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ABSTRACT In mammals, it has become increasingly
clear that the gut microbiota influences not only gas-
trointestinal physiology but also modulates behavior. In
domestic birds, ceca have the greatest gastrointestinal
microbial population. Feather-pecking (FP) behavior in
laying hens is one of the most important unsolved be-
havioral issues in modern agriculture. The aim of the
present study was to assess the cecal microbial com-
munity of divergently selected high (HFP; n = 20) and
low (LFP; n = 20) feather-pecking birds at 60 wk of
age. The cecal samples were subjected to community
profiling of 16S rRNA and in silico metagenomics using
a modified bar-coded Illumina sequencing method on
a MiSeq Illumina sequencer. Our results revealed that
compared to HFP birds, LFP birds are characterized

by an increased overall microbial diversity (beta diver-
sity) shown by a difference in the Bray—Curtis index
(R? = 0.171, P < 0.05). Furthermore, operational tax-
onomic unit comparisons showed an increased presence
of Clostridiae and decreased presence of Lactobaccilla-
cae in HFP birds when compared to LFP birds (False
Discovery Rate < 0.05, Mann—Whitney comparisons).
Our data indicate that there may be differences in the
cecal profile between these 2 lines of laying hens. More
research, building on this first study using sequencing
technology for profiling the chicken cecal microbiome,
will be needed in order to reveal if and how there exists
a functional link between the performance of FP and
the cecal microbial community.
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INTRODUCTION

Feather pecking (FP) in birds kept for egg lay-
ing is a serious condition which affects up to 80% of
birds in all housing systems (Gunnarsson, 1999). Ge-
netic factors (Kjaer et al., 2001), including candidate
genes, linked to the serotonergic system (Lutz et al.,
2017), and nutritional factors, including dietary tryp-
tophan levels, related to serotonin neurotransmission
have also been identified to impact the risk of FP (van
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Hierden et al., 2004). Feather pecking is identified based
on core behavioral symptoms, such as increased repet-
itive pecking at and pulling out of feathers from other
birds (Savory, 1995), and damage to the feather cover.
In addition to behavioral symptoms, FP birds display
a wide range of simultaneously existing, neurological
symptoms, which include fearfulness (de Haas, 2014)
and hyperactive behavior (Kjaer, 2009), as well as non-
neurological symptoms such as tryptophan/serotonin
dysregulation (Birkl et al., 2017) and gastrointesti-
nal abnormalities (Harlander-Matauschek et al., 2006).
Gastrointestinal symptoms, including the strong desire
for feathers (McKeegan and Savory, 2001; Harlander-
Matauschek et al., 2009), altered intestinal motility
(Harlander-Matauschek et al., 2006), and intestinal
microbial metabolism most pronounced in the ceca
(Meyer et al., 2013) of FP birds, suggest that gas-
trointestinal issues, such as altered composition of the
intestinal microbiota, could contribute to the mani-
festation of FP. In humans, deviations from healthy
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microbial communities have been linked with diseases,
including hyperactivity disorders (Jia et al., 2008), de-
pressive disorders (Dash et al., 2015), and autism spec-
trum disorders (Mulle et al., 2013). Hence, the aim of
our present study was to test the hypothesis that the
cecal microbial community of FP birds show distinct
differences to low-FP birds measured in cecal drop-
pings. As avian ceca empty their contents separately
and distinguishably from regular excreta by their mus-
tard/dark brown color, sample collection does not re-
quire sacrificing birds for sampling their cecal content
via dissection (Pauwels et al., 2015). Additionally, cecal
samples are less variable in composition than fecal sam-
ples (Stanley et al., 2014), harbor the highest microbial
cell densities, have the longest residence time of digesta
(Oakley et al., 2014), and might be more representative
of the gut microbial community. Hence, it was our goal
to investigate the cecal microbial community, represen-
tative of the overall gut-microbiome. Microbial commu-
nity structure in ceca droppings were profiled in 2 lines
of laying hens selected divergently for FP (high- and
low-FP birds) to determine the level and nature of sim-
ilarity in cecal microbial structure between the 2 lines.

MATERIAL AND METHODS

Animals and Housing

This study was approved by the animal care com-
mittee at the University of Guelph (animal user pro-
tocol No. 3206). Birds that performed severe FP were
required for this experiment. They were sampled from
a total flock of 160 birds consisting of 40 high feather-
pecking (HFP), 30 low feather-pecking (LFP) and 90
unselected control birds. For this experiment, we chose
to compare the extremes of the 2 selected lines (LFP
and HFP) for which the phenotype (expression of FP
behavior) matched the genotype, as described by Meyer
et al. (2013). These non-beak-trimmed White Leghorn
hens were derived from a selection experiment in which
a strain of laying hens was divergently selected for
their propensity to feather-peck (Kjaer et al., 2001).
The hatching and rearing environment was identical
for all 3 lines and apart from a standard vaccination
protocol, birds were not exposed to any medical treat-
ment (antibiotics), nor did they receive probiotics at
any time. Birds were kept in 10 groups of 16 birds (4
HFP, 3 LFP, 9 unselected) each and kept in identical
enriched floor pens (183 L x 244 W x 290 H cm) as de-
scribed in Kozak et al. (2016) under commercial man-
agement conditions at the Arkell Research Station in
Guelph, Ontario, Canada. Birds were fed an Arkell Re-
search Station layer mash diet with the following nutri-
tional specifications; crude protein (min): 18%, crude
fat (min): 5.5%, crude fiber (max): 2%, calcium (ac-
tual): 4.24%, phosphorus (actual): 0.68%, sodium (ac-
tual): 0.18%, vitamin A (min) 16,500 IU/kg, vitamin D
(min) 4,130 TU /kg, vitamin E (min): 60 IU /kg.
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Behavioral Recordings of FP

At 54 wk of age, each home pen was video recorded
for 10 min (1x in the morning between 10 and 11 am,
1x in the afternoon between 2 and 3 pm) twice per week
for 6 wk prior to fecal sampling. The number of FP
bouts per individual was recorded on an all-occurrence
basis (Altmann, 1974), with 1 bout being defined as
a sequence of pecks at the same bird that is not in-
terrupted for more than 4 s (Zeltner et al., 2000). In-
dividuals were identified using continuously numbered
silicone backpacks (8 x 6 x 0.5 cm), fastened onto the
hens around the wings via 2 elastic straps secured to the
backpacks with metal eyelets (Harlander-Matauschek
et al., 2009).

Cecal Dropping Sampling

After observing pecking activity for 6 wk, 20 HFP
with the highest and 20 LFP with the lowest FP ac-
tivity were chosen and transferred to individual cages
(45.7 L x 45.7 W x 40.5 H cm). The feed trough was
placed at the front and a nipple drinker at the back
of the cage. The hens had visual contact with, but no
physical access to, their neighbors. Clean white PVC
sheets were placed underneath each cage to collect fe-
ces from each bird over a period of 2 d. Approximately
1 g of cecal feces material, as identified by its charac-
teristic homogeneous, smooth, and creamy texture and
dark color, was sampled using a disposable pharma-
cist’s spatula for each bird. Samples were taken from
the middle of cecal discharge to avoid contamination
with non-cecal excreta. The cecal samples were trans-
ferred into 1.5 mL Eppendorf tubes and stored at —80°C
until further processing of the sample.

16s rRNA Analysis of Bacterial Cecal
Composition

DNA extraction was carried out as previously de-
scribed (Bharwani et al., 2017). Bacterial community
profiling of the 16S rRNA gene was carried out us-
ing a modified bar coded Illumina sequencing method
(Bartram et al., 2011). Paired end reads of the V3 re-
gion were performed using the 341F and 518R primers
(Muyzer et al., 1993). The 250 nucleotide paired-end se-
quencing was carried out on a MiSeq Illumina sequencer
as per manufacturer’s instructions at the McMaster
Genome Center (McMaster University, Canada). The
MiSeq data were processed by an in-house bioinfor-
matics pipeline (Whelan et al., 2014). Sequencing re-
sults produced a minimum of 14,813 and a maximum
of 1,34,898 reads per sample. Using QIIME (Caporaso
et al., 2010), singletons were excluded and operational
taxonomic unit (OTU) tables underwent 10 rarefac-
tions at multiple sequencing depths to enable equal
reads across samples. For alpha diversity analysis,
Chaol and Phylogenetic Diversity metrics was recruited



FEATHER PECKING HENS HAVE DISTINCT CECA MICROBIOME

3011

Table 1. Spearman’s Rank Order Correlation for Individual Feather-Pecking Bouts and Operational Taxonomic Units (OTUs).

P-value (False
Discovery Rate

OTU ID Test statistics corrected) Taxonomy
94 0.48757492 <0.05 Root; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides
147 0.602505853 <0.05 Root; p__Firmicutes; c__Clostridia; o__Clostridiales
153 0.522699938 <0.05 Root; p--Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g--Bacteroides
784 0.570215068 <0.05 Root; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Oscillospira
1042 0.444533386 <0.05 Root; p__Firmicutes; c¢__Clostridia; o__Clostridiales; f__Veillonellaceae;
g--Phascolarctobacterium
1213 0.557725008 <0.05 Root; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__; g__
1435 0.457496421 <0.05 Root; p_-Firmicutes; c__Clostridia; o__Clostridiales; f__; g__
2392 0.431969949 <0.05 Root; p__Firmicutes; c__Clostridia; o-_Clostridiales; {__Ruminococcaceae; g--
2566 0.431969949 <0.05 Root; p__Proteobacteria; c__Betaproteobacteria; o__Burkholderiales; f__Alcaligenaceae;
g__Sutterella
2607 0.423154236 <0.05 Root; p__Tenericutes; c__Mollicutes; o__RF39; f__; g__

using the alpha diversity workflow scripts, using the
same number of sequences as the most indigent sam-
ple. For beta-diversity analyses, Jackknife resampling
at a sequencing depth equal to 80% of the most indi-
gent sample was used to generate Bray—Curtis distance
matrices. Differences between the group microbiota
profiles was assessed using the Monte Carlo Permuta-
tion Procedure (999 permutations) and similarities us-
ing the Analysis of similarities test. To analyze differen-
tial abundance of OTUs in group, the Mann—Whitney
U-test followed by the Benjamini-Hochberg correction
for multiple comparisons (False Discovery Rate < 0.05)
was implemented using data first rarefied to even se-
quencing depth and then filtered to eliminate OTUs
observed in fewer than 25% of the samples.

Statistical Analysis

The number of bouts (count data) between lines were
compared using a GLIMMIX procedure (Version 9.4
SAS Institute Inc., Cary, NC, USA) with fixed factor
line (HFP, LFP) on the means per week data. As we
had count data, a Poisson distribution was assumed,
pen used as a random effect, subject = bird ID, week as
a repeated effect and due to the repeated measures on
the same group of birds at different time points (weeks),
a first-order autoregressive covariance structure was fit-
ted to the pen by week effect. Results are presented as
least square means + standard error. Mann-Whitney
U-test was used to assess statistical significance of mea-
sures derived from alpha diversity metrics. Spearman’s
rank-order correlation was run to determine the rela-
tionship between the individual level of FP bouts and
associable OTUs.

RESULTS AND DISCUSSION

We aimed to investigate whether genetic selection for
or against FP simultaneously resulted in colonization
of different spectra of ceca microbiota when fed the
same diet and reared under the same conditions. We
compared the cecal microbial community of these 2 FP
lines by using the 16S rRNA sequencing. Behavioral
observations in home pens revealed that the 20 HFP

(A) Actinobacteria (0.69%)
Bacteroidetes (29.23%)
Firmicutes (59.43%)
Proteobacteria (6.73%)
Tenericutes (2.58%)

Other (1.34%)

(B)

Actinobacteria (0.77%)
Bacteroidetes (26.29%)

Firmicutes (66.52%)

Proteobacteria (2.91%)
Tenericutes (2.39%)

Other (1.12%)

Figure 1. Relative abundance of bacterial diversity at phylum level
in cecal samples of laying hens at 60 wk of age, comparing HFP birds
(A) and LFP birds (B).

birds showed a significantly higher number of FP bouts
per minute than the 20 LFP birds (0.41 + 0.311 vs
0.04 £ 0.092, Fy 195 = 4.89, P < 0.05), confirming that
the birds’ observed phenotype matched the genotype.
Table 1 presents an overview of Spearman’s rank-order
correlation between the individual levels of FP bouts
and associable OTUs. The dominant ceca microbiota
in adult laying hens belonged to the phyla Firmicutes
and Bacteriodetes, which accounted for 88.7% in HFP
and 92.8% in LFP birds (Figure 1). The relatively abun-
dant genera of Firmicutes includes Clostridium, Bacil-
lus, and Erysipelotrichus in descending order, whereas
the DBacteroidetes was dominated by DBacteroides
(Figure 2) in HFP and LFP birds. The relatively abun-
dant genera of Proteobacteria, including Gammapro-
teobacteria and Betaproteobacteria, were higher in HFP
as compared to LFP birds (Figure 2). Our results in-
dicate Firmicutes, Bacteroidetes, and Proteobacteria as
the most common phyla in the chicken ceca, with Acti-
nobacteria accounting for the remainder and where finer
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Figure 2. Relative abundance of bacterial diversity at family level in cecal samples of laying hens at 60 wk of age, comparing HFP birds (A)

and LFP birds (B).

scales of taxonomic resolutions show that the majority
belongs to Clostridiales.

Alpha-diversity analysis of cecal samples revealed no
significant differences within the microbial community
composition of each group. There were no significant
differences in either the overall diversity (Faith’s
phylogenetic diversity, Figure 3A, Mann—Whitney
U = 127, P < 0.05) or richness of the microbial com-
munity (Chaol, Figure 3B Mann—Whitney U = 129,
P < 0.05). Based on these results, all samples from the
2 lines had a similar number and distribution of taxa
with no strongly dominant taxa. These results could
in part be explained by the birds being exposed to the
same environmental sources of microorganisms, such
as litter (Lu et al., 2003; Lovanh et al., 2007), and feed
in particular (Muegge et al., 2011), which is known to
affect overall diversity and richness of the microbiome
in poultry (Oakley et al., 2014). In contrast to the
lack of alpha diversity, beta diversity, measured by
within-group distances, in the LFP group was signifi-
cantly different from between-group distances between
LFP and HFP (Bonferroni-correct non-parametric
P < 0.05). Analysis of similarities revealed statistically
significant differences (R = 0.171, P < 0.05) between
LFP and HFP birds, which revealed that the phyloge-
netic composition of the ceca community in the HFP
line was significantly different from the LFP line
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Figure 3. Alpha diversity: phylogenetic diversity (A) and Chaol
richness estimate (B) for LFP and HFP birds.
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Figure 4. Beta diversity: analysis of Bray-Curtis distance between
LFP and HFP birds.

(Figure 4). Operational taxonomic units that
discriminated between the HFP and LFP lines,
(Benjamini-Hochberg False Discovery Rate correction,
Mann-Whitney U, P < 0.05, Figure 4) included in
HFP birds, OTU 22 (U = 330), 147 (U = 312), 504
(U =294), and 72 (U = 299) with increased abundance
of bacteria within the order of Clostridiales, whereas
OTU 196 pointed towards increased abundance of
the genus Anaerobiospirillum, order Aeromonadales.
The OTU 6 (U = 303), however, indicated decreased
abundance of bacteria of the genus Lactobacillus, order
Lactobacillales in HFP birds. Although the majority of
sequences belong to the various members of Clostridi-
ales in a healthy laying hen ceca (Wei et al., 2013), an
increased abundance of Clostridiales in cecal feces of
HFP birds could be an important link in understanding
how gut health may play a key role in the development
of FP. This is further supported by Meyer et al. (2012)
who found increased abundance of Clostridia in laying
hens that ingested feathers. In humans, functional links
between increased abundance of Clostridiales species
and the development of behavioral disorders have been
identified (Williams et al., 2011; Luna et al., 2017).
A potential role for Clostridia in the development of
abnormal behavior could involve microbial mediated
production of abnormal metabolites (Clayton, 2012),
such as p-cresol, which is known to directly affect
the monoaminergic system via inhibiting dopamine
B-hydroxylase (Goodhart et al., 1987). This considera-
tion remains to be determined with further studies on
abnormal metabolites in laying hens. Furthermore, our
analysis revealed that the cecal microbiota of HFP birds
is characterized by lower amounts of Lactobacilli. Inter-
estingly, Lactobacillus can metabolize tryptophan into
indole-derivates (Xu et al., 2002), which play a role in
alteration of immune-related signaling pathways in the
gut regulating inflammation (Keszthelyi et al., 2009).
Additionally, Lactobacillus has been shown to have a
direct, potentially positive effect on neurotransmission
in the central nervous system, by impacting the signal-
ing of visceral sensory inputs towards the hippocampus
via vagal afferents (Bravo et al., 2011), potentially
reducing sensitivity to stress-related behavior (Zagon,
2001), such as fearfulness, which has previously been
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linked to the development of FP (de Haas, 2014). How-
ever, whether the above activities of Lactobacillus play
a central role in the development of FP in laying hens
needs to be determined. Future experiments may be
able to demonstrate not only an associative role for the
microbiome in the development of FP, but also eluci-
date the relevant underlying physiological mechanisms
and metabolic pathways. Furthermore, it remains to be
determined whether the development of FP is fostered
by changes in the gut microbiome or whether FP
occurrence precedes microbial changes in the gastroin-
testinal tract. The results of the present study, however,
provide an important first step in identifying the po-
tential role of certain gut microbes in the development
of FP.
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