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Modeling heterotic effects in beef cattle using genome-wide SNP-marker genotypes1
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ABSTRACT: An objective of  commercial beef 
cattle crossbreeding programs is to simultan-
eously optimize use of  additive (breed differences) 
and non-additive (heterosis) effects. A  total of 
6,794 multibreed and crossbred beef  cattle with 
phenotype and Illumina BovineSNP50 genotype 
data were used to predict genomic heterosis for 
growth and carcass traits by applying two meth-
ods assumed to be linearly proportional to het-
erosis. The methods were as follows: 1) retained 
heterozygosity predicted from genomic breed 
fractions (HET1) and 2)  deviation of  adjusted 
crossbred phenotype from midparent value 
(HET2). Comparison of  methods was based 
on prediction accuracy from cross-validation. 
Here, a mutually exclusive random sampling of 
all crossbred animals (n = 5,327) was performed 
to form five groups replicated five times with ap-
proximately 1,065 animals per group. In each run 
within a replicate, one group was assigned as a 
validation set, while the remaining four groups 
were combined to form the reference set. The 

phenotype of  the animals in the validation set 
was assumed to be unknown; thus, it resulted in 
every animal having heterosis values that were 
predicted without using its own phenotype, 
allowing their adjusted phenotype to be used for 
validation. The same approach was used to test 
the impact of  predicted heterosis on accuracy 
of  genomic breeding values (GBV). The results 
showed positive heterotic effects for growth traits 
but not for carcass traits that reflect the import-
ance of  heterosis for growth traits in beef  cattle. 
Heterosis predicted by HET1 method resulted in 
less variable estimates that were mostly within 
the range of  estimates generated by HET2. 
Prediction accuracy was greater for HET2 (0.37–
0.98) than HET1 (0.34–0.43). Proper consider-
ation of  heterosis in genomic evaluation models 
has debatable effects on accuracy of  EBV predic-
tions. However, opportunity exists for predicting 
heterosis, improving accuracy of  genomic selec-
tion, and consequently optimizing crossbreeding 
programs in beef  cattle.
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INTRODUCTION

George H.  Shull (1914, 1948) coined the term 
“heterosis” (Syn. hybrid vigour) to describe a phe-
nomenon where crossbred organisms have increased 
growth, productivity, fertility, and vigour over their 
purebred parents. Heterosis has immense economic 
value in plant and animal agriculture and has been 
exploited in many production systems (Lippman and 
Zamir, 2007; Krishnan et al., 2013). Although, the gen-
etic basis of heterosis is still a subject of investigation, 
the hypotheses are based on the evidence of increased 
heterozygosity in crossbreds relative to straightbreds 
and is maximized in F1 hybrids (Falconer and Mackay, 
1996). Retention of heterosis in crossbreds past the 
F1 generation is predictable based on a dominance 
model and is assumed proportional to heterozygosity 
retained (Dickerson, 1973).

In practice, identification of superior parents 
to be used for crossbreeding and testing the per-
formance of different crosses under field conditions 
can be expensive and time consuming. Attempts 
have been made using genomic tools to estimate 
the proportion of phenotypic variation attributable 
to non-additive SNP effects for traits that express 
heterosis (Su et  al., 2012; Bolormaa et  al., 2015). 
Working with poultry, Amuzu-Aweh et  al. (2013) 
predicted heterosis with accuracy up to 50% using 
the genome-wide average squared difference in allele 
frequency (SDAF). Developing a reliable method of 
predicting heterosis for crossbred beef cattle could 
improve the efficiency of crossbreeding and improve 
the accuracy of estimated breeding values (EBV) by 
accounting for non-additive genetic effects in the 
genomic evaluation model.

The aim of the present study was to predict gen-
omic heterosis for growth and carcass traits in beef 
cattle using two methods assumed to be linearly pro-
portional to heterosis, to compare methods based 
on prediction accuracy from cross-validation, and 
to test the impact of predicted heterosis on the ac-
curacy of genomic breeding values (GBV).

MATERIALS AND METHODS

All management and procedures involving live 
animals, where applicable, conformed to the guide-
lines outlined by the Canadian Council on Animal 
Care (1993); otherwise, existing data sets from the 
various Canadian research herds were used.

Animals, Phenotypes, and Genotypes

A total of 6,796 straightbred, multibreed com-
posite and crossbred beef cattle with phenotypes 

and 50K genotypes were used for this study. Data 
were collated from various projects and research 
herds across Canada, including 3,692 from the 
Phenomic Gap Project based at Lacombe Research 
Centre, Lacombe, AB; 2,350 from the University 
of Alberta’s Roy Berg Kinsella Research Ranch, 
Kinsella, AB; and 754 from the University of 
Guelph’s Elora Beef Cattle Research Station, Elora, 
ON. The population structure, breeds, and animal 
management were previously described in detail by 
Lu et al. (2016). Briefly, the whole data set consisted 
of 968 Angus, 572 Charolais, 316 Hereford, 17 
Simmental, 17 Limousine, 1,225 Angus-Hereford 
crossbred, 484 Angus-Simmental crossbred, 353 
Charolais-Red Angus crossbred, 1,178 Kinsella 
composite, 1,105 Beefbooster TX composite, and 
561 animals of other breed combinations. Kinsella 
composite is a beef–dairy hybrid heavily influenced 
by Hereford and Angus breeds with infusion of 
Holstein (Wang et al., 2006). Beefbooster TX com-
posite is predominantly Charolais based with in-
fusion of Holstein, Maine Anjou, and Chianina 
(http://www.beefbooster.com).

Phenotypic records were birth weight (BWT), 
actual weaning weight (WWT), 205-d weaning 
weight (W205D), pre-weaning daily gain (PDG), 
average daily gain on feedlot (ADG), yearling 
weight (YWT), hot carcass weight (HCW), back 
fat thickness (BFT), rib eye area (REA), marbling 
score (MBS), lean meat yield (LMY), and calcu-
lated yield grade (CYG). Yield grade was calcu-
lated according to USDA specification (Holland 
and Loveday, 2013). The data was edited to re-
move records > or <3 SD from the mean after 
correcting for systematic effects of  sex, age of 
dam, herd, and year of  birth. Pedigree extending 
to purebred ancestors was known, assumed ac-
curate, and available for all animals used in the 
study. The pedigree records consisted of  11,905 
individuals including 873 sires and 4,483 dams 
over five generations.

Marker genotypes were obtained using 
BovineSNP50 BeadChip (50K; Illumina, San Diego, 
California, USA) from Delta Genomics, Edmonton, 
Alberta, Canada. Quality control was performed to 
remove SNPs with minor allele frequency < 0.01 and 
call rate < 0.90 (Lu et al., 2016). Missing genotypes 
were imputed using FImpute v2.0 (Sargolzaei et al., 
2014). In addition, two animals with call rate less 
than 90% were also removed, and only autosomal 
SNPs with known genome position according to the 
UMD_3.1 bovine assembly map (Zimin et al., 2009) 
were used. After editing, 42,610 SNPs and 6,794 ani-
mals were used for this study.

http://www.beefbooster.com
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Prediction of Genomic Breed Fractions

Genomic breed fractions were predicted for all 
individuals (n  =  6,794) using the ADMIXTURE 
software (Alexander et al., 2009). A 10-fold cross-
validation procedure available in ADMIXTURE 
was performed to find the best possible K value 
with the lowest cross-validation error (Alexander 
et al., 2009). The resulting breed fractions at K = 6 
were selected from the ADMIXTURE analysis and 
aligned with the known sire breed information to 
identify the various breed ancestries existing in the 
dataset. Six breed ancestors were uniquely identi-
fied and defined as Angus, Hereford, Charolais, 
Crosses, Kinsella Composite, and Beefbooster 
TX Composite. The Crosses represented two or 
more way crossbreds involving Angus, Hereford, 
Charolais, Simmental, Gelbvieh, Limousin, and 
Piedmontese. The genomic breed fraction was used 
to designate animals as purebred Angus, Hereford, 
or Charolais based on having greater than 80% of 
the represented major breeds, while another set of 
animals were grouped as Angus-based, Hereford-
based, and Charolais-based crossbreds based on 
having 50%–80% of the leading breed fraction. 
Also, the breed fractions were fitted as covariates in 
the various statistical models defined below to cor-
rect for population stratification and breed effects.

Model Definitions and Statistical Analysis

As a first step, assuming heterosis is due to dom-
inance and overdominance, variance component 
analyses were carried out to estimate the contribu-
tion of additive and non-additive genetic effects to 
the total phenotypic variation of the studied traits 
using four linear mixed effect models and all data-
set (n = 6,794). Each model differed based on the 
source of relationship matrix used in the analysis.

	 y Xb Z a e1= + + +1µ � (1)

	 y 1 Xb Z a Z w e1 2= + + +µ + � (2)

	 y 1 Xb Z g e3= + + +µ � (3)

	 y 1 Xb Z g Z d e3 4= + + + +µ � (4)

where y is a vector of phenotypic observations; µ is 
the population mean and 1 is a vector of ones; de-
pending on the trait analyzed, X is the design matrix 
that relates the fixed effects to the observation while 
b is an unknown vector of fixed effects (contem-
porary groups formed based on herd, year, sex, 
and management groups; data source, covariates 

of dam age, weaning age, start age for feedlot test, 
slaughter age, and breed fractions); a and g are 
vectors of random additive genetic effects; w and 
d are vectors of random dominance effects; e is a 
vector of random residual effects; Z1, Z2, Z3, and Z4 
are incidence matrices that relate effects to pheno-
types; a, w, g, d, and e are normally distributed as: 
a ~ N(0,σ2

aA), w ~ N(0,σ2
wW), g ~ N(0,σ2

gG), d ~ 
N(0,σ2

dD) and e ~ N(0,σ2
eI), respectively.

The matrix A is the numerator relationship con-
structed from pedigree, I is an identity matrix, and 
W is the dominance relationship based on pedigree 
which was extracted from a gametic relationship 
matrix constructed by the method described by 
Schaeffer et al. (1989). The gametic relationship is 
defined as the matrix of probabilities that two alleles 
are identical by descent and has the order 2n for 
n individuals assuming two alleles at a locus (e.g., 
individual A has alleles A1 and A2). Therefore, W 
between two animals, A and B, in the absence of 
inbreeding was derived from a gametic relationship 
matrix as ([A1, B1]*[A2, B2] + [A1, B2]*[A2, B1]), 
where A1 and A2 are the alleles of individual A, 
and B1 and B2 are the alleles of individual B. The 
genomic additive relationship matrix G was con-
structed from genotype information according to 
the method described in detail by VanRaden (2008) 
as follows: G = ZZʹ/ 2 Σ (pj) (1–pj). The matrix Z 
is of the order n × m (i.e., the number of individu-
als by the number of SNPs). The elements in Z are 
equal to −2pj, 1−2pj, and 2−2pj for genotypes AA, 
AB, and BB, while pj is the allele frequency of the 
B allele at the jth SNP. The genomic dominance re-
lationship matrix D was constructed from genotype 
information following the method described by 
Vitezica et al. (2013) as follows: D = HHʹ/2Σ(pjqj). 
Depending on the genotype at jth SNP, the ele-
ments of H matrix were −2qj

2, 2pjqj, and −2pj
2 for 

AA, AB, and BB genotypes, while pj and qj are the 
allele frequencies.

In constructing G and D for these multibreed 
and crossbred dataset, breed-specific allele frequen-
cies were not applied because Ibánẽz-Escriche et al. 
(2009) noted that models that fit breed-specific 
SNP allele effects for crossbred population may not 
be necessary if  high density markers are utilized 
to trace ancestor alleles with precision. More so, 
across-breed genomic predictions were performed 
successfully in previous studies using samples of 
the current dataset without assuming breed-spe-
cific allele frequencies for the G matrix (Lu et al., 
2016; Akanno et al., 2017). In addition, phenotypes 
will be adjusted for breed effects using the pre-
dicted genomic breed fractions, which accounts for 
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any potential confounding due to breed. Because 
there were 1,492 dams with two or more progeny 
with records, random maternal genetic effects and 
maternal permanent environmental effects were 
included in the model for analysis of pre-weaning 
traits. See Table  1 for details of model definition 
for each trait. Genomic prediction was carried out 
using the genomic best linear unbiased prediction 
(GBLUP). In the GBLUP analyses, pedigree was 
used to account for random maternal effects for 
pre-weaning traits because most dams were not 
genotyped.

Prediction of Genomic Heterotic Effects

Genomic heterotic effects were predicted by 
two methods: 1) Heterosis was assumed to be lin-
early proportional to retained breed heterozygosity 
(HET1). First, genomic retained heterozygosity 
(RH) was calculated for all individuals following 
the formula of Dickerson (1973):

	
RH P

i

s

i= −
=
∑1

1

2

�

where Pi  is the genomic breed fractions of each 
of the s contributing breeds. To test the significance 
of RH for predicting heterosis, crossbred pheno-
types were regressed on calculated RH values by 
extending model 1 as follows:

	 y 1 Xb Z a e1= + + + ⋅ +µ RH β � (5)

	 HET RHt1 = ×β̂ �

where y is a vector of the observed phenotypes for 
crossbreds, 1, µ, X, b, Z1, a, and e were as defined 
for model 1 above, β̂t  is the estimated linear coeffi-
cient of the regression of crossbred phenotypes on 

RH . Predicted heterosis was then derived as the 
product of β̂t  estimated for each trait and RH  val-
ues. This approach is similar to the method applied 
by Amuzu-Aweh et al. (2013) using SDAF. Later, 
calculated RH values were averaged across all the 
breed groups described previously and expressed 
in percentage by multiplying by 100. 2)  Heterosis 
was predicted as the deviation of adjusted cross-
bred phenotypes from the midparent value (MPV) 
termed HET2.

	 y y X* = − − µµ β � (6)

	 HET2  MPV= −y*

where y is a vector of crossbred phenotypes; µ is the 
population mean; X is the design matrix while β̂  is 
the coefficients of all fixed effects in model 1 but 
excluding genomic breed fractions; y* is the adjusted 

crossbred phenotype;MPV ABF BEi
i

s
= ×∑  ,  ABF  

is the average genomic breed fractions of parents 
across s contributing breed ancestors and BEi

  is 
the breed effect of breed i on studied traits. Here, 
BEi
  was estimated from another run of model 
1 that includes genomic breed fractions as fixed 
covariate. Producing y* this way allows MPV to 
account for breed effects when predicting heter-
osis, elsewhere adjusted phenotypes were produced 
by adjusting all systematic effects including breed 
fractions.

Accuracy of Predicted Heterosis

To evaluate the accuracy of predicted het-
erosis, another form of adjusted phenotype (y#) 
was first obtained for all crossbred individuals as 
y y X# ,= − −µµ β  where β̂  was estimated from 

Table 1. Model definitions for growth and carcass traits of beef cattle

Factors
Fixed or 
random

Traits

BWT WWTa PDG ADG YWT HCW BFT REA MBS LMY CYG

Contemporary group Fixed √ √ √ √ √ √ √ √ √ √ √

Age of dam Covariate √ √ √ √ √ √ √ √ √ √ √

Weaning age Covariate √ √

Start age of feedlot test Covariate √ √

Slaughter age Covariate √ √ √ √ √ √

Breed fractions Covariate √ √ √ √ √ √ √ √ √ √ √

Maternal genetic Random √ √ √

Maternal permanent effect Random √ √ √

Direct additive Random √ √ √ √ √ √ √ √ √ √ √

Direct dominance Random √ √ √ √ √ √ √ √ √ √ √

aThe model used for WWT is similar to the one used for W205D except that weaning age was not included.
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model 1 that fits all fixed effects associated with 
each trait including genomic breed fractions. This 
adjusted phenotype (y#) was treated as observed het-
erosis and assigned for validation purpose follow-
ing the approach described by Amuzu-Aweh et al. 
(2013). Subsequently, a mutually exclusive random 
sampling of all crossbred animals (n = 5,327) was 
performed to form five groups replicated five times 
with approximately 1,065 animals per group. In each 
run within a replicate, one group was assigned as 
the validation set, while the remaining four groups 
were combined to form the reference set used for es-
timation of β̂t  or BEi

  depending on the method of 
heterosis prediction. Thus, genomic heterosis was 
predicted for every crossbred animal without using 
its own observation and the correlation between the 
observed heterosis and the predicted heterosis was 
taken as the accuracy of heterosis prediction. Note 
that for predicting and validating HET2, y* ≠ y#. 
That is, model 1 was applied to generate y* in the 
validation animals excluding breed fractions in the 
model followed by estimating BEi

  in the training 
set using full model 1, while y# was obtained for all 
crossbred individuals using full model 1.

Improving Accuracy of Genomic Prediction of 
Breeding Values

A scenario for improving prediction accuracy 
of GBV by accounting for predicted heterosis in the 
genomic evaluation model for crossbreds was stud-
ied. The following three models were tested:

	 y 1 Xb Z g e3= + + +µ � (7)

	 y 1 Xb Z g HET1 e3= + + + +µ � (8)

	 y 1 Xb Z g HET2 e3= + + + +µ � (9)

where HET1 and HET2 are heterosis predicted 
for every crossbred animal according to the two 
methods described above. The rest of the terms 
in the models were as previously defined. A cross-
validation approach was applied and genetic cor-
relation was used to compare all models for GBV 
prediction accuracy. All analyses were conducted 
in R statistical software using default programs 
where applicable (Ihaka and Gentleman, 1996) and 
linked to ASReml software (Gilmour et al., 2015) 
for variance component estimation and genomic 
prediction.

RESULTS AND DISCUSSION

Descriptive Statistics and Variance Components 
Estimation

The number of records used, mean perform-
ance, and coefficient of variation for all traits 
studied in purebreds and crossbred beef cattle pop-
ulations are summarized in Table 2. Mean pheno-
typic performance across traits were typical of 
commercial beef cattle and showed considerable 
variation in purebreds and crossbreds. Traits that 
typically express heterosis had slightly greater coef-
ficient of variation in crossbreds than in purebreds. 

Table 2. Number of animals with record (N), mean and standard deviation (SD) and coefficient of vari-
ation (CV; %) for growth and carcass traits of purebred and crossbred beef cattlea

Traits N Mean SD Purebreds (CV%) Crossbreds (CV%)

Birth weight, kg 5,481 41.87 6.69 16.84 15.58

Actual weaning weight, kg 6,261 239.33 44.60 14.23 19.61

205-d weaning weight, kg 5,258 232.47 35.75 16.03 15.16

Pre-weaning daily gain, kg/d 5,255 1.13 0.17 15.75 15.10

Average daily gain, kg/d 6,772 1.45 0.39 19.98 27.98

Yearling weight, kg 6,019 366.91 66.92 19.57 17.77

Hot carcass weight, kg 4,071 335.87 34.26 9.25 10.48

Back fat thickness, mm 4,002 11.19 4.50 38.00 38.25

Rib eye area, cm2 4,054 85.61 11.18 13.68 12.75

Marbling score 4,054 406.19 94.55 25.49 21.06

Lean meat yield, % 4,062 58.37 4.57 9.55 6.82

Calculated yield grade 4,008 2.66 0.81 30.27 29.13

Age at weaning 6,153 181.35 26.72 11.63 15.52

Age at start of feedlot test 6,794 300.58 51.52 12.65 18.18

Slaughter age 4,126 443.38 48.76 4.73 12.22

aPurebred individuals have >80% of Angus, Hereford and Charolais; Crossbred individuals included Kinsella composite, Beefbooster TX 
composite (www.beefbooster.com) and two and more way crosses involving Angus, Hereford, Charolais, Gelbvieh, Simmental, Limousin, and 
Piedmontese.
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Table 3 shows the proportions of total phenotypic 
variance explained by all genetic effects for growth 
and carcass traits in beef cattle derived from four 
models that utilized a pedigree-based or genome-
based relationship. Random maternal genetic and 
maternal permanent environmental effects were 
included in all models for evaluating pre-wean-
ing traits (e.g., BWT, WWT, W205D, and PDG). 
This was achieved by using pedigree relationship to 
account for maternal effects in both pedigree-based 
and genome-based models because dams with more 
than one progeny in the dataset frequently were not 
genotyped.

Narrow-sense heritability estimates from mod-
els 1 and 2 that used a pedigree relationship were 
similar for each trait evaluated (Table 3). Similarly, 
heritability estimates from models 3 and 4 that uti-
lized a genomic relationship were also similar for 
each of the studied traits. This similarity in herit-
ability estimates between models utilizing the same 
type of relationship matrix has been previously 
observed in a study with pigs (Lopes et al., 2015). 
However, estimates of heritability from a genome-
based model were generally lower than the esti-
mates from pedigree-based models (Table 3). This 
reduction in heritability estimates from a genome-
based model as opposed to a pedigree-based model 
has also been observed before (Lopes et al., 2015; 
Akanno et  al., 2017) and has been referred to as 
missing heritability (Lee et  al., 2011). This is be-
cause the heritability from the genome-based model 
includes only the contribution of causal variants in 
linkage disequilibrium with the SNP markers and 
not the contribution of all causal variants as in the 
pedigree-based model.

The estimates of heritability for growth traits 
in our population using all four models were mod-
erate to highly heritable ranging from 0.30 to 0.64 
(Table  3), which is slightly greater than values of 
0.22 to 0.55 previously reported for growth traits in 
North American beef cattle populations (Schenkel 
et  al., 2004; Schiermiester et  al., 2015). On the 
other hand, heritability estimates for carcass traits 
across all models ranged from 0.26 to 0.45, which 
agrees with the range of values reported by Miar 
et al. (2014) for a Canadian dataset (0.22 to 0.38) 
and those reported (0.15 to 0.97) in a review by 
Rios Utrera and Van Vleck (2004) for beef cattle 
in general. Heritability estimates from the current 
study are based on multiple breeds and crossbred 
dataset, which is likely to be greater compared with 
estimates from a single breed as in previous studies.

Accounting for dominance effects in both pedi-
gree- and genome-based models for across breed 

genetic evaluation of growth traits (BWT, WWT, 
W205D, PDG and YWT) improved the predict-
ability of the models based on likelihood ratio test 
(P < 0.01) but not for carcass traits. The estimates 
of the proportion of phenotypic variance explained 
by dominance deviation from a pedigree-based 
model were generally large with large standard 
errors (SE) and ranged from 0 to 0.29 for growth 
traits and 0 to 0.15 for carcass traits, while estimates 
from a genome-based model ranged from 0.02 to 
0.09 for growth traits and 0 to 0.06 for carcass traits 
(Table 3). The large proportion of dominance vari-
ance from a pedigree-based model may indicate po-
tential confounding of dominance deviation with 
other genetic and non-genetic factors like maternal 
and maternal permanent environmental effects es-
pecially for those traits where maternal effects are 
important.

Here, maternal heritability estimates observed 
for pre-weaning traits were zero or near zero across 
all models evaluated, while estimates of maternal 
permanent environmental effects ranged from 0.02 
for BWT to 0.23 for PDG, on average (Table  3). 
The correlation between direct and maternal gen-
etic effects were large and negative ranging from 
−0.44 (WWT) to −0.66 (BWT). Several studies 
have shown that estimates of maternal effects on 
pre-weaning traits largely depends on data struc-
ture and a negative correlation between direct and 
maternal genetic effects can be influenced by data 
structure, actual genetic antagonism, or due to sire 
by year interaction (Meyer, 1992; Konstantinov 
and Brien, 2003; Maniatis and Pollott, 2003). As 
there were 1,492 dams out of 4,483 with two or 
more progeny and only a five generation pedigree, 
the current data structure may not allow for proper 
estimation of maternal genetic and permanent en-
vironmental effects for growth traits when using 
pedigree relationship. Thus, the contribution of 
dominance deviation to phenotypic variation may 
be inflated and may be the reason for the large SE 
reported for dominance ratio from pedigree-based 
models.

However, the fact that dominance was iden-
tified for growth traits using pedigree-based 
models corroborates results from genome-based 
models and indicates that dominance is important 
for growth traits in beef cattle. The rather low esti-
mates of dominance ratio from a genome-based 
model may be related to lack of power for estimat-
ing these effects when using SNP panel of limited 
density. Increasing the density of markers used 
for computing the dominance relationship among 
animals may lead to more accurate estimation of 
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dominance effects for a multibreed and crossbred 
dataset. For example, while working with this data, 
Lu et  al. (2016) observed stability in accuracy of 
genomic prediction for crossbreds using an imputed 
high density SNP panel, which suggest potential for 
higher density SNP panels to improve across breed 
genomic predictions.

In addition, the magnitude of dominance ratios 
reported for growth traits using genome-based 
models were within the range of values observed 
previously for beef cattle (0.07–0.47; Misztal 
et  al., 1998; Roso et  al., 2005; Chen et  al., 2014; 
Bolormaa et al., 2015) and for other species (0.04–
0.44; Dufrasne et  al., 2014; Moghaddar and van 
der Werf, 2014). Generally, growth traits are mod-
erately heritable with a documented evidence of 
non-additive genetic effects and heterosis (Williams 
et  al., 2010; Schiermiester et  al., 2015). Further, 
significant dominance effects were not detected in 
carcass traits (0.02–0.06) using the genomic model 
indicating that dominance effects may be less im-
portant for these traits. Chen et al. (2014), however, 
observed dominance ratios in the range of 0.05–0.14 
for carcass traits of Angus steers sampled from the 
data used in this study. Similarly, Bolormaa et al. 
(2015) reported dominance ratio of 0.10 and 0.18 
for carcass fat and carcass yield, respectively.

In order to help understand the extent of contri-
bution of genomic-based dominance effects on the 

variation of growth and carcass traits in beef cattle, 
the potential for confounding of these effects due to 
population stratification was investigated by splitting 
the entire dataset into purebred and crossbred sam-
ples based on their predicted genomic breed fractions 
(Figure 1). The results showed that the best estimates 
of proportion of total phenotypic variance explained 
by dominance effects were obtained for purebreds, 
which are largely made up of over 70% Angus breed 
(Table  4). Our hypothesis was that the dominance 
effects would be larger in the crossbreds than in the 
purebreds reflecting greater heterosis. Surprisingly, 
we were generally unable to detect differences in the 
proportion of dominance variance between pure-
breds and crossbreds. This lack of significant dif-
ference in the estimates of dominance proportions 
between purebred and crossbred groups and across 
the array of studied traits may have several possible 
reasons including a limitation in the current dataset, 
which lacked the structure for proper estimation of 
these effects as previously discussed and could also 
be a consequence of ignoring breed-specific allele 
frequencies when constructing relationship matrix. 
Because the dataset used in this study consisted of 
multibreed and crossbred population with differing 
base populations, assuming a common base allele 
frequency in the construction of genomic relation-
ship matrix may bias the estimation of genetic var-
iances and (co)variance between breeds. Recently, 

Figure 1. Distribution of estimated genomic breed fractions of commercial beef cattle population (n = 6,794). Angus is red, Hereford is yellow, 
Charolais is green, Crosses is cyan, Kinsella composite is blue, and Beefbooster TX composite is purple. See online version for figure in colour.
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Chen et al. (2013) and Wientjes et al. (2017) provided 
methods that consider population-specific allele fre-
quencies in the construction of genomic relationship 
matrix of multipopulations for unbiased estimation 
of genetic variance and better genomic prediction. 
The results of the current study, however, indicated a 
potential for non-additive genetic effects for growth 
traits in beef cattle. Breeders can continue to exploit 
these additional effects when planning a genetic im-
provement program for beef cattle.

Predictions of Genomic Retained Heterozygosity

Knowledge of breed composition can be used 
for assessment of admixture level, correction of 
population stratification in genetic analysis, and 
planning crossbreeding programs that will exploit 
heterosis and breed complementarity. Here, SNP 
markers were used to trace the breed ancestry of a 
multibreed and crossbred beef cattle population to 
six founding genetic groups, which corresponded 
closely to Angus, Hereford, Charolais, Beefbooster 
TX composite, Kinsella composite, and a sixth 
group that represents a mixture of different crosses 
based on known sire breed information (Figure 1). 
In most commercial crossbreeding systems, it may 
be infeasible to track ancestries of crossbred animals 
or the founder breeds may be wrongly assigned. In 
such a situation, genotypes of the crossbred individ-
uals may be used to estimate the ancestries directly 
(Akanno et  al., 2017). Rapid prediction of breed 
composition using genomics in beef cattle popula-
tions may also be beneficial for checking the integ-
rity of pedigree recording for seed stock.

In a crossbreeding program, the amount of 
heterosis retained per generation is proportional 
to the breed heterozygosity retained, which also 
depends on the number and proportions of com-
ponent breeds involved in the crosses (Dickerson, 
1973). Genomic retained heterozygosity was pre-
dicted for all individuals according to the formula 
of Dickerson (1973) and using the predicted gen-
omic breed fractions as inputs. The percentage of 
individual genomic retained heterozygosity pre-
dicted for purebreds, for different crosses, and com-
posite populations are shown in Figure 2. Among 
purebreds, the Angus breed had the highest level of 
retained heterozygosity followed by Charolais and 
Hereford. A low level of genomic retained hetero-
zygosity as observed in Hereford breed suggests a 
high inbreeding level. In a genetic diversity study 
by Abo-Ismail et al. (2016), the highest level of gen-
omic inbreeding was observed for Hereford breed 
compared with other North American beef cattle 
breeds. Similarly, Cleveland et  al. (2005) reported 
increases in pedigree inbreeding level in American 
Hereford cattle population over many decades, 
which can happen in any closed population.

When the Angus breed fraction dominated in two 
or more way crossbreeding, the percentage of retained 
heterozygosity was greatest followed by Hereford- and 
Charolais-based crosses. The Beefbooster TX com-
posite, which was developed from Continental breeds 
(Charolais, Chianina, Maine-Anjou) and Holstein, 
had greater genomic retained heterozygosity than the 
Kinsella composite that was developed from British 
breeds (Hereford and Angus) plus Holstein. The 
remaining crossbred group had a slightly less retained 

Table 4. Proportions of phenotypic variance explained by additive and dominance effects in purebreds, 
crossbreds, and overall populationsa using genomic relationship and model 4

Traits

Purebreds (n = 1,467) Crossbreds (n = 5,327) Overall (n = 6,794)

Additive Dominance Additive Dominance Additive Dominance

Birth weight, kg 0.61 ± 0.05 0.08 ± 0.09 0.56 ± 0.03 0.11 ± 0.04 0.53 ± 0.02 0.09 ± 0.03

Actual weaning weight, kg 0.46 ± 0.06 0.14 ± 0.10 0.43 ± 0.03 0.04 ± 0.03 0.39 ± 0.02 0.07 ± 0.03

205-d weaning weight, kg 0.38 ± 0.07 0.23 ± 0.10 0.41 ± 0.03 0.06 ± 0.04 0.37 ± 0.03 0.09 ± 0.03

Pre-weaning daily gain, kg/d 0.37 ± 0.07 0.22 ± 0.10 0.42 ± 0.03 0.06 ± 0.04 0.37 ± 0.03 0.09 ± 0.03

Average daily gain, kg/d 0.33 ± 0.06 0.07 ± 0.10 0.33 ± 0.03 0.00 ± 0.03 0.31 ± 0.02 0.02 ± 0.03

Yearling weight, kg 0.57 ± 0.06 0.00 ± 0.09 0.52 ± 0.03 0.09 ± 0.03 0.48 ± 0.02 0.08 ± 0.03

Hot carcass weight, kg 0.43 ± 0.08 0.03 ± 0.14 0.42 ± 0.04 0.00 ± 0.06 0.41 ± 0.03 0.00 ± 0.04

Back fat thickness, mm 0.48 ± 0.08 0.00 ± 0.15 0.23 ± 0.03 0.04 ± 0.06 0.28 ± 0.03 0.02 ± 0.04

Rib eye area, cm2 0.46 ± 0.08 0.00 ± 0.15 0.38 ± 0.03 0.00 ± 0.06 0.40 ± 0.03 0.00 ± 0.04

Marbling score 0.29 ± 0.07 0.00 ± 0.15 0.33 ± 0.04 0.10 ± 0.06 0.27 ± 0.03 0.00 ± 0.04

Lean meat yield, % 0.50 ± 0.07 0.05 ± 0.15 0.31 ± 0.04 0.05 ± 0.06 0.33 ± 0.03 0.06 ± 0.04

Calculated yield grade 0.50 ± 0.07 0.07 ± 0.15 0.33 ± 0.04 0.05 ± 0.06 0.34 ± 0.03 0.05 ± 0.04

aPurebred individuals have >80% of Angus, Hereford and Charolais; Crossbred individuals included Kinsella composite, Beefbooster TX 
composite (www.beefbooster.com) and two and more way crosses involving Angus, Hereford, Charolais, Gelbvieh, Simmental, Limousin, and 
Piedmontese.
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heterozygosity compared with Beefbooster TX com-
posites. This group was assumed to represent the out-
come of crosses involving British and Continental 
cattle breeds such as Angus, Hereford, Charolais, 
Gelbvieh, Simmental, Limousin, and Piedmontese. 
As British and Continental cattle breeds are distantly 
diverged (Kuehn et al., 2011), crossbreeding them is 
expected to maximize breed heterozygosity and het-
erosis. Previous studies have shown greater heterosis 
benefits for crosses involving British and Continental 
cattle breeds in North American environment 
(Williams et al., 2010; Schiermiester et al. 2015).

Effects of Genomic RH and Breed

A summary of breed and RH effect solutions 
and their associated SE for all traits studied are 
listed in Table 5. Among the growth traits, the effect 
of RH was positive for BWT, WWT, and PDG but 
negative for ADG and YWT. Except for ADG, the 
RH effects on growth traits were not significantly 
different from zero (P > 0.05). For carcass traits, RH 
effects were positive for BFT and LMY but negative 
for the rest of the traits. The RH effects on HCW and 
MBS were significant (P < 0.05). A positive effect of 
RH means that the interactions between paternal 
and maternal alleles of different breeds yielded a 
value that was greater than the interactions between 
paternal and maternal alleles of the same breed. 
On the other hand, a negative effect of RH means 

that the interactions between paternal and maternal 
alleles of different breeds yielded a value that was 
lower than the interactions between paternal and 
maternal alleles of the same breed, which is akin to 
negative heterosis. The range of positive effects of 
RH on BWT and WWT (0.55 to 4.26) were within 
the range of heterosis (0.47–8.65) reported by 
Williams et al. (2010) and Schiermiester et al. (2015) 
for crosses involving British and Continental cattle 
breeds. For carcass traits, the magnitude and direc-
tion of effects of RH from this study were differ-
ent from those reported for heterosis in a review by 
Williams et al. (2010). Most carcass traits are highly 
heritable with limited contribution of heterosis to 
the expression of the traits.

The breed effects refer to the influence of in-
dividual genomic breed fractions on the traits of 
interest. Overall, the larger framed Continental 
breeds (Charolais and Beefbooster TX) had effects 
that were mostly positive (P < 0.05) across studied 
traits, whereas the smaller framed British breeds 
(Angus and Hereford) had effects that were mostly 
near zero (P > 0.05). A similar relationship has been 
previously observed (Arango et  al., 2002). These 
estimates were reported as deviations from Kinsella 
composite. Because previous studies (Rodriguez-
Almeida et al., 1997; Arango et al., 2002; Williams 
et  al., 2010) reported breed comparisons as devi-
ations from a different breed, it is not possible to 
make trait-based comparison to the results from 

Figure 2. Percentage of individual breed heterozygosity retained in purebreds (>80% of Angus (AN), Hereford (HE), or Charolais (CH) breed 
fractions), Angus-based crossbreds (ANB; 50%–80% of Angus fractions in crosses), Hereford-based crossbreds (HEB; 50%–80% of Hereford frac-
tions in crosses), Charolais-based crossbreds (CHB; 50%–80% of Charolais fractions in crosses), Kinsella composite (KC; beef–dairy hybrid heavily 
influenced by Hereford and Angus breeds with infusion of Holstein), Crosses (CR; Two or more way crosses involving Angus, Hereford, Charolais, 
Gelbvieh, Simmental, Limousin, and Piedmontese), and Beefbooster TX composite (BB; Charolais based with infusion of Holstein, Maine Anjou, 
and Chianina ; http://www.beefbooster.com).

http://www.beefbooster.com
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the current study; however, there is similarity in the 
trends when comparing association in British and 
Continental cattle breeds.

Predicted Genomic Heterosis

Predicted genomic heterosis for growth and 
carcass traits in different crosses of beef cattle 

validation groups are shown in Figures 3 and 4. 
In general, heterosis predicted by HET1 method 
resulted in less variable estimates than HET2. 
However, heterosis predictions from HET1 method 
were mostly within the range of estimates generated 
by HET2. Further, heterosis predicted by HET1 
methods were mostly positive for growth traits 
(Figure 3) but were largely negative for most of the 

Figure 3. Individual genomic heterosis for growth traits predicted in the crossbred validation group of beef cattle using two prediction methods 
(Red = heterosis predicted as retained heterozygosity (HET1), Black = heterosis predicted as deviation of adjusted crossbred phenotype from MPV 
(HET2)). ANB = Angus-based crosses (50%–80% Angus proportion in crossbreds), HEB = Hereford-based crosses (50%–80% Hereford propor-
tion in crossbreds), CHB = Charolais-based crosses (50%–80% Charolais proportion in crossbreds), CR = Two or more way crosses involving 
Angus, Hereford, Charolais, Gelbvieh, Simmental, Limousin, and Piedmontese, KC = Kinsella composite, and BB = Beefbooster TX composite 
(www.beefbooster.com).

Table 5. Effects of RHa and representative breed effectsb as deviations from Kinsella composite for the 
studied traits

Traits RH AN HE CH CR BB

Birth weight, kg 0.55 ± 0.79 3.34 ± 1.39* 5.76 ± 1.67*** 13.58 ± 1.68*** 4.40 ± 2.03* 12.65 ± 1.95***
Actual weaning weight, kg 0.82 ± 3.47 8.62 ± 6.53 8.40 ± 7.74 25.75 ± 7.58*** 30.19 ± 8.71*** 25.75 ± 8.49**

205-d Weaning weight, kg 4.26 ± 4.02 −4.74 ± 7.24 −4.04 ± 8.65 13.46 ± 8.67 18.83 ± 10.61 18.77 ± 10.00

Pre-weaning daily gain, kg/d 0.02 ± 0.02 −0.01 ± 0.03 −0.02 ± 0.04 0.06 ± 0.04 0.10 ± 0.05* 0.07 ± 0.05

Average daily gain, kg/d −0.08 ± 0.03* 0.19 ± 0.06*** 0.150.07* 0.19 ± 0.07** 0.12 ± 0.07 0.15 ± 0.08

Yearling weight, kg −2.89 ± 4.88 17.60 ± 8.78* −1.42 ± 10.42 26.03 ± 10.23* 39.77 ± 12.10** 54.81 ± 11.60***

Hot carcass weight, kg −21.70 ± 4.99*** 34.25 ± 8.03*** 19.91 ± 9.80* 47.26 ± 8.87*** 49.86 ± 10.51*** 52.60 ± 10.26***

Back fat thickness, mm 0.09 ± 0.62 1.03 ± 0.97 0.35 ± 1.18 −5.95 ± 1.06*** −5.54 ± 1.29*** −4.21 ± 1.23***

Rib eye area, cm2 −1.62 ± 1.63 −0.73 ± 2.62 −5.32 ± 3.19 17.06 ± 2.89*** 16.01 ± 3.42*** 15.18 ± 3.35***

Marbling score −28.82 ± 12.26* 5.04 ± 19.54 −52.32 ± 23.81* −101.5 ± 21.43*** −46.55 ± 25.62 −75.26 ± 25.06**

Lean meat yield, % 0.18 ± 0.61 −2.20 ± 0.97* −1.99 ± 1.19 6.60 ± 1.08*** 5.92 ± 1.28*** 4.73 ± 1.25***

Calculated yield grade −0.07 ± 0.11 0.47 ± 0.18** 0.47 ± 0.22* −1.09 ± 0.20*** −1.00 ± 0.23*** −0.78 ± 0.23***

1RH was fitted as fixed covariates in model 3 to estimate effects.
bEstimated in model 3 using all data (n = 6,794); AN = Angus, HE = Hereford, CH = Charolais, CR = two and more way crosses, BB = Beefbooster 

TX composite (www.beefbooster.com).

*P < 0.05; **P < 0.01; ***P < 0.001.

http://www.beefbooster.com
http://www.beefbooster.com
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carcass traits (Figure 4). This suggests greater im-
portance of heterosis for growth traits. Williams 
et al. (2010) and Schiermiester et al. (2015) reported 
positive heterosis effects for growth traits including 
BWT, WWT, and YWT. Also, positive heterosis 
effects were reported for carcass traits including 
HCW, LMY, BFT, and MBS in crosses involving 
British and Continental cattle breeds (Williams 
et  al., 2010). For all traits evaluated, the trend in 
predicted heterosis tended to increase slightly, on 
average, as one moves from a two-way cross that 
utilizes British breeds to composites developed 
from British and Continental cattle breeds (Figures 
3 and 4). This is expected because British and 
Continental cattle breeds are genetically divergent 
from each other (Kuehn et al., 2011), and thus, het-
erosis is expected to be maximized in the direction 
of increased divergence of breeds.

Here, genomic tools were applied to investi-
gate the contribution of  heterosis to phenotypic 
expression of  beef  cattle production traits. The 
assumption was that heterosis is due to events 
of  dominance and over-dominance at the mo-
lecular genetic level, which means that the pres-
ence of  heterosis implies presence of  dominance 
and overdominance effects. However, the presence 
of  dominance and overdominance effects does 
not directly translate to the presence of  heterosis 

unless dominance and overdominance effects are 
directional. Although, the genetic basis of  heter-
osis is still a subject of  scientific investigation, a 
few studies have shown that dominance is an im-
portant factor contributing to heterosis in beef  cat-
tle (Su et al., 2012; Bolormaa et al., 2015; Akanno 
et al., 2017), while epistatic effects have also been 
observed (Bolormaa et al., 2015). We investigated 
epistasis by performing a joint genome-wide as-
sociation that models epistatic effects for a set of 
previously identified additive and dominant SNPs. 
The results showed negligible effects of  epistasis 
on phenotypic variation of  beef  cattle traits in 
our dataset (unpublished data). Therefore, further 
investigation is warranted. Moreover, previous 
studies have investigated the relationship between 
production traits and genomic heterozygosity, 
which is similar to heterosis predicted by HET1 
method, and have concluded that a strong rela-
tionship between genomic heterozygosity and het-
erosis does exist, which will be useful for predicting 
hybrid performance (Xiao et al., 1995; Tambasco-
Talhari et al., 2005). In the presence of  dominance 
and overdominance, superior performance of  het-
erozygotes could be described as a manifestation 
of  physiological differences between heterozygotes 
and parental homozygotes, which cause variations 
in observed characters.

Figure 4. Individual genomic heterosis for carcass traits predicted in the crossbred validation group of beef cattle using two prediction methods 
(Red = heterosis predicted as retained heterozygosity (HET1), Black = heterosis predicted as deviation of adjusted crossbred phenotype from MPV 
(HET2)). ANB = Angus-based crosses (50%–80% Angus proportion in crossbreds), HEB = Hereford-based crosses (50%–80% Hereford propor-
tion in crossbreds), CHB = Charolais-based crosses (50%–80% Charolais proportion in crossbreds), CR = Two or more way crosses involving 
Angus, Hereford, Charolais, Gelbvieh, Simmental, Limousin, and Piedmontese, KC = Kinsella composite, and BB = Beefbooster TX composite 
(www.beefbooster.com).

http://www.beefbooster.com
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In crossbreeding systems, the identification of 
crosses with superior performance is usually the 
major focus. This identification requires testing the 
performance of different crosses under field condi-
tions, which can be expensive and time consuming. 
To address this question, we predicted genomic het-
erosis by a cross-validation approach, where the two 
measures of heterosis were predicted from crossbred 
data that excludes validation animals in the training 
set (Figures 3 and 4). This allows us to use the val-
idation animals for testing the performance of the 
different crosses and hybrids. Note that observed 
heterosis was generated for all crossbred individu-
als by adjusting their phenotype using the default 
model 1 and following the approach reported by 
Amuzu-Aweh et al. (2013). Thus, both predicted het-
erosis and observed heterosis was available for each 
individual. This gives the opportunity to evaluate 
the expected heterosis for different crosses and com-
posite populations using two measures of heterosis 
prediction and to test the accuracy of prediction.

Accuracy of Genomic Heterosis Predictions

Table  6 shows the average accuracy of gen-
omic heterosis predictions using a cross-validation 
approach for two prediction methods. The accuracy 
was assessed as correlation between observed and 
predicted heterosis (Amuzu-Aweh et al., 2013). For 
growth traits, the average accuracy ranged from 0.34 
for WWT to 0.43 for ADG using HET1 method and 
from 0.37 for BWT to 0.98 for ADG using HET2 

method, respectively. For carcass traits, the average 
accuracy ranged from 0.38 for HCW to 0.41 for BFT 
using HET1 method and from 0.57 for LMY to 0.87 
for HCW using HET2 method, respectively. Across 
traits, accuracy of genomic predictions tended to be 
greater using the HET2 method than HET1. This 
is probably because heterosis predicted by HET2 
captured most of the non-genetic effects that were 
not explained by the model used in estimating the 
adjusted crossbred phenotypes. However, the HET1 
method is convenient and straight forward for het-
erosis prediction when genomic data are utilized 
because the retained heterozygosity applied in this 
method can be explicitly predicted from genomic 
breed fractions. In a preliminary study of heterosis 
prediction using a subset of data from this study, 
we found that the correlation between heterosis 
predicted by HET1 method and retained heterosis 
predicted from pedigree-based breed fractions was 
about 0.96 and we concluded in that study that the 
HET1 method was a good predictor of heterosis 
(Akanno et al., 2017). More so, the HET1 method 
depends on the assumption that heterosis is linearly 
proportional to expected breed heterozygosity, and 
the average prediction accuracy across traits (0.38) 
was close to ~0.50 reported by Amuzu-Aweh et al. 
(2013) for egg production traits using the method 
of SDAF. Prediction accuracy was better for growth 
traits than for carcass traits using the two methods, 
which suggests that breeders can explore this extra 
benefit of heterosis when planning genetic improve-
ment for growth traits in beef cattle.

Table 6. Average accuracy (±SE) of genomic heterosis and GBVs for growth and carcass traits of beef cat-
tle using a cross-validation approach

Traits

Accuracy of genomic heterosis Accuracy of GBVsa

HET1 HET2 A only A + HET1 A + HET2

Birth weight, kg 0.35 ± 0.01 0.37 ± 0.02 0.49 ± 0.001 0.49 ± 0.001 0.53 ± 0.001

Actual weaning weight, kg 0.34 ± 0.01 0.76 ± 0.01 0.47 ± 0.001 0.47 ± 0.002 0.54 ± 0.003

205-d weaning weight, kg 0.36 ± 0.01 0.79 ± 0.01 0.44 ± 0.001 0.44 ± 0.001 0.53 ± 0.002

Pre-weaning daily gain, kg/d 0.36 ± 0.01 0.87 ± 0.01 0.44 ± 0.002 0.44 ± 0.001 0.53 ± 0.003

Average daily gain, kg/d 0.43 ± 0.01 0.98 ± 0.01 0.52 ± 0.009 0.52 ± 0.009 0.66 ± 0.001

Yearling weight, kg 0.36 ± 0.01 0.76 ± 0.01 0.44 ± 0.002 0.44 ± 0.002 0.51 ± 0.002

Hot carcass weight, kg 0.38 ± 0.02 0.87 ± 0.01 0.45 ± 0.002 0.45 ± 0.001 0.59 ± 0.002

Back fat thickness, mm 0.41 ± 0.01 0.74 ± 0.01 0.39 ± 0.001 0.39 ± 0.001 0.57 ± 0.002

Rib eye area, cm2 0.40 ± 0.01 0.66 ± 0.01 0.44 ± 0.001 0.44 ± 0.001 0.59 ± 0.002

Marbling score 0.40 ± 0.01 0.80 ± 0.01 0.38 ± 0.001 0.38 ± 0.001 0.52 ± 0.002

Lean meat yield, % 0.40 ± 0.02 0.57 ± 0.01 0.42 ± 0.001 0.42 ± 0.001 0.56 ± 0.002

Calculated yield grade 0.40 ± 0.01 0.57 ± 0.01 0.42 ± 0.001 0.42 ± 0.001 0.56 ± 0.002

HET1 = Heterosis predicted from retained heterozygosity; HET2 = Heterosis predicted from deviation of adjusted crossbred phenotype from 
MPV

aAccounting for genomic heterosis in the genomic evaluation models: A = Additive model only; A+HET1 = Model including additive (A) 
plus heterosis predicted from retained heterozygosity (HET1); A+HET2 = Model including additive (A) plus heterosis predicted as deviation of 
adjusted crossbred phenotype from mid-parent value (HET2)
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Improving Accuracy of GBVs Prediction

This study also evaluated a scenario for improv-
ing prediction accuracy of GBV by accounting for 
non-additive genetic effects and heterosis in the 
genomic evaluation models (Table 6). Surprisingly, 
no changes in prediction accuracy of GBV were 
observed when including heterosis predicted by the 
HET1 method in the genetic evaluation models for 
each trait. Thus, accounting for retained heterozy-
gosity in the genomic evaluation model did not im-
prove prediction accuracy. This finding is consistent 
with the results of previous studies (Moghaddar 
and van der Werf, 2014; Bolormaa et  al., 2015), 
which showed that accounting for non-additive gen-
etic effects in genomic evaluation models does not 
improve accuracy of GBV predictions. However, the 
likelihood ratio test used to compare models with 
and without heterosis predicted by HET1 methods 
were significantly different (P  <  0.01), which sug-
gests that including heterosis predicted by HET1 
method in genomic evaluation of multibreed and 
crossbred beef cattle population can improve model 
predictability and unbiasedness of genomic predic-
tions (Su et al., 2012). Earlier research by Misztal 
et al. (1998) also demonstrated the benefit of incor-
porating non-additive genetic effects in genetic eval-
uations of swine, dairy, and beef cattle. Moreover, 
application of heterosis model in selection and 
mating programs creates opportunity for predict-
ing hybrid performance through the exploitation 
of specific combining ability to maximize growth 
potentials (Dufrasne et al., 2014).

An interesting observation from this study was 
that including predicted heterosis from the HET2 
method in the genomic evaluation model improved 
accuracy of GBV prediction up to 20% for some 
traits. Although, it is not very clear why this result 
occurred, it is most likely that the predicted heterosis 
accounted for some of the unknown sources of vari-
ation in a typical genomic evaluation model for cross-
breds. Nevertheless, this study shows that opportunity 
exists for improving accuracy of GBV prediction for 
multibreed and crossbred beef cattle populations 
based on currently available 50K genotypes; thus, fur-
ther research is warranted to validate this finding.

CONCLUSIONS

This study utilized genomic tools to develop 
and evaluate methods for predicting heterosis in 
beef cattle and to ascertain if dominance, overdom-
inance, and breed heterozygosity can be assessed at 
the molecular genetic level. Positive associations of 

non-additive genetic effects were observed especially 
for growth traits, which reflect the importance of het-
erosis for these traits. The HET2 method was more 
effective in explaining phenotypic variation attribut-
able to heterosis than HET1. Proper consideration of 
heterosis in genomic evaluation models has debatable 
effects on accuracy of EBV predictions. However, op-
portunity exists for predicting heterosis, and improv-
ing accuracy of genomic selection, and consequently 
optimizing crossbreeding programs in beef cattle.
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