Different 
Genetic Backgrounds

The most important problem in GWAS is the 
risk of false-positive results for significant SNP, 
which would mislead the process of gene functional 
verification in the next step (Tucker et  al., 2014). 
In our study, we combined 2 Yorkshire popula-
tions with different genetic backgrounds, which can 
easily cause population stratification, as Figure 1a 
shows. Therefore, it is essential to control popula-
tion stratification in GWAS. At present, there are 4 
common methods to resolve the problem of popu-
lation stratification, that is, genomic control (Wang 
et  al., 2015), structured association (Fontanesi 
et  al., 2012), PCA (Fontanesi et  al., 2012), and a 
linear mixed model that includes polygenic effects. 
In the linear mixed model, a relationship matrix 
among individuals constructed based on pedi-
gree or genotype data can reduce the influence of 
population stratification. Although pedigree in-
formation could not be used to construct a unified 

Figure 2. Manhattan plot of different analyses for 10RIBBFT and D100. The x-axis represents the chromosomes and the y-axis represents the 
−log10(P-value). The red line indicates the significance threshold for the (a) combined analysis in the 2 populations for 10RIBBFT, (b) combined 
analysis in the 2 populations for D100, (c) meta-analysis in the 2 populations for 10RIBBFT, and (d) meta-analysis in the 2 populations for D100.
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relationship matrix due to no genetic exchange be-
tween these 2 populations in recent years, the ac-
tual existing relationship between populations can 
be traced through genomic information. Some 
weak genetic connectedness between American 
Yorkshires and British Yorkshires is illustrated in 
Supplemental Figure S2, implying that different 
populations of the same breed could have some 
common genetic background even though gene fre-
quencies changed and LD decayed. In our study, 
the genomic relationship matrix adequately con-
trolled population stratification, as the Q–Q plot 
indicated (Supplemental Figure S1). This made the 
GWAS results more reliable.

Comparing the Single-Population Analysis with the 
Combined Analysis and Meta-analysis

In our study, we separately carried out GWAS in 
American and British Yorkshire populations using 
the same model as in the Materials and Methods 
section. However, only few significant SNPs were 
detected in each population, and there were no 
common significant SNPs among the 2 populations 
(data were not shown). Although many GWASs 
have been carried out for the same traits, unfor-
tunately, the consistency of results from different 
investigations is relatively low. For example, Qiao 
et  al. (2015) performed a GWAS using a White 
Duroc × Erhualian F2 intercross population and a 
Chinese Sutai population to reveal SNP and can-
didate genes related to growth and fatness traits, 
but no overlap of results was found in the 2 pop-
ulations. Likewise, Zhu et  al. (2014) carried out 
separate GWAS in 2 populations, one population 
consisted of 820 Yorkshire pigs and Large White × 
Landrace intercrosses, and the other consisted of 
208 Berkshire × Yorkshire F2 intercrosses. Similarly, 
there were no overlapping significant SNPs identi-
fied in the 2 populations. Fowler (2013) performed 
a GWAS separately in 3 breeds, Duroc, Yorkshire, 
and Pietrain, to look for any association between 
significant SNP and fatness, but no common sig-
nificant SNP or regions among the 3 breeds were 
identified. It might be due to the small sample size, 
different population structures, and the complexity 
of traits (Willer et al., 2010).

We, therefore, implemented combined ana-
lysis and meta-analysis to improve the detection 
power. Combining different populations could re-
veal hidden or unclear associations that may not 
be detected by an independent study (Willer et al., 
2010). Combined analysis mainly focuses on 1 
breed because they experienced a similar breeding 

history. Generally, the combined analysis identi-
fied more significant SNPs than single-population 
analysis in most situations, while it also generated 
larger P-values than single-population analysis in 
some scenarios as shown in Supplementary Tables 
S3 and S4. The MAF, HW, and CR of 18 signifi-
cant SNPs associated with growth and fatness 
traits identified by combined analysis are presented 
in Supplementary Table S5. Zhang et  al. (2015) 
combined 2 independent populations of Duroc 
from Hypor (961 samples) and Genesus (982 sam-
ples) to identify SNP and candidate genes related 
to meat quality, while they did not carry out sin-
gle-population analysis; the advantage of com-
bined analysis was not clear. In addition, in our 
study, there are 5 significant SNPs detected in the 
American, the British, and the combined popula-
tions (Supplementary Tables S3 and S4), and no 
difference was found in the allele frequency at these 
SNPs among the two single populations and com-
bined population, implying that significant SNP 
detection was not due to issues with population 
stratification.

Different from combined analysis, meta-analysis 
decreased the P-values for all SNPs (Supplementary 
Tables S1 and S2). This was also confirmed in 
other studies, for example, Guo et al. (2015) used 
a meta-analysis to analyze limb bone lengths in 4 
different pig populations, showing meta-analysis 
made the P-value smaller and more significant. Le 
et al. (2017) used 3 Danish pig breeds (Landrace, 
Yorkshire, and Duroc) and different meta-analysis 
methods (a within-breed meta-analysis for mul-
tiple traits and a crossbreed meta-analysis for single 
traits) to perform an association analysis on 4 four 
conformation traits. The number of significant 
SNPs identified in the within-breed multiple traits 
meta-analysis for 3 breeds was larger than in the 
single-trait analysis. However, meta-analysis actu-
ally recalculated new P-values of SNPs only based 
on those of single population analysis, and it did 
not take the population information into account. 
A  meta-analysis might deduce high false-positive 
rate, particularly in the scenario of populations with 
different genetic backgrounds. Therefore, consider-
ing the balance of detection power and false-pos-
itive rate, we used the common significant SNPs 
obtained by combined analysis and meta-analysis 
for further analysis in this study.

In summary, we conducted a GWAS for traits 
of backfat thickness and growth in 2,025 Yorkshire 
pigs from 2 populations with distinct genetic back-
grounds by using combined analysis and meta-anal-
ysis. A  total of 11 and 7 significant SNPs were 
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identified by combined analysis for 10RIBBFT and 
D100, respectively. And in meta-analysis, 8 and 7 
significant SNPs were identified for 10RIBBFT and 
D100, respectively. Among them, 6 and 5 common 
significant SNPs in two analysis methods were, re-
spectively, identified associated with 10RIBBFT 
and D100, and correspondingly explained 2.09% 
and 0.52% of the additive genetic variance of 
10RIBBFT and D100. Gene Ontology analysis 
highlighted six genes, PCK1, ANGPTL3, EEF1A2, 
TNFAIP8L3, PITX2, and PLA2G12, as promising 
candidate genes relevant with backfat thickness and 
growth. Our findings provide novel insights into the 
genetic basis of growth and fatness in pigs.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of 
Animal Science online.
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