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Abstract

α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron 

(αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, 

ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and 

heterocycle formation. These enzymes utilize iron (II) as the metallo-cofactor and αKG as the co-

substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product 

biosyntheses discovered in recent years, including halogenation reactions, amino acid 

modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and 

phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe 

enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or 

distal-type binding mode. Future structure–function and structure–reactivity relationship 

investigations will provide crucial information regarding how activities in this large class of 

enzymes have been fine-tuned in nature.

Graphical Abstract

Proximal- and distal-type αKG binding to the Fe(II) centre might play a crucial role in fine-tuning 

the catalysis of αKG-dependent non-haem iron enzymes.
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1 Introduction

In nature, α-ketoglutarate-dependent mononuclear non-haem iron (αKG-NHFe) enzymes 

catalyse a wide range of biochemical reactions. αKG-NHFe enzymes require iron (II) as a 

metallo-cofactor and αKG as a co-substrate.1–6 Throughout several decades, various aspects 

of this large enzyme superfamily have been summarised in many excellent reviews, 

including the crystal structures and mechanisms,6–13 reaction diversity and natural product 

biosynthetic pathways,1, 5, 6, 8, 14–24 mechanistic investigations using small molecular model 

systems6, 25 and their relevance to biological processes and human diseases.4–6, 26 Members 

of this superfamily are widely distributed across prokaryotes, eukaryotes and archaea. 

Among the pathways involving αKG-NHFe enzymes, those involved in antibiotic 

biosynthesis are some of the most extensively investigated areas, and several reviews have 

been devoted to penicillin, cephalosporin, cephamycin and clavam biosyntheses.27–30 Some 

pathways with pharmaceutical or agricultural relevance have also been summarised, 

including the biosynthesis of ethylene,31, 32 carnitine,33 collagen34 and coumarin.16 Some 

αKG-NHFe enzymes are known to be related to human diseases, including phytanoyl-CoA 

hydroxylase (PAHX) in Refsum disease,35 4-hydroxy-phenylpyruvate dioxygenase (4-

HPPD) in tyrosinaemia type II and hawkinsinuria,36, 37 prolyl hydroxylase (P4H) in 

alcoholic liver cirrhosis38, 39 and lysyl hydroxylase (LH) in Ehlers–Danlos syndrome type 

VI.38 Knowledge gained from mechanistic characterisations of αKG-NHFe enzymes has 

been applied to guide inhibitor design and development, which was recently summarised by 

Schofield et al.26

αKG-NHFe enzymes catalyse reactions as wide as those catalysed by haem-containing 

enzymes. Besides mechanistic investigations on enzymatic systems, studies on small 

molecular model systems are also one of the key sources for our mechanistic understanding 

of the catalytic processes catalysed by αKG-NHFe enzymes.6, 25 Based on the initial 

mechanistic proposal by Hanauske-Abel and Günzler,40 together with experimental and 

computational data accumulated over the last few decades, a generic mechanism for αKG-

mediated oxygen activation was proposed involving Fe(IV)=O species as one of the key 

intermediates (Fig. 1A).6–12, 41 Starting from Fe(IV)=O species, hydroxylation is the most 

common type of reaction (e.g. hydroxylation of taurine 1 catalysed by TauD, Fig. 1B) 

catalysed by αKG-NHFe enzymes.42–47 In the absence of sulfate under aerobic conditions, 

Escherichia coli can utilize aliphatic sulfonates as sulfur sources. TauD and FMNH2-

dependent SsuD are the key enzymes in this process.48, 49 TauD oxidises taurine 1 to 1-

hydroxy-2-aminoethanesulfonic acid 2, which then spontaneously decomposes to 
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aminoacetaldehyde 3 and sulfite (Fig. 1B).42–47 In addition to taurine 1, TuaD can oxidise 

taurine analogues, including pentanesulfonic acid, 3-(N-morpholino)propanesulfonic acid 

and 1,3-dioxo-2-isoindolineethanesulfonic.50 Several lines of evidence, including a 

combination of stopped-flow UV-visible absorption spectroscopy,45, 46, 51 EXAFS and 

Mössbauer spectroscopy,45, 46, 51–56 and isotope labelling,45, 57 support the involvement of 

an Fe(IV)=O species (A-6, Fig. 1A) as a kinetically competent intermediate. In 

hydroxylation reactions catalysed by αKG-NHFe enzymes, the reactive Fe(IV)=O species 

abstracts a hydrogen atom from the substrate to generate a substrate-based radical, and 

simultaneously, the Fe(IV)=O intermediate is reduced to the Fe(III)-OH species (A-6 → 
A-7, Fig. 1A). A subsequent hydroxyl radical rebound completes the substrate hydroxylation 

reaction and the αKG-NHFe enzyme returns to its initial Fe(II) state (A-7 → A-8, Fig. 1A). 

The proposed Fe(IV)=O intermediate (species A-6, Fig. 1A) was first trapped and 

characterised in TauD studies (Fig. 1B).45, 51 Since then, this key intermediate has been 

trapped and characterised in a few other enzymatic and model systems.54, 58–63 In addition 

to hydroxylation reactions, in natural product biosyntheses, many other types of reactions 

have also been attributed to αKG-NHFe enzymes, including desaturation,64 ring formation,
65 ring expansion,66 halogenation,67 endoperoxidation68 and carbon skeleton 

rearrangements.69 αKG-NHFe enzymes also participate in modifications and repairs of 

macromolecules (DNA, RNA and proteins).6

In 2013, Hangasky et al. reported a survey of 25 αKG-NHFe structures deposited in the 

protein data bank (PDB) shown as part of Table 1.9 αKG-NHFe enzymes possess a double-

stranded β-helical fold (DSBH fold), which has also been called a cupin or jelly-roll fold.
70, 71 The DSBH fold (Fig. 2A) was first observed in the crystallographic studies of 

isopenicillin N synthase (IPNS). Intriguingly, IPNS-catalysis did not require αKG as a co-

substrate, and all four electrons required for catalysis were shown to be from its substrate.
72–74 αKG-NHFe enzymes share a conserved His-X-Asp/Glu-Xn-His (2-His-1-carboxylate) 

motif, in which two His residues and a Glu or an Asp residue serve as the ligands to the iron 

centre.70, 75 Exceptions to this 2-His-1-carboxylate facial triad have also been reported, e.g. 

αKG-NHFe halogenases.76 In most αKG-NHFe enzymes, the metallo-centres and their 

ligands form octahedral complexes.1, 70, 71, 75 αKG coordinates to the NHFe centre 

bidentately using its C2 keto oxygen and C1 carboxylate as the ligands replacing two water 

molecules. In most reported structures, in addition to its bidentate interactions with the 

metallo-centre, αKG also interacts with a basic residue in the active site (e.g. Arg or Lys) 

through electrostatic interactions using its C5 carboxylate, which facilitates the positioning 

of αKG in the active sites.6

Two different αKG binding modes have been observed upon inspection of the structure in 

PDB: the proximal and distal types.9, 71 In the proximal-type αKG binding mode (e.g. 

TauD•Fe(II)• αKG binary complex in Fig. 2B), the αKG C1 carboxylate coordinates to the 

Fe(II) centre at a position trans to the first histidine (His99), while the αKG C2 keto is at a 

position opposite to the acidic ligand Asp101 of the 2-His-1-carboxylate facial triad. In 

Table 1, we labelled this type of αKG binding mode as the proximal type. Upon substrate 

binding, the remaining water dissociates from the Fe(II) centre opening up the site for 

oxygen binding and activation (A-3, Fig. 1A). In a typical hydroxylation reaction, this 
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oxygen binding site is adjacent to the substrate binding site.77 The resulting Fe(IV)=O 

species (A-6, Fig. 1A) points towards the substrate, allowing direct oxidation of the substrate 

by Fe(IV)=O species.

Interestingly, in nearly ~50% of known αKG-NHFe structures (Table 1), αKG coordinates 

to the Fe(II) centre in a conformation different from the proximal type observed in TauD 

(Fig. 2B). For example, in the FtmOx1•Fe(II)• αKG binary complex shown in Fig. 2C, αKG 

displays a bidentate coordination to the Fe(II) centre and its C2 keto is at a position opposite 

to an acidic residue (Asp131 in Fig. 2C). However, in this structure, the C1 carboxylate of 

αKG coordinates to the Fe(II) centre at a position opposite to the distal histidine (His205) of 

the 2-His-1-carboxylate facial triad (Fig. 2C).68 This type of αKG binding mode is termed 

distal (Fig. 2C). Due to the change in αKG binding conformation relative to that of TauD, 

the remaining site for O2 binding and activation in FtmOx1 is not adjacent to the substrate 

binding pocket. Following the generic mechanistic model discussed in Fig. 1A for αKG-

mediated oxygen activation, the Fe(IV)=O species formed (Fig. 2C) points away from the 

substrate binding site, making it inaccessible for subsequent chemical transformation.

Two scenarios have been proposed to explain the catalytic processes in distal-type αKG-

NHFe enzymes. In the first scenario, as exemplified by the endoperoxidation reaction 

catalyzed by FtmOx1 (Figs. 2C),68 αKG coordinates to the Fe(II) centre using the distal 

binding mode and the oxygen binding site is not adjacent to the substrate verruculogen. 

However, a tyrosine residue (Y224) is next to the oxygen binding site and is crucial to the 

endoperoxidation reaction (see Section 3.6.6).68 Alternatively, αKG can undergo a 

conformational switch from the distal to proximal mode, re-orienting the oxygen binding 

and activation site towards the substrate. In clavaminic acid synthase (CAS), two αKG 

binding modes have been observed experimentally (Figs 2D & 2E).78 In the absence of NO, 

the C1 carboxylate of αKG coordinates to the Fe(II) centre from a site opposite to that of the 

proximal histidine (His144, Fig. 2D). Interestingly, upon the introduction of NO to the 

CAS•Fe(II)• αKG•substrate complex (Fig. 2E), the C1 carboxylate is now positioned 

opposite to the distal histidine (His279) of the His-X-Asp/Glu-Xn-His facial triad. Two αKG 

binding modes (distal and proximal) have also been observed for AlkB,80 which catalyzes 

oxidative DNA demethylation. The presence of two αKG binding modes in both CAS and 

AlkB has led to the proposed αKG conformational switch (Fig. 2F), which is necessary to 

properly orient the Fe(IV)=O species towards the substrate for catalysis.71

Early in 2017, two αKG binding modes were also observed for the ethylene-forming 

enzyme (EFE).79 In one structure, αKG displays a bidentate coordination to the Fe(II) 

centre in the distal-type binding mode.79, 81 Interestingly, in another EFE structure, αKG 

displays a monodentate coordination to the Fe(II) centre using its C5 carboxylate as the 

ligand (Fig. 2G).79 It is not yet known whether this binding mode is relevant to EFE 

catalysis.

In natural product biosynthesis, reactions catalyzed by αKG-NHFe enzymes are widely used 

to either produce biosynthetic precursors or to modify the natural product skeletons after 

assembly. In this review, we summarize recent examples of αKG-NHFe enzymes involved 

in the modification of amino acids, and biosynthesis of terpenes, lipids and phosphorous-
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containing secondary metabolites. The materials covered here complement many of the 

recent reviews in this area, especially a recent book on αKG-dependent oxygenases.6 

Halogenases, which can install a halogen atom, Cl− or Br−, to an inactivated carbon centre 

are a subset of the αKG-NHFe enzyme superfamily and are covered in Section 2. Section 3 
is devoted to αKG-NHFe enzymes involved in amino acid modifications, and are prevalent 

in the biosynthesis of several types of natural products. Terpenes are one the largest classes 

of natural products.82 After assembly of their skeleton, extensive modifications are 

introduced to produce the final products. Some of the required tailoring reactions are 

catalyzed by αKG-NHFe enzymes (Section 4). Phosphonates are C-P bond-containing 

natural products with great pharmaceutical potential due to their structural similarity to 

phosphates and carboxylates.83 Phosphonate biosynthesis involves many novel reactions, 

some of which are mediated by αKG-NHFe enzymes and are described Section 5. In 

addition, Sections 6 and 7 are devoted to αKG-NHFe enzymes involved in lipid and fatty 

acid modifications and nucleoside antibiotics biosynthesis, respectively.

In Table 1, we list all of the αKG-NHFe enzymes discussed in this review and an additional 

25 enzymes covered by Hangasky et al. in their structural analysis of αKG-NHFe enzymes 

previously deposited in the PDB.9 For enzymes listed in Table 1, when structural 

information was available, they have been classified as either the proximal or distal type to 

indicate their αKG binding mode. Interestingly, the number of proximal- and distal-type 

αKG-NHFe enzymes are approximately equal, indicating that both binding modes are 

common in nature. Thus far, most of the mechanistic information on αKG-NHFe enzymes is 

based on the characterization of proximal-type αKG-NHFe enzymes. Distal-type αKG-

NHFe enzymes have to change the binding conformation of αKG to properly orient the 

Fe(IV)=O species for catalysis, and this conformational switch may be a critical mechanistic 

feature. In cases where a conformational switch is not employed, it is highly possible that 

nature explores the uniqueness of the distal-type binding mode to mediate novel chemical 

transformations (e.g. FtmOx1 catalysis, Fig. 2C). Future mechanistic characterizations of 

more proximal-type αKG-NHFe enzymes will provide answers to these questions.

2 Halogenation

In this section, we summarize some recent examples of halogenation reactions catalyzed by 

αKG-NHFe enzymes. Unlike flavin-dependent halogenases, which catalyze halogenation at 

aromatic or electron-rich carbons,20, 67, 118, 119 αKG-dependent halogenases perform much 

more challenging chemical transformations, catalyzing halogenation reactions at aliphatic 

carbons.120, 121 Most of the halogenases characterized to date act on substrates tethered to 

the phosphopantetheinyl arm of carrier proteins (Sections 2.1 and 2.2).6 In recent years, 

halogenases using stand-alone small molecules as the substrates have also been discovered 

(Section 2.3).

Several crystal structures of αKG-dependent halogenases have been reported, including 

SyrB2, CytC3, CurA and WelO5 (Table 1). Interestingly, they do not have the typical 2-

His-1-carboxylate “facial triad” as observed in other αKG-NHFe enzymes. Instead, the 

carboxylate ligand of the 2-His-1-carboxylate facial triad is replaced by a halide ligand, 
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which together with some other active site interaction network modifications, is key to the 

selectivity of these halogenases.76, 95, 96, 113, 117

2.1 Halogenation on carrier protein-tethered substrates

SyrB2 catalyzes monochlorination of the methyl group of L-Thr-SyrB1 4 to 4-Cl-L-Thr-

SyrB1 5, which is one of the steps in the biosynthesis of the phytotoxin syringomycin E 6 
(Fig. 3A), using SyrB1 as the carrier protein.113, 120, 122 Wild-type SyrB2 can also catalyze 

aliphatic nitration or azidation reactions.123 Drennan et al. reported the first structure of the 

αKG-NHFe halogenase SyrB2 and showed that its Fe(II) centre has 2-His and 1-chloride 

ligand, instead of the classic 2-His-1-carboxylate facial triad.113

SyrB2 undergoes oxygen activation similar to other αKG-NHFe enzymes (Fig. 1A), 

generating an Fe(IV)=O species (Fig. 3B).113 The Fe(IV)=O species (B-4, Fig. 3B) then 

abstracts a hydrogen atom from the substrate to create a substrate-based radical (B-5, Fig. 

3B). Subsequently, the chlorine atom combines with the substrate-based radical, instead of 

going through a hydroxy-rebound to form a hydroxylation product, resulting in the 

formation of a chlorinated product (B-5 → B-1, Fig. 3B).60

The biosynthesis of barbamide 11 (Fig. 4A) involves two αKG-NHFe halogenases, BarB1 

and BarB2, which work in tandem to trichlorinate the C5 methyl group of L-Leu-S-BarA 7. 

In these chlorination reactions, BarA is the carrier protein (Fig. 4A), and BarB2 chlorinates 

either L-Leu-S-BarA 7 or monochloro-Leu-S-BarA 8 to dichloro-leu-S-BarA 9. 

Interestingly, BarB1 can convert both mono- and di-chlorinated L-Leu-S-BarA (8 and 9) to 

(2S,4S)-5,5,5-trichloro-Leu-S-BarA 10 (Fig. 4A).124 CytC3 catalyzes the chlorination of 

aminobutyryl-S-CytC2 12 during biosynthesis of the Streptomycete antibiotic 

dichloroaminobutyrate 15, and functions in a similar manner to SyrB2, BarB1 and BarB2. 

Both γ-chloro- and γ, γ-dichloroaminobutyryl-S-CytC2 (13 and 14, Fig. 4B) are products 

of CytC3 catalysis.125

In addition to the aforementioned cases where chlorinase is part of the non-ribosomal 

peptide synthetase (NRPS) machinery, chlorination has also been reported as a tailoring 

reaction for the biosynthesis of other natural products. HtcB is a fatty acyl halogenase 

involved in the biosynthesis of hectochlorin 20. The HtcB protein from Lyngbya majuscule 
contains three domains: an N-terminal catalytic αKG-NHFe halogenase domain, an acyl 

coenzyme A binding domain and an acyl carrier protein (ACP) domain.126 When ACP-

tethered hexanoyl 16 was used as a substrate, 5-oxo- 17, 4-ene-5-chloro- 18 and 5,5-

dichloro-haxanoyl-S-ACP 19 were all observed as products in HctB catalysis (Fig. 4C).128 

After this tailoring reaction, 5,5-dichloro-haxanoyl-S-ACP 19 was utilized as one of the 

building blocks for the biosynthesis of hectochlorin 20.

In the above cases, amino acids tethered to the phosphopantetheinyl arm of carrier proteins 

or an acyl group tethered to an ACP domain were used as substrates by αKG-NHFe 

halogenases. KthP is an αKG-NHFe enzyme involved in the biosynthesis of kutzneride 2 

(23). For the chlorination step in the production of kutzneride 2 (23), a piperazyl functional 

group was tethered to the thiolation protein KtzC first (21, Fig. 4D), and KthP then stereo- 
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and regio-selectively chlorinated the tethered piperazyl ring to generate (3S,5S)-5-

chloropiperazate-S-KtzC 22 (Fig. 4D).127

2.2 Halogenation-initiated formation of cyclopropanes

Chlorination is employed by several natural product biosynthetic pathways to activate C-H 

bonds and the resulting halides are then used for the construction of other functional groups, 

e.g. cyclopropane. During biosynthesis of the Pseudomonas syringae phytotoxin coronatine 

28 (Fig. 5A), CmaB, an αKG-NHFe halogenase, chlorinates L-allo-isoleucine-S-CmaD 24 
to γ-chloro-L-allo-isoleucine-S-CmaD 25 (Fig. 5A). Subsequent intramolecular γ-

elimination is mediated by a zinc-dependent enzyme, CmaC, resulting in the formation of 

coronamic acid-S-CmaD 26 (Fig. 5A). Coronamic acid (CMA, 27) is then released from 

CmaD and used as a building block for the biosynthesis of coronatine 28 (Fig. 5A).121

An analogous pathway of coronatine biosynthesis is present in the biosynthesis of 

kutzneride 2 (23, Fig. 5B). In this process, KtzD, an αKG-NHFe enzyme, chlorinates the γ 
position of L-Ile-S-KtzC 29 tethered to a KtzC carrier protein to generate γ chloro-L-allo-

Ile-S-KtzC 30. Subsequent cyclopropyl ring formation mediated by the flavoprotein KtzA 

affords (1S, 2R)-allo-CMA 31, which is in contrast to the zinc-dependent protein in the 

coronatine biosynthesis (Fig. 5B).129 It is worth mentioning that, the cyclopropyl group 

present in the (1S, 2R)-allo-CMA-S-KtzC intermediate 31 (Fig. 5B)129 is structurally 

distinct from the 2-(2-methylcyclopropyl)glycine moiety in kutznerides, e.g. kutzneride 2 

(23, Fig. 5B).130

CurA and JamE are two polyketide synthase (PKS) megasynthases involved in the Lyngbya 
majuscule curacin 37131 and janmaicamide 39132 biosynthetic pathways, respectively (Fig. 

6A). An αKG-NHFe halogenase (Hal) domain is embedded in the CurA megasynthase, and 

plays a similar role to that of CmaB and KtzD in the construction of a cyclopropyl group. 

The Hal domain of CurA chlorinates (S)-3-hydroxy-3-methylglutaryl-ACP ((S)-HMG-ACP, 

32) to produce 33. Then, a dehydratase (ECH1) domain embedded in CurE catalyzes the 

dehydration of 33 to yield 3-methylglutaconyl-ACP 34. Subsequent decarboxylation 

mediated by a decarboxylase (ECH2) domain embedded in CurF affords an α, β-enoyl 

thioester, 3-methylcrotonyl-ACP 35. Finally, an enoyl reductase (ER) domain embedded in 

CurF catalyzes the cyclopropanation of 35 to 36, which then serves as a building block in the 

biosynthesis of curacin A 37 (Fig. 6A).133

A similar biosynthetic route is present in the jamaicamide A pathway. Here, the halogenase 

domain embedded in JamE catalyzes the same chlorination step on 32 as that of CurA in 

curacin A biosynthesis (Fig. 6A). However, in contrast to the α, β-enoyl thioester-based 

product 35 from the CurF ECH2 domain, the JamJ ECH2 domain decarboxylates 34 to 

produce the β, γ-enoyl thioester intermediate 38 in the biosynthesis of jamaicamide 39 (Fig. 

6A).132, 134

Several crystal structures of the CurA halogenase domain (Hal) in different ligand states 

have been reported.95 Two conformation states exist, namely an open and a closed state 

(Figs 6B & 6C), and the transition between the two states is triggered by αKG binding. A 

large lid covers the active site in the closed form, which is disordered in the open form. 
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Upon αKG binding, CurA Hal undergoes a conformational change from the open to closed 

form, facilitating the substrate (S)-HMG-ACP binding (Figs 6B & 6C). Additionally, CurA 

Hal exhibits a high degree of substrate specificity, requiring both the C3 S-hydroxyl and C5 

carboxylate on (S)-HMG-ACP 32 for recognition. It has been suggested that the 

halogenation vs hydroxylation outcome in these halogenase reactions depends on the 

substrate positioning. The conformational switch triggered by αKG binding may allow the 

precise positioning of the substrate in the active site, thereby minimizing the competing 

hydroxylation reaction.95

2.3 Halogenation on freestanding substrates

In most early descriptions of αKG-NHFe halogenase reactions (sections 2.1 & 2.2), their 

substrates were covalently tethered to carrier proteins. These halogenases do not recognize 

stand-alone small molecule as a substrate. New information regarding their substrate 

specificity was discovered recently. WelO5, an enzyme involved in welwitindolinone 

biosynthesis, is the first reported αKG-NHFe chlorinase that utilizes a stand-alone small 

molecule as its substrate.117, 135, 136 WelO5 stereo-specifically chlorinates hapalindole-type 

molecules (40 → 41, Fig. 7A).117, 135, 136 In addition to chloride, WelO5 can use other 

halides, including bromide, as alternative halogenation agents.137

Recently, the structure of the WelO5•αKG•substrate complex was reported (Fig. 7B).117 In 

this structure, after αKG and substrate binding, the vacant ligand site in the Fe(II) centre is 

directly facing the substrate. If this is the site for O2 binding and activation and no αKG 

rearrangement is involved, then the oxo group, instead of the chlorine group of the halo-oxo-

iron(IV) intermediate, faces the substrate. To explain the chlorination activity, it was thus 

suggested that a switch in αKG conformation was required. A second-coordination shell 

residue, Ser189, was suggested to play a key role in controlling such an αKG 

conformational switch (Fig. 7B). This hypothesis is supported by results from the WelO5 

S189A mutant, which produces an equal amount of halogenation and hydroxylation 

products.117

AmbO5 is another recent example of such an αKG-NHFe halogenase (Fig. 7A). AmbO5 has 

a high degree of substrate flexibility and catalyzes the chlorination of ambiguine (44, 46, 

50), fischerindole (40, 42) and hapalindole 52 alkaloids (Fig. 7A).138 Comparative analysis 

of AmbO5 and WelO5 revealed that a fragment of the C-terminal portion of WelO5 might be 

important for substrate selection and specificity.138 Indeed, replacing a fragment of 18 

residues in the WelO5 C-terminus with the corresponding AmbO5 sequence expanded the 

substrate scope of WelO5 catalysis.138

Many halogenated natural products exhibit biological activities. For example, 

salinisporamide shows anti-cancer activity,139 while syringomycin functions as an anti-

fungal agent.140 Halogenation is critical for the biological activities of these compounds, and 

as a result, developing new halogenation strategies continues to be a key area of interest.
20, 67 In the last few decades, while many investigations have focused on the structural and 

mechanistic characterizations of these halogenases, some efforts have been devoted to 

developing new halogenases. Several groups have attempted the conversion of a hydroxylase 

to a halogenase and vice versa.113, 117 One of the successful examples is the WelO5 S189A 
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mutant, which has exhibited a relaxed selectivity relative to wild-type WelO5, producing an 

equal proportion of hydroxyl and chlorine-modified products.117 Recently, Boal et al. also 

engineered an N-acyl amino acid hydroxylase, SadA, into a halogenase.141

3 Amino Acid Modifications

The presence of non-proteinogenic amino acids in alkaloids and non-ribosomal peptides is 

very common and, in many cases, these unnatural amino acids are supplied through 

dedicated biosynthetic pathways. Alternatively, after natural product skeleton assembly 

using 21 proteinogenic amino acids, additional structural diversity is then introduced 

through extensive modifications by tailoring enzymes. αKG-NHFe enzymes are one of the 

most common types of tailoring enzymes. These αKG-NHFe enzymes often show some 

degree of substrate promiscuity, readily incorporating substrate analogues into natural 

products through pathway engineering or by in vitro biocatalytic processes. For some 

valuable compounds, these αKG-NHFe enzyme-mediated biocatalytic transformations may 

have advantages relative to their synthetic organic pathways. In this section, some recent 

amino acid tailoring reactions are summarized.

3.1 αKG-NHFe enzymes in carnitine biosynthesis

L-Carnitine 59 plays a key role in fatty acid metabolism in all animals and in some 

prokaryotes. As a result, the enzymes involved in carnitine biosynthesis have been explored 

for therapeutic purposes.146, 147 Carnitine biosynthesis148–150 (Fig. 8A) begins with 

trimethylated lysine 55, and involves the following reactions: Nε-trimethyllysine 

hydroxylase (TMLH), 3-hydroxy-Nε-trimethyllysine aldolase (HTML aldolase), 4-N-

trimethylaminobutyraldehyde dehydrogenase (TMABA dehydrogenase) and γ-

butyrobetaine hydroxylase (BBOX). Both TMLH and BBOX are αKG-NHFe enzymes. 

TMLH catalyzes the stereo-selective conversion of (2S)-Nε-trimethyllysine 55 to (2S,3S)-3-

hydroxy-Nε-trimethyllysine 56 (Fig. 8A),142, 151, 152 one of the key reactions in carnitine 

biosynthesis.148–150 HTML aldolase catalyzes the cleavage of 56 into 4-N-

trimethylaminobutyraldehyde 57 and glycine using pyridoxal phosphate (PLP) as a cofactor. 

Then, TMABA dehydrogenase, an NAD+-dependent enzyme, oxidizes 4-N-

trimethylaminobutyraldehyde 57 to γ-butyrobetaine (γ-BB) 58. The last step of this 

pathway is the BBOX-catalyzed hydroxylation of 58 to L-carnitine 59.

TMLH has some degree of substrate flexibility and can accept several trimethyllysine 

analogues as alternative substrates (60–63, Fig. 8B), catalyzing the production of their 

corresponding hydroxylation products (64–67, Fig. 8B).143 TMLH’s substrate flexibility is 

reflected in at least two aspects: the chain length of the amino acid side-chain and the alkyl 

group on the lysine ε-nitrogen. Thus far, TMLH’s crystal structure has not been reported. 

However, the substrate promiscuity of TMLH implies that its active site pocket for the lysine 

side-chain binding is relatively flexible, and could be explored for the stereo-selective 

hydroxylation of substrate analogues for synthetic purposes. Recently, many αKG-NHFe 

enzymes involved in histone demethylation (e.g. the demethylation of methylated lysine 

residues) have been discovered and discussed in depth in a book edited by Schofield and 
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Hausinger.6 Future structural work may also provide information on how this class of 

enzymes control regioselectivity.

BBOX is an αKG-NHFe enzyme involved in the last step of L-carnitine biosynthesis, 

hydroxylating γ-butyrobetaine (γ-BB, 58) to L-carnitine 59 (Fig. 8A).153, 154 Because of the 

importance of L-carnitine in fatty acid metabolism, BBOX has been explored as a target to 

develop treatments for myocardial infarction.147 Interestingly, BBOX catalyzes the oxidation 

of its inhibitor 3-(2,2,2-trimethylhydrazinium)propionate (THP) 68 and produces multiple 

products, including 68g–68j, and 3-amino-4-(methylamino)butanoic acid (AMBA) 69 (Fig. 

8C).144 The oxidation of THP 68 involves N–N bond cleavage and C–C bond formation, 

which is likely achieved via a process related to a Stevens rearrangement (Stevens [1,2]-

shift).155 The Fe(IV)=O intermediate abstracts a hydrogen atom from THP 68 to generate a 

radical intermediate 68a, which is followed by N–N bond cleavage and a [1,2]-shift to 

produce 68d (Fig. 8C). Two potential pathways (Pathways I and II) have been proposed for 

the subsequent steps (Fig. 8C). In pathway I, N-methyl hydroxylation followed by 

spontaneous decomposition of the hydroxylation product 68f affords the formaldehyde 68h. 

On the other hand, in pathway II, the methylene radical reacts with the imine 68b and the 

subsequent [1,5] H-shift results in a radical intermediate 68l. The hydroxyl radical rebounds 

to the intermediate 68l, generating the hydroxylation product 70 (acyclic aminal), which 

might be in equilibrium with its cyclic aminal form 71. Compound 70 is further converted to 

the final product AMBA 69 after eliminating the formaldehyde moiety (Fig. 8C).144

The structure of BBOX in complex with an αKG analogue, N-oxalylglycine (NOG) and γ-

BB has been reported (Fig. 8D).92 In this structure, the αKG analogue coordinates to the 

iron centre in the distal-type binding mode, which implies that a conformational switch of 

αKG upon binding might be necessary in order to properly orient the Fe(IV)=O species 

towards the substrate for the hydroxylation reaction.92, 156 BBOX’s structural information 

also explains its substrate flexibility. When the nitrogen atom in the trimethylammonium 

group is replaced by either phosphorous or arsenic, the corresponding analogues (72, 74, 76, 
78, 80 and 82 Fig. 8E) are also recognized as BBOX substrates, as demonstrated in a study 

of Pseudomonas sp. AK1 BBOX (PsBBOX). The BBOX active site possesses an aromatic 

cage that forms the binding pocket for the positively charged trimethylammonium group of 

γ-BB 58. Kinetic analyses have shown that cation–π interactions between BBOX and its 

substrate/substrate analogues are crucial for their recognition. Intriguingly, BBOX does not 

recognize an uncharged analogue of γ-BB 58 as an alternative substrate,145 providing an 

additional line of evidence supporting the importance of π-cation interactions in BBOX 

catalysis.145

3.2 Ethylene-forming enzymes (EFE)

Ethylene is one of the most widely used raw materials in the chemical industry, and has been 

widely adopted in the manufacture of plastics, textiles and solvents. The polymerization of 

ethylene is also used to produce hydrocarbons in the C5–C10 range. Currently, ethylene 

usage has approached ~150 million metric tons per year.157 To meet industrial needs, 

ethylene is primarily produced in massive quantities by the steam cracking of fossil fuels or 

from the dehydrogenation of ethane, representing one of the largest CO2-emitting processes 
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in the chemical industry. Despite the usage of modern technology, approximately 2 MJ of 

energy are required per pound of ethylene produced. Given the size of the ethylene industry, 

this product alone accounts for at least 1.5% of United States’ carbon footprint.157, 158

In recent years, alternative routes for ethylene production have been explored, with one of 

these directions involving biocatalytic production processes. Ethylene is a plant hormone 

that plays a crucial role in plant growth and development.159 Plants use 

aminocyclopropane-1-carboxylic acid (ACC) oxidase to convert ACC, an intermediate 

generated from S-adenosyl-L-methionine, to ethylene, CO2 and HCN.6 ACC oxidase has 

been intensively investigated, with work in this area summarized in a recent book;6 however, 

this production route is not suitable for industrial-scale adaptation due to the toxicity of the 

HCN by-products.

More recently, a completely different ethylene-production system was discovered. It was 

recently found that some bacteria utilize an enzyme that catalyzes ethylene formation using 

αKG-based oxidative fragmentation, which is dependent on the presence of oxygen, Fe(II) 

and L-Arg.163, 164 Isotope labelling studies indicated that the ethylene precursor is αKG, 

and consequently, this class of enzyme was named as ethylene-forming enzymes (EFEs).165

EFEs are αKG-NHFe enzymes and have been found in several species, including 

Pseudomonas syringae,166 Ralstonia solanacearu166 and Penicillium digitatum.167 

Biochemical characterizations have indicated that EFEs catalyze two reactions 

simultaneously (Fig. 9A).168 The first reaction is the hydroxylation of L-Arg 84 at its C5 

position at the expense of αKG 88 to produce succinate and CO2. This is a very typical 

αKG-NHFe enzyme-catalyzed hydroxylation reaction. The second reaction in EFE catalysis 

is the fragmentation of αKG 88 to produce ethylene 89 and three molecules of CO2. The L-

Arg hydroxylation product, 5-hydroxyl-L-arginine 85, is not stable and spontaneously 

decomposes to guanidine 86 and L-Δ-1-pyrroline-5-carboxylate (P5C) 87. The EFE-

catalyzed production of ethylene through αKG fragmentation has not been observed in any 

other enzymes.

Recently, EFE has been structurally and biochemically characterized.79, 81, 168 Initially, 

αKG was proposed to become conjugated to L-Arg through the formation of a Schiff base, 

and the two reactions in EFE catalysis were believed to be tightly coupled through a dual-

circuit reaction mechanism.169 The results from these recent biochemical characterizations 

indicated that EFE also accepts some L-Arg analogues as alternative substrates, and in some 

cases, the ratio of these two reactions is different from that of wild-type EFE reactions, 

which provides some initial evidence against the proposed dual-circuit mechanism. 

Structural information reported in 2017 by Schofield, Hausinger and their co-workers79, 81 

clearly indicated that αKG does not form a Schiff base with L-Arg; instead, αKG 

coordinates to the Fe(II) centre bidentately in a distal-type binding conformation (Fig. 9B). 

Therefore, an αKG conformational switch was proposed as an essential step for L-Arg 

hydroxylation in EFE.79 Interestingly, αKG in EFE also adopts another binding mode (Fig. 

2G) that is completely different from all other reported structures (Figss 2B & 2C, and Table 

1). In this EFE structure (Fig. 2G), αKG is a monodendate ligand and coordinates to the 

Fe(II) centre through its C5 carboxylate. To date, the mechanistic details of EFE remain to 
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be elucidated, and the importance of this new type of αKG binding mode in EFE catalysis 

remains enigmatic.79

Beyond these efforts towards structural and mechanistic characterizations, the production of 

ethylene through the heterologous expression of EFE has also been demonstrated in several 

model organisms, including E. coli, Saccharomyces cerevisiae and cyanobacteria.170–172 

Although native EFE-producing hosts are less amenable to genetic manipulation, ethylene is 

produced in much higher yields compared to those achieved in heterologous hosts.173 One 

of key goals in EFE engineering is to de-couple L-Arg hydroxylation from ethylene 

production so that a more efficient ethylene-production process can be achieved.

3.3 L-Isoleucine hydroxylase

L-Isoleucine hydroxylase, also known as L-isoleucine dioxygenase (IDO), is an αKG-NHFe 

enzyme that coverts L-Ile 91 to (2S,3R,4S)-4-hydroxyisoleucine 92 (Fig. 9C).174 (2S,3R,

4S)-4-hydroxyisoleucine 92 shows anti-diabetic and anti-obesity activities, and has been 

explored as one of the components in functional foods.175, 176 IDO from Bacillus 
thuringiensis (BtIDO) has been characterized. After oxidizing L-Ile 91 to 92, BtIDO can 

further oxidize 92 to (2S,3R)-2-amino-3-methyl-4-ketopentanoate 93 (Fig. 9D).160 BtIDO 

can also tolerate some degree of variations in the L-Ile side-chain (Fig. 9D). The use of 

substrate analogues alters both the position and stereo-chemistry of the hydroxylation 

reactions, suggesting that the L-Ile side-chain may have some degree of flexibility within the 

binding pocket.

BtIDO shows considerable substrate promiscuity, recognizing a wide range of L-Ile 

analogues as alternative substrates.160 Intriguingly, the reactions in BtIDO-catalysis are not 

limited to hydroxylation (Fig. 9C).160 Using L-Met 103 or its analogue 105 as the substrate, 

BtIDO catalyzes the sulfoxidation of these sulfur-containing L-amino acids, producing L-

methionine sulfoxide 104 and L-ethionine sulfoxide 106, respectively (Fig. 9D).160 

Furthermore, some efforts have also been devoted to applying IDO-catalysis to the 

fermentation-based production of compound 92. In αKG-NHFe catalysis, along with the 

formation of Fe(IV)=O species, the co-substrate αKG is oxidized to succinate. The 

conversion of αKG to succinate is one of the key steps in the tricarboxylic acid cycle, which 

is catalyzed by αKG dehydrogenase. In an engineered E. coli strain, involving the 

replacement of αKG dehydrogenase with BtIDO to couple BtIDO-catalysis to the 

tricarboxylic acid cycle, L-Ile 91 was readily converted to 92 in a high yield.177

In BtIDO-catalysis, L-Met 103 is oxidized to the sulfoxide 104. However, in glucoraphasatin 

synthase 1 (GRS1), a different type of chemistry was observed in an αKG-NHFe enzyme 

involved in glucoraphasatin 108 biosynthesis.178 After the conversion of L-Met 103 to 4-

methylthiobutyl glucoerucin 107, GRS1 catalyzes the desaturation of 107, introducing a 

double bond into the product 108 (Fig. 9E).161 Thus far, no structural information is 

available for GRS1. Future comparative studies between BtIDO and GRS1 might reveal the 

factors governing sulfoxidation vs. desaturation in these two enzymatic systems.

SadA is an αKG-NHFe enzyme that catalyzes the β-hydroxylation of several N-substituted 

L-amino acids, especially N-succinyl L-leucine 109.162 In vitro characterizations of SadA 
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indicated that when N-succinyl L-Leu 109 was used as the substrate, N-succinyl L-threo-β-

hydroxyleucine 110 could be obtained in an over 99% diastereomeric excess (Fig. 9F).179 

The crystal structures of SadA•Zn(II) and SadA•Zn(II)•αKG complexes were reported,112 

and showed a bidentate coordination of the αKG molecule to the Zn(II) metal ion. In 

addition, N-succinyl-L-leucine and N-succinyl-L-phenylalanine were modelled into the 

active site of SadA and revealed that the binding pocket of the N-succinyl group is located in 

an electropositive-rich cavity formed by the side chains of Arg83, Arg163 and Arg203. This 

structural feature accounts for SadA’s high selectivity towards N-succinyl-L-amino acids 

relative to other N-substituted amino acids.112, 162

As discussed in Section 2.3, SadA represents an elegant example of a hydroxylase that has 

been engineered to function as a halogenase. In the SadA D157G mutant, one of the active 

site Fe(II) ligands, Asp157, is replaced by a Gly residue. In the reaction using the SadA 

D157G mutant in the presence of NaCl or NaBr, the formation of chlorine- and bromine-

substituted products were observed.141 In the previous section, we described how BtIDO can 

accept L-Leu 98 as a substrate, catalyzing a γ-hydroxylation reaction (98 → 99 conversion, 

Fig. 9D). Taken together, IDO and SadA are another pair of αKG-NHFe enzymes that are 

suitable for comparative studies to elucidate the structure–function relationship.

3.4 Lysyl hydroxylase

Post-translational modifications of proteins are one of the key strategies in signal 

transduction pathways and in the epigenetic regulation of biological processes, e.g. histone 

modifications.6 The post-translational modification of proteins is not only key to tuning the 

functions of structural proteins, such as collagen by introducing intra- and inter-molecular 

cross-linking, but also provide attachment sites for other modifications, e.g. the 

glycosylation of hydroxylysine residues in collagen.180 An in-depth discussion of protein 

hydroxylation, and histone and nucleic acid demethylation reactions can be found in a 

recently published book on αKG-NHFe enzymes.6 Herein, we briefly touch upon this topic.

In collagen post-translational modification processes, in addition to the prolyl hydroxylase 

discussed in the next section (Section 3.5), another important αKG-NHFe enzyme in this 

pathway is lysyl hydroxylase (LH).181, 182 Three isoforms of lysyl hydroxylase (LH1, LH2 

and LH3) were isolated from human and mouse tissues and were shown to mediate the 

hydroxylation of lysyl residues in collagen polypeptide chains 111 (Fig. 10A).183 LH1 is 

associated with the genetically inherited disorder Ehlers–Danlos syndrome type VI 

(Kyphoscoliotic form).184, 185 Recent characterizations suggest that LH2 lysyl hydroxylase 

has two alternatively spliced forms (LH2a and LH2b).186, 187 In contrast to LH1 and LH2, 

LH3 is a multi-functional enzyme. In addition to a hydroxylation reaction to produce 

hydroxylysyl (Hyl, 112), LH3 is responsible for further glycosylations at the hydroxylation 

site, resulting in the addition of galactosylhydroxylysyl (Gal-Hyl, 113) and 

glucosylgalactosyl hydroxylysyl (Glyc-Gal-Hyl, 114) glycans (Fig. 10A).188, 189 Thus far, 

the structural information on LH1, LH2 and LH3 has not been available. However, the 

crystal structure has been solved for JMJD6, another αKG-NHFe lysyl hydroxylase. JMJD6 

belongs to the JmjC subfamily. JmjC enzymes are responsible for the demethylation of Nε-

methylated lysine residues of histones.190 Unlike many other enzymes in the JmjC 
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subfamily, JMJD6 mediates both the lysyl hydroxylation and arginyl demethylation of 

various protein substrates.191 For example, JMJD6 hydroxylases the lysyl residues of the 

arginine-serine-rich domains of U2AF65, an RNA-splicing-related protein.192, 193 Structural 

analysis of JMJD6 revealed how lysyl residues of the protein peptide substrate 115 bind to 

JMJD6 in an orientation that promotes C5 hydroxylation to produce 116 (Fig. 10B) rather 

than Nε-demethylation, which is a typical reaction of many JMJD6-class histone 

demethylases.6 Another example is JMJD4, which mediates lysyl C4 hydroxylation to 

produce 117 (Fig. 10B).194 Recently, Schofield et al. summarized the structure–function 

relationship of human JmjC oxygenases and highlighted the key differences between 

hydroxylases and demethylases.195 For interested readers, another recent review summarizes 

the various biological processes that JMJD6 proteins are involved in.191

3.5 Proline hydrolase (PH)

Hydroxylprolines (Fig. 11) have been identified as components in both small molecular 

natural products (e.g. actinomycin I, etamycin and echinocandins) and in proteins.197–199 L-

Pro 118 hydroxylases (PHs) are αKG-NHFe enzymes.198, 200–204 Both 3-hydroxy-L-proline 

and 4-hydroxy-L-proline have been identified as proline hydroxylation products. Early 

studies led to the discovery of cis-3- and trans-4-L-proline hydroxylases (cis-3-PH and 

trans-4-PH), which have been applied in the industrial production of cis-3- and trans-4-

hydroxy-L-proline (cis-3-L-Hyp 119a and trans-4-L-Hyp 119d, Fig. 11A), respectively. 

Over the years, many more PHs have been discovered, and all four isomers of 

monohydroxy-L-proline can be produced enzymatically using stereo- and regio-specific PHs 

(Fig. 11A).199, 205, 206

Furthermore, many PHs can accept proline analogues as alternative substrates to carry out 

reactions that are distinct from hydroxylation. For example, a 4-proline hydrolase from 

Streptomyces griseoviridus P8648 (SgP4H) mediated the stereospecific epoxidation of 3,4-

dehydro-L-pro 120 to trans-3,4-epoxy-L-Pro 121 (Fig. 11B).197 The reaction was 

stereospecific and cis-3,4-epoxy-L-proline was not detected. SrPH, another αKG-NHFe 

enzyme from Streptosporangium roseum NBRC 3776T, can accept both L-Pro 118 and L-

pipecolinic acid 122 as substrates. Using L-Pro 118 as a substrate, SrPH catalyzes the 

formation of both cis-3-hydroxy-L-proline 119a and cis-4-hydroxy-L-proline 119c (Fig. 

11C). Similarly, SrPH catalyzes the hydroxylation of L-pipecolinic 122 to cis-3-hydroxy-L-

pipecolinic acid 123a and cis-5-hydroxy-L-pipecolinic acid 123b (Fig. 11C).207 GloF, an 

αKG-dependent proline hydroxylase from the pneumocandin pathway (Fig. 11D), accepts 

both proline 118 and trans-4-methyl-L-proline 124 as substrates. When proline 118 is the 

substrate, GloF catalyzes the formation of both trans-4- and trans-3-hydroxy-L-proline 

(119d and 119b) at a ratio of 8:1 (Fig. 11D). When trans-4-methyl-L-proline 124 is utilized 

as a substrate, GloF-catalyzed hydroxylation leads to the production of (3S,4S)-4-methyl-3-

hydroxyl-L-proline 125 (Fig. 11D).199 All three hydroxyprolines (119b, 119d and 125) are 

building blocks required for the biosynthesis of pneumocandins (126 & 127).

Interestingly, in pneumocandin biosynthesis (Fig. 11D), there is another αKG-NHFe 

enzyme, GLOXY4, which catalyzes the oxidative cyclization of L-Leu 97 to produce 

trans-4-methylproline 124. The anti-fungal agent pneumocandin possesses 4S-methyl-L-
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proline as part of its hexapeptide core (the R group in 126 vs 127).209 Results from gene 

deletion studies (e.g. the disruption of GLOXY4 from the pneumocandin gene cluster of the 

fungus Glarea lozoyensis) suggested that GLOXY4 is responsible for the production of 124 
(Fig. 11D).209 The inactivation of GLOXY4 abolishes the production of both 124 and 

pneumocandin A0 126; however, the GLOXY4 deletion strain remains capable of producing 

pneumocandin B0 127 as the exclusive product.209 Pneumocandin B0 127 still maintains the 

anti-fungal activity of pnuemocandin A0, but with reduced toxicity. For this reason, 

pneumocandin B0 127 was chosen for use as a semisynthetic precursor of the clinical anti-

fungal drug, caspofungin acetate.210 Therefore, the inactivation of GLOXY4 provides a 

route for the industrial production of pneumocandin B0 127 to increase its production titre. 

The mechanistic details for GLOXY4-catalyzed oxidative cyclization remain to be explored.

In addition to being key components of small molecular metabolites, hydroxylprolines also 

exist in proteins as a result of protein post-translational modification.6

3.6 αKG-NHFe oxidases associated with non-ribosomal peptide synthetase (NRPS) 
systems

Non-ribosomal peptides are assembled by NRPS systems, and the diversity of this group of 

natural products can be achieved through a few different approaches, including the selective 

incorporation of a variety of precursors, the modification of incorporated building blocks on 

carrier proteins or by the modification of the non-ribosomal peptide skeletons after they are 

released from biosynthetic machinery.211, 212 Some halogenases that play a role in these 

pathways were discussed in Section 2. However, many other types of reactions catalyzed by 

αKG-NHFe enzymes also contribute to the structural and functional diversity of this large 

class of natural products. In this section, we summarize the results from a few key cases 

reported recently.

3.6.1 L-Arginine related hydroxylase—Viomycin 130 (Fig. 12A) belongs to the 

tuberactinomycin family of non-ribosomal peptide antibiotics.213 Its skeleton is assembled 

by NRPS and one of the building blocks is a non-proteinogenic amino acid (2S,3R)-

capreomycidine 129 derived from L-Arg. (2S,3R)-Capreomycidine 129 is produced by a 

combination of reactions mediated by VioC and VioD using L-Arg as the substrate (Fig. 

12A). The αKG-NHFe enzyme VioC catalyzes the C3 hydroxylation of L-Arg 84 to 3S-

hydroxyl-L-Arg 128 (Fig. 12A),214, 215 which is then further converted to (2S,3R)-

capreomycidine 129 in a reaction catalyzed by VioD (Fig. 12A).216 In the final product 

viomycin 130, there is an additional C5 hydroxylation catalyzed by VioQ, a Rieske-type of 

NHFe enzyme.217

Mannopeptimycins (MPPs) have exceptional in vitro and in vivo antibacterial activities 

against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and 

penicillin-resistant Streptococcus pneumoniae.219 In the biosynthesis of mannopeptimycin β 
135, addition of the β-hydroxyenduracididine moiety 134 (Fig. 12B) involves reactions 

similar to those discussed in viomycin biosynthesis.218 Mannopeptimycin β 135 contains 

both D- and L-forms of β-hydroxyenduracididine, which are produced by hydroxylation of 

the unnatural amino acid L-enduracididine 133. Enduracididine 133 has a unique five-
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membered cyclic guanidine moiety.220 The first step in enduracidine 133 biosynthesis is the 

hydroxylation and deamination of L-Arg 84 catalyzed by MppP (a PLP-dependent 

hydroxylase), producing 2-oxo-4-hydroxy-5-guanidinovaleric acid 131.221 Subsequently, the 

pyruvate aldose, MppR, catalyzes the dehydration/cyclization of 2-oxo-4-hydroxy-5-

guanidinovaleric acid 131 to produce a cyclic guanidine intermediate 132,222 followed by 

transamination catalyzed by MppQ to produce L-enduracidine 133.220 MppO, an αKG-

NHFe enzyme, then hydroxylates the β-carbon of L-enduracididine 133, resulting in β-

hydroxy-enduracididine 134 (Fig. 12B).218

L-Arg, a substrate for both VioC (Fig. 12A) and EFE (Fig. 9A), and L-enduracidine 133, a 

substrate of MppO, shares the guanidine moiety. In EFE (Fig. 9A), αKG fragments to 

produce ethylene and three molecules of CO2. However, αKG fragmentation activity has not 

been reported for VioC and MppO.

The structural information of MppO is not yet available, but the structures of both VioC and 

EFE have been reported,79, 81, 116, 215 including the structures of VioC•αKG•L-Arg, 

VioC•αKG•3-OH-L-Arg, VioC•L-Arg•peroxysuccinate, VioC•3-OH-L-Arg•succinate and 

VioC•L-Arg•succinate•photoreduced vanadyl ion complexes.116 VioC binds αKG binding in 

a proximal-type conformation (Table 1), which slightly differs from the typical proximal 

mode of binding. In the VioC•αKG•L-Arg complex, the Fe(II) centre exhibits a distorted 5-

coordinate geometry in which the C1 carboxylate of αKG is ~35° out of the equatorial plane 

defined by H168, E170 and H316 (Fig. 12C).116 In addition, structural information from the 

Fe(II)-peroxysuccinate complex and vanadium(IV)-oxo species in VioC revealed 

coordinated motions of the active site residues, which may properly orient the Fe(IV)=O 

species for catalysis.

A structural and biochemical comparison between EFE (Fig. 2G & Fig. 9B) and VioC (Fig. 

12C) revealed several key differences.79, 81, 116 First, the L-Arg hydroxylation positions are 

different. VioC and EFE hydroxylate L-Arg at the C3 and C5 positions, respectively. Second, 

in the absence of L-Arg, αKG binds to EFE in a monodentate fashion, while upon L-Arg 

binding, αKG shifts to the bidentate fashion. Third, in EFE, due to the distal-type αKG 

binding, a conformational switch is required to re-orient the Fe(IV)=O species for 

hydroxylation. Fourth, a phenylalanine residue (F283) was proposed to play a key role in 

controlling the αKG conformational switch to re-orient Fe(IV)=O, which might be 

important for determining the ratio between ethylene formation and L-Arg hydroxylation. 

Thus far, there have been no compelling mechanistic results obtained to explain αKG 

fragmentation in EFE, while other homologues (e.g. VioC) do not show such activity.

3.6.2 L-Asparagine hydroxylase—Calcium-dependent antibiotics (CDA) (138, Fig. 

13A) are acidic lipopeptides that are promising candidates for the development of new 

antibiotics.224 CDA are synthesized through NRPS, with one of the building blocks being L-

β-hydroxy-asparagine 137. The hydroxylation of L-Asn 136 to L-β-hydroxy-Asn 137 is 

catalyzed by an αKG-NHFe enzyme: AsnO (Fig. 13A).89 The crystal structures of 

AsnO•Fe(II) and AsnO•Fe(II)•2S,3S-3-hydroxy-Asn•succinate have been reported. AsnO 

displays an overall DSBH fold, where H155, E157 and H287 form the 2-His-1-carboxylate 

facial triad.89 The AsnO active site closes upon substrate binding via a lid-like region. 
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Biochemical data revealed that AsnO uses stand-alone L-Asn as the substrate instead of L-

Asn tethered to the carrier domain or the peptide released from the NRPS.225

3.6.3 Ectoine hydroxylase—Ectoine 144 and hydroxyectoine 145 are zwitterionic small 

molecules produced by many halophilic and halotolerant bacteria (Fig. 13B);223 however, 

they are not part of the NRPS biosynthetic machinery. We have included them in this section 

only for comparison to reactions covered in Sections 3.6.1 and 3.6.2. Ectoine 144 and 

hydroxyectoine 145 are biologically inert and do not interfere with overall cellular functions, 

even when present at high concentrations in the cytoplasm. The proposed function of ectoine 

144 and hydroxyectoine 145 is to cope with osmotic stress at high external salinity. In 

addition, ectoine 144 and hydroxyectoine 145 may also function as effective stabilizers of 

proteins226 and cellular membranes.227 Due to these unique properties, ectoine and 

hydroxyectoine biosynthetic gene clusters have been identified, and their biosynthetic 

pathways have been biochemically characterized.223 Ectoine biosynthesis in initiated by the 

Ask-catalyzed activation of L-Asp 139 to β-aspartylphosphate 140, which is then reduced to 

β-semialdehyde 141 by Asd. Subsequently, a PLP-dependent transaminase, EctB, converts 

141 to L-diaminobutyric acid 142. The EtcA acetyltransferase catalyzes the acetylation of 

the side-chain amino group in 142 to Nβ-acetyl-diaminobutyric acid 143. The final step of 

ectoine biosynthesis is the EctC-catalyzed condensation between the α-amino group and the 

keto of the Nγ-acetyl group of compound 143. The further conversion of ectoine 144 to 

hydroxylectoine 145 is mediated by an αKG-NHFe enzyme: ectoine hydroxylase EctD (Fig. 

12B). Interestingly, compound 145 is superior to its precursor 144 in protecting 

microorganisms against environmentally imposed stresses and in preserving the 

functionality of macromolecules and cells.228, 229 Therefore, EctD could be important for 

the industrial production of hydroxylectoine 145. Structures of the apo form of EctD have 

been reported,98, 230 but no substrate complex structure is available at this time.

3.6.4 Glutamate hydroxylase—The biosynthesis of kutzneride 2 (23, Fig. 4D) involves 

an αKG-NHFe chlorinase (e.g. KtzD in Section 2.2). This pathway also includes two more 

αKG-NHFe enzymes, KtzO and KtzP, which catalyze the stereospecific hydroxylation of L-

glutamate tethered to the carrier domains (L-glutamate-S-PCP 146, Fig. 14). The catalysis of 

KtzO and KtzP produces threo 147 and erythro 148 isomers (Fig. 14). Both threo and 

erythro isomers can be found in different kutznerides.231 Thus far, no structural information 

is available for these enzymes and their stereo-selectivity remains to be addressed.

3.6.5 4-Hydroxyphenylpyruvate oxygenase—Vancomycin 153 biosynthesis involves 

several tyrosine-derived building blocks.232 In this biosynthetic pathway, the 4-

hydroxyphenylpyruvate (4-HPPA) 149 to L-4-hydroxymandelate 150 reaction catalyzed by 

hydroxymandelate synthase (HmaS) is unique (Fig. 15A). Although HmaS is an NHFe 

enzyme, it does not require αKG for its catalytic activity. Instead, the α-keto-carboxylate 

moiety of αKG has been incorporated as part of the substrate 4-HPPA 149. As a result, the 

α-keto-carboxylate moiety of the substrate 4-HPPA 149 plays a similar role to that of αKG 

during the oxidative decarboxylation reaction.6 In HmaS catalysis, the α-keto-carboxylate 

moiety of 4-HPPA 149 is most likely coordinated to the iron centre in a fashion similar to 

that of αKG. After O2 activation and decarboxylation, Fe(IV)=O species hydroxylates the 
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decarboxylation product from 4-HPPA 149, resulting in the production of L-4-

hydroxymandelate 150 (Fig. 15A).232–234 The hydroxyl group in compound 150 is then 

oxidized by Hmo-catalysis to produce 151, with subsequent transamination catalyzed by 

HpgT leading to 4-hydroxyphenylglycine 152 (Fig. 15A),232 which is one of the unnatural 

amino acids used in vancomycin 153 biosynthesis.232

Another similar example is 4-hydroxyphenylpyruvate dioxygenase (HPPD), which mediates 

the oxidative decarboxylation of 4-HPPA 149, followed by aromatic ring hydroxylation (Fig. 

15B).6, 235 HPPD plays a crucial role in tyrosine metabolism and has a high sequence 

homology to HmaS (Fig. 15A).

These two enzymes share the common substrate 149, and accomplish their catalytic 

chemistry without requiring αKG, which is supplied from the carboxylate moiety of the 

substrate.232–234 The decarboxylation half-reaction of these enzymes is similar, while the 

other half-reactions differ in regioselectivity and complexity. A point mutant of HPPD 

(F337I) was shown to produce a mixture of 154 and 150 (Fig. 15C).236 The crystal 

structures of HPPD from Zea mays, Arabidopsis and Streptomyces avermitilis have been 

reported,101, 237, 238 and it was suggested that the relative orientation of the substrate 

aromatic ring relative to the Fe(IV)=O species is responsible for the two activities in HPPD 

and HMS.239

3.6.6 Tryptophan or indole hydroxylation—Tryptophan or indole-derived natural 

products are also widely distributed in nature and αKG-NHFe enzymes play a role in many 

biosynthetic pathways. In the following section, a few of these examples are discussed. 

Indole-3-acetic acid (IAA, 155) is an natural auxin in plants, regulating many aspects of 

growth and development.241 In vitro, a rice αKG-NHFe enzyme, DAO, hydroxylates IAA 

155 to a biologically inactive molecule 2-oxoindole-3-acetic acid (OxIAA, 156, Fig. 16A). 

This observation suggests that DAO might play a crucial role in IAA catabolism to maintain 

IAA homeostasis during a plant’s reproductive development.241

The crystal structure of DAO has not been reported yet. A similar example is the metabolism 

of melatonin, which is mediated by melatonin-2-hydroxylase M2H (Fig. 16B). Four αKG-

NHFe enzymes (M2Hs) from rice have been shown to hydroxylate melatonin 157 to 2-

hydroxy-melatonin 158.242 It is not yet known whether DAO and M2H-catalysis involves an 

epoxide intermediate, which is a key species in the biosynthesis of some spiro-indole 

alkaloids.240 For example, the generation of the spiro-carbon moiety during the biosynthesis 

of spirotryprostatin A 162 was suggested to involve an expoxide intermediate. After the 

epoxide is incorporated by FqzB-catalysis (160a, Fig. 16C), the electron-donation property 

of the methoxy oxygen lone pair initiates the opening of a 2,3-epoxide ring in 160a. A 

subsequent semipinacol-like rearrangement in 160b produces a 2-indolone 161 via the 

migration of its C2-substitute to the C3 position (Fig. 16C).240

FtmOx1 is another excellent example of αKG-NHFe enzyme functional diversity in indole-

alkaloid biosynthesis. Both gene disruption114 and biochemical characterizations114, 243 

have clearly demonstrated that FtmOx1 is responsible for endoperoxidation in the 

biosynthesis of verruculogen 164 (Fig. 17A), a tremorgenic mycotoxin found in various 
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Aspergillus244 and Penicillium species.245, 246 In earlier studies, both αKG and ascorbate 

were reported to be required for the endoperoxidation reaction, while ascorbate was 

proposed to be essential for catalysis (Fig. 17A).114, 243 Our recent characterisations 

revealed that under single turnover conditions, ascorbate is not needed, and the oxidation of 

the C13-hydroxyl of verruculogen into a keto group was also observed (163 → 165, Fig. 

17A).68 When the FtmOx1 reaction was conducted under a mixed 18O2/16O2 atmosphere, 

analysis of the products suggested that dioxygen gas is incorporated into the endoperoxide 

moiety of verruculogen without O-O bond cleavage (Fig. 17A).243 The structure of FtmOx1 

was recently reported and showed αKG coordinates to the Fe(II) centre through a distal-type 

binding mode (Fig. 2C).68 Most importantly, immediately adjacent to the remaining site for 

O2 binding and activation, there is a tyrosine residue (Y224), which plays a key role in the 

endoperoxidation reaction based on our recent biochemical and spectroscopic 

characterization of FtmOx1 (Fig. 17B).68 In reactions catalyzed by FtmOx1 Y224 variants, 

the dominant products are N1 deprenylation reaction products (163 → 166, Fig. 17A), 

which are decomposition products from hydroxylation instead of endoperoxidation 

reactions.68

The carbon skeleton of 4′-methoxyviridicatin 170 (Fig. 18A) was constructed by an NRPS, 

which is a similar strategy to that used in the biosynthesis of verruculogen. The 6,6-bicyclic 

scaffold of compound 170 is also found in many other bioactive compounds.248, 249 In the 

biosynthetic pathway of 4′-methoxyviridicatin 170, the condensation between anthranilic 

acid and methyltyrosine affords 4′-methoxycyclopeptin 167, which is further converted to 

6,6-bicyclic quinolone 170 by AsqJ-mediated sequential dehydrogenation and epoxidation 

reactions.247 AsqJ first catalyzes the dehydrogenation of 167 to incorporate a double bond 

into the 6,7-bicyclic intermediate 168, and then a subsequent AsqJ-mediated reaction results 

in the incorporation of an epoxide into the product (168 ® 169, Fig. 18A).62, 247

An Fe(IV)=O species has been trapped in AsqJ catalysis and characterized 

spectroscopically.62 In addition, crystallographic studies of A. nidulans AsqJ revealed that it 

makes use of a 2-His-1-carboxylate facial triad ligand environment (His34, Asp136 and 

His211).65 In this structure, αKG coordinates to the iron centre bidentately in the distal-type 

binding mode. The AsqJ•substrate binary structure is also available.65 Similar to other 

distal-type αKG-NHFe enzymes, the substrate is not adjacent to the remaining site for O2 

binding and activation. A plausible explanation for AsqJ catalysis is that an βKG 

conformational switch is required to properly re-orient the Fe(IV)=O species towards the 

substrate for the dehydrogenation and epoxidation reactions.

AsqJ catalysis has been examined recently using quantum mechanics and molecular 

mechanics calculations (QM/MM).250 In this study, the desaturation reaction mediated by 

AsqJ was proposed to proceed through two consecutive hydrogen atom transfer processes 

(Pathway I, Fig. 18A). In this mechanistic model, the Fe(IV)=O species abstracts a 

hydrogen atom from the C3 or C10 position of the substrate. Subsequently, a second 

hydrogen atom abstraction from the substrate affords a di-radical intermediate 167b, which 

recombines to yield the desaturated product 168. The findings from this QM/MM study 

contradict the recently reported AsqJ study by Chang and co-worker.251 In this study, 

cyclopeptin 171, an analogue of compound 169, and its C3 epimer 172 were employed to 
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decipher the desaturation mechanism of AsqJ (Fig. 18B).251 Both isomers functioned as 

efficient AsqJ substrates, and a pre-steady state characterization of these two reactions 

indicated that they proceeded with similar kinetic parameters. These results highly suggested 

that the AsqJ-catalyzed desaturation reaction does not go through a hydrogen abstraction 

step at the C3 position of the substrate, as was proposed in the QM/MM study. Instead, the 

combined kinetic and spectroscopic results using substrate analogues suggested that the 

desaturation process was initiated from a hydrogen atom abstraction by the Fe(IV)-oxo 

species from the C10 position of the substrate. Most likely, the desaturation reaction either 

employs a hydroxylated intermediate 167c or a carbocation intermediate 167d, for the AsqJ-

catalyzed desaturation reaction (Pathway II or III, Fig. 18A).251 Additional mechanistic 

studies are required to decipher this AsqJ-mediated desaturation reaction.

Interestingly, after AsqJ-catalyzed desaturation and epoxidation, the resulting product 169 
underwent a non-enzymatic arrangement converting the 6,7-bicyclic benzodiazepinedione 

core in 169 to the 6,6-bicyclic quinolone scaffold present in 170 (Fig. 18A).247 The 

proposed mechanism for this rearrangement step begins with ring opening of the epoxide 

169 to 169a, triggered by the electron-donation property of the methoxyl group. A two-step 

rearrangement of the 6,7-bicyclic moiety in 169a results in the formation of 6,6-bicyclic 

quinolone in 170 through elimination of a methyl isocyanate unit from 169b (Fig. 18A).247

3.6.7 Amino modification associated with cyclodipeptide synthase (CDPS)—
Diketopiperazines (DKPs) serve as a scaffold in many alkaloids. Bicyclomycin (BCM, 183) 

is a DKP-type alkaloid isolated from Streptomyces,253, 254 and exhibits activity against a 

broad spectrum of Gram-negative bacteria.255 The BCM biosynthetic gene cluster was 

identified256 and the functions of the proposed enzymes have also been validated in vitro 
(Fig. 19).252 The biosynthetic pathway starts with BcmA-catalyzed condensation using Leu-

tRNALeu 173 and Ile-tRNAIle 174 as substrates, producing a DKP scaffold.256 After the 

construction of the DKP scaffold in 175, the subsequent tailoring reactions involve one 

cytochrome P450 (BcmD) and five αKG-NHFe enzymes (BcmB, BcmC, BcmE, BcmF and 

BcmG, Fig. 19). BcmC, BcmE and BcmG are hydroxylases, which incorporate the three 

hydroxyl groups (C2′, C3 and C3′ positions, see the labels at compound 176) on the Leu 

and Ile side-chains to produce 181. Similar to AsqJ discussed in Section 3.6.6, BcmB is a 

bi-functional enzyme that desaturates the C1 and C1′ positions to introduce the double bond 

present in 179. BcmB then uses 179 as a substrate to incorporate an epoxide moiety into the 

C1, C1′ positions of 180. The C3-OH group undergoes intramolecular attacks to open the 

epoxide, resulting in the O-bridged bicycle-[4,2,2]piperazinedione ring in 181. BcmD is a 

P450 monooxygenase, and in the presence of spinach ferredoxin, ferredoxin reductase and 

NADH, BcmD successfully hydroxylates 181 at the C6 position to produce 182. Finally, 

BcmF, another αKG-NHFe enzyme, introduces a double bond between the C5 and C5a 

positions. The bicyclomycin biosynthetic pathway represents an excellent system for 

demonstrating the catalytic diversities of αKG-NHFe enzymes (BcmB, BcmC, BcmE, 

BcmF and BcmG, Fig. 19). The activities of all of these enzymes have been demonstrated in 
vitro; however, mechanistic information is not yet available for them.
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3.6.8 Aspartate modification associated with ribosomally synthesized and 
post-translationally modified peptides (RiPPS) systems—In the above sections, 

we discussed modifications in NRPS catalysis. Very similar cases have been observed in 

RiPPS systems, e.g. a 19-amino acid antibiotic cinnamycin 184. In cinnamycin, there are 

nine post-translational modifications that are critical for the biological activities of 

cinnamycin 184.257 One of these nine post-translational modifications is the β-

hydroxylation of Asp15 in the precursor peptide CinA, which is catalyzed by the αKG-

NHFe enzyme CinX (Fig. 20).257, 258 In vitro studies confirmed that CinX accepts the 

precursor peptide CinA as a substrate, and that the leader sequence at the N-terminus of 

CinA is not required for its activity.257 Further heterologous co-expression experiments 

combining CinA, CinX and other tailoring enzymes in E. Coli led to the production of 

cinnamycin with full antibacterial activity.257

4 Terpene Biosynthesis

Terpenes are one of the largest classes of natural products.82 All terpenes are derived from 

two building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 

(DMAPP). Condensation between IPP and DMAPP leads to the production of 

prenyldiphophates, which are used by terpene cyclases or prenyltransferases to create the 

skeletons of terpenes.259 After the terpene skeletons are assembled, many of them go 

through extensively modifications, with αKG-NHFe enzymes being among the most 

frequently used tailoring enzymes. In this section, we discuss a few cases where αKG-NHFe 

enzymes are key to their structural diversities.

Astaxanthin 189 is one of the most commonly found carotenoid pigments in marine animals.
260 Two αKG-NHFe enzymes, CtrZ and CrtW, are responsible for multiple oxidative 

tailoring reactions in astaxanthin biosynthesis. CrtZ hydroxylates either the 3 or 3′ position 

of the β-ionone ring, while CrtW oxidizes methylene to keto groups at the 4 or 4′ position 

of the β-ionone ring (Fig. 21).261–265 CrtZ sequentially hydroxylates β-carotene 185 to β-

cryptoxanthin 186 and then to zeaxanthin 187. CrtW then introduces keto groups into the 4- 

and 4′-positions of 187 to produce astaxanthin 189 (187 → 188 → 189, Fig. 21).266 

Alternatively, CrtW can sequentially oxidize β-carotene 185 to echinenone 190 and then to 

canthaxanthin 191. CrtZ hydroxylates 191 to phoenicoxanthin 192. Another round of CrtZ-

catalyzed hydroxylation on 192 yields astaxanthin 189 (Fig. 21). Thus far, no structural 

information is available for either CrtZ or CrtW.

Pentalenolactone 203 (Fig. 22A) is a sesquiterpenoid antibiotic isolated from more than 30 

species of Streptomyces.267, 268 The electrophilic epoxylactone moiety of pentalenolactone 

allows it to alkylate an active site cysteine residue of the glycolytic enzyme 

glyceraldehyde-3-phosphate dehydrogenase.269–272 Over the years, three pentalenolactone 

biosynthetic gene clusters have been identified, namely pen, pnt and ptl.273–275

Pentalenolactone biosynthesis is initiated by the cyclization of farnesyl diphosphate (FPP, 

193) to the tricyclic hydrocarbon pentalenene 194.272, 276 After the pentalenene skeleton is 

assembled, it is extensively modified by six redox enzymes.273–275 An αKG-NHFe enzyme 

(PenH/PntH/PtlH)275, 277 catalyzes the hydroxylation of 1-deoxypentalenic acid 197 to the 
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11-β-hydroxy-1-deoxypentalenic acid 198. In the pentalenolactone pathway, another αKG-

NHFe enzyme (PenD/PntD)273 catalyzes the epoxidation reaction (200 → 202).273 In the 

neopentalenoketolactone 206 pathway, PtlD catalyzes the conversion of 204 to 205. 

However, the epoxide 205 is not stable and spontaneously re-arranges forming 206 as the 

final product (Fig. 21A). In this biosynthetic pathway, PtlD, PenD and PntD are multi-

functional enzymes, catalyzing both dehydrogenation and epoxidation reactions, similar to 

the AsqJ catalysis discussed in Fig. 18.

A crystal structure of the PtlH tertiary complex (PtlH•αKG•substrate analogue) has been 

reported.110 PtlH has the common DSBH fold with a typical 2-His-1-carboxylate facial triad 

ligand environment (His137, Asp139 and His226). The other three ligands are water ligands. 

Upon αKG binding, it replaces two of the water ligands by coordinating to the Fe(II) centre 

in a proximal-type conformation.110 The structure of the PtlH tertiary complex has been 

reported,110 in which an inactive substrate analogue ent-1-deoxypentalenic acid was used to 

replace the substrate 197. In the absence of the substrate analogue ent-1-deoxypentalenic 

acid, the active site tyrosine residue (Y142) adopts two different conformations (Figs 22B 

and C). However, upon the binding of ent-1-deoxypentalenic acid, Y142 is locked into one 

conformation by forming a H-bond with the remaining H2O ligand of the iron centre (Fig. 

22C).110 The role of this active site tyrosine residue in PtlH-catalysis remains to be 

addressed.

Phenalinolactone A (PL A, 214) is a terpene glycoside that shows antibacterial activity (Fig. 

23). PL A possesses a tricyclic backbone conjugated to a γ-hydroxybutyrolactone. After 

oxidative modification of the phenalinolactione scaffold, these sites are further glycosylated 

and acylated by both acetyl and 5-methylpyrrole-2-carboxylic groups to produce the final 

product PL A (214, Fig. 23).278 The gene cluster encoding pathway enzymes for 

phenalinolactones biosynthesis from Streptomyces sp. Tü6071 have been identified (pla 
biosynthetic gene cluster). Many biosynthetic genes have been tentatively assigned functions 

based on results from heterologous expression and biochemical analyses, by the 

characterization of gene deletion mutants, or via sequence homology with other known 

genes.278, 279 The pla biosynthetic gene cluster encodes 1-deoxy-D-xylulose-5-phosphate 

synthase (DXP) and 1-hydroxy-2-methyl-2(E)-butenyl-4-diphosphate synthase (HMBPP 

synthase), which implies that the precursors (IPP and DMAPP) for phenalinolactone 

biosynthesis are most likely provided by the non-mevalonate biosynthetic pathway.82 The 

pla biosynthetic pathway has five oxygenases (one αKG-NHFe enzyme and four P450s).
278, 279 Inactivation of the gene plaO1, which encodes an αKG-NHFe enzyme, results in 

disruption of the formation of the γ-butyrolactone moiety, and accumulates PL CD6 207.279 

When PL CD6 207 was incubated with recombinant PlaO1 in vitro in the presence of αKG 

and ascorbate, a new compound with a UV-absorption spectrum, mass spectrum and HPLC 

retention time identical to that of PL HS6 208 was identified (Fig. 23).278 This result 

suggested that PlaO1 is most likely responsible for the complicated 207 → 208 conversion 

(Fig. 23). A mechanism for PlaO1 catalysis has been proposed.279 In this reaction, after the 

hydroxylation mediated by PlaO1, intramolecular C-C bond migration might go through a 

cyclopropanone intermediate 207b. The subsequent ring opening of this leads to an aldehyde 

and an α-keto acid 207c, which then cyclizes to produce PL HS6 208 (Fig. 23). More 
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detailed characterizations are needed to uncover the mechanistic details for this complex 

chemical transformation.

Paraherquonin (218, Fig. 24A) biosynthesis280 is another example where an αKG-NHFe 

enzyme mediates multiple reactions. In the biosynthesis of the fungal meroterpenoid 

paraherquonin 218, an αKG-NHFe enzyme PrhA catalyzes multiple chemical reactions (215 
→ 216 → 217, Fig. 24A). The proposed mechanism for PrhA-catalyzed reactions is shown 

in Fig. 24A.280 The PrhA-catalysis starts with a dehydrogenation reaction at the C5 position 

of preaustinoid A1 215 to produce bekeleyone B 216. A second round of oxidation creates a 

radical species at the C1 position in species 216a, which initiates the subsequent carbon 

skeleton rearrangements, as proposed in Fig. 24A. The proposed conversions from 216a to 

216c are known as the homoallyl-homoallyl radical rearrangement.281

Another αKG-NHFe enzyme (AusE) from P. brasilianum MG11 shares 92% sequence 

identity with PrhA. AusE catalyzes a complicated skeleton rearrangement in 

acetoxydehydroaustin 221 biosynthesis (Fig. 24A).280 Despite its high sequence identity to 

PrhA, AusE exhibits a completely different activity. AusE catalyzes the conversion of 

preaustinoid A1 215 to preaustinoid A3 220 (Fig. 24A) by desaturation and an unusual 

spiro-ring forming rearrangement reaction (Fig. 24A).280 AusE-catalysis is initiated by 

hydrogen abstraction of the C1 position of the substrate, resulting in a net dehydrogenation 

reaction to generate preaustinoid A2 219, which is an isomer of 216 produced from the PrhA 

reaction. In a second round of AusE-catalysis, the Fe(IV)=O species abstracts a hydrogen 

atom from the C5 position of 219, leading to the formation of a radical species 219a. 

Subsequent hydroxyl rebound leads to hydroxylation at C5 (219b). Finally, the skeleton 

rearrangements in 219b generate the spiro-lactone moiety in 220, which is a key 

intermediate in acetoxydehydroaustin 221 biosynthesis.69 In another AusE-mechanistic 

model, a cyclopropyl intermediate similar to the one in PrhA-catalysis (216b, Fig. 24A) has 

been suggested.91

Structural characterization of both AusE and PrhA indicated that three active site residues 

may play a key role in determining the outcome of the reactions.91 The active sites of AusE 

and PrhA are highly similar and share a typical 2-His-1-carboxylate as the Fe(II) centre 

ligands (His130, Asp132 and His214). AusE and PrhA make use of the same substrate, but 

differ in their reaction outcomes (Fig. 24A). Recently, Abe and co-workers solved the crystal 

structures of AusE•Mn•αKG and PrhA•Fe•αKG•substrate where the substrate is 

preaustinoid A1 215 (Figs 24B and 24C). They then focused on the interactions between the 

substrate and enzymes in the regions next to the A and B rings of the substrate because these 

are the reaction sites. In AusE, V150 and A232 interact with the A ring of the substrate, 

while in PhrA, an identical interaction is formed by L150 and S232. Based on these 

differences, Abe and co-workers conducted mutagenesis studies guided by the information 

gained from these protein-substrate complexes (Figs 24B & 24C). By mutating the residues 

in AusE (V150 and A232) to the corresponding residues in PrhA (L150 and S232), they 

successfully tuned the activities of AusE into that of PrhA. For example, the AusE-S232A 

mutant produced a mixture of 217 and 220, while the AusE-L150V/S232A double mutant 

produced 217 as the exclusive product, instead of producing 220 in the wild-type AusE 
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enzyme. Similarly, PhrA-V150L/A232S completely lost its wild-type PhrA activity and 

produced compound 220 as the sole product.

The PrhA and AusE reactions are great examples demonstrating how αKG-NHFe enzymes 

can fine-tune their activities by subtle changes in the active site residues. Interestingly, in the 

PrhA-V150L/A232S double mutant, when a third mutation M241V was introduced, several 

products different from those produced by wild-type enzymes were observed. The results 

from this study nicely demonstrated that these multi-functional αKG-NHFe enzymes may 

be amenable to engineering efforts for the biocatalytic generation of natural product 

derivatives.91

Okaramines (Fig. 25) are complex indole alkaloids with potent insecticidal activity.282 

Among all the members of the okaramine family of indole alkaloids, okaramine B is the 

most potent insecticide.283 Compounds in this family selectively activate glutamate-gated 

chloride channels (GluCls) in invertebrates.284 Okaramine biosynthetic gene clusters (oka) 

have been identified from the P. simplicissimum strain ATCC 90288 (AK-40) and A. 
aculeatus strain ATCC 16872, respectively.285 Okaramine C 223, one of the key 

intermediates for this biosynthetic pathway, was proposed to be assembled by a three-step 

process involving an NRPS-catalyzed condensation between two tryptophan molecules to 

form the diketopiperazine ring, followed by a prenyltransferase-catalyzed transfer of the 

dimethylallyl moiety, and finally an epoxidation reaction mediated by a flavin-dependent 

enzyme that catalyzes the ring closure. Subsequent modification reactions are mediated by a 

P450 enzyme (OkaD) and an αKG-NHFe (OkaE) (Fig. 25). The function of OkaD was 

proposed based on the results from characterizations of the okaE and okaD deletion mutants. 

The okaE deletion mutant accumulates okaramine C 223, while the okaD deletion mutant 

accumulates both compounds 223 and 225. It was thus proposed that the P450 OkaD 

catalyzes the four-electron-oxidation of okaramine C 223 to form Okaramine A 225. 

However, the biochemical details for this proposed biocatalytic transformation have not yet 

been reported.

OkaE, an αKG-NHFe enzyme, was proposed to catalyze the formation of the azetidine ring 

in 227. The inactivation of okaE leads to an accumulation of okaramine C 223 and 

okaramine A 225. Okaramine A 225 could be converted to 12-deshydroxyl okaramine E 226 
and okaramine E 227 using OkaE expressed in Saccharomyces cerevisiae BJ5464-NpgA. In 

the presence of FeSO4, αKG and ascorbate, OkaE converts 225 to 227 in vitro. However, in 

the presence of reductants (e.g. β-mercaptoethanol), αKG and O2, using okaramine A 225 
as the substrate, OkaE-catalysis produces compound 226 as the major product (Fig. 25). 

OkaE can also hydroxylate compound 226 to produce okaramine 227 in vitro. OkaE-

catalysis was proposed to start with the abstraction of a hydrogen atom from the C8a position 

of compound 225, followed by an exo-cyclization to forge the azetidine ring (Fig. 25).285 

The mechanistic details for 225a → 227 or 225b →226 remain to be characterized (Fig. 

24A). From okaramine 227, a hydroxylation mediated by OkaG, a P450 enzyme, followed 

by a methylation catalyzed by a methyltransferase (OkaF) leads to the production of 

okaramine D 228.
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Rubratoxin A 242 is a fungal polyketide, comprised of cyclononane ring and two fused 

maleic anhydrides forming a 5/9/5 core ring system (Fig. 26). Rubratoxin A is a potent 

inhibitor of protein phosphatase 2 (PP2A) and is a lead compound for the development of 

anti-cancer drugs.286 The biosynthetic information for the formation of the 5/9/5 core ring 

system of rubratoxin A was drawn upon genetic analysis of byssochlamic acid and the 

agenstadride A biosynthetic gene cluster. These two compounds also have medium-sized 

carbocycles fused with maleic anhydride moieties.287 After the formation of polyketide-

derived monomers, a methylcitrate dehydratase, RbtK, and an alkylcitrate synthase, RbtL, 

catalyze the formation of maleidride-type building block 231 and 232 (Fig. 26). To assemble 

the nonadride core in 234, one ketosteroid isomerase (RbtR) and two putative 

phosphatidylethanolamine binding proteins (RbtM and RbtO) work together to mediate the 

dimerization of two maleidride-type precursors via the intermediate 233.287 The mechanistic 

details for this dimerization process remain to be characterized. It was proposed that the core 

of rubratoxin A is assembled through a similar process, followed by extensive oxidative 

modifications to convert the nonadride 234 to 242.288 Genetic analysis of the rubratoxin A 

biosynthetic gene cluster indicated that it encodes four αKG-dependent NHFe enzymes 

(RbtB, RbtG, RbtE and RbtU), one P450 monooxygenase (RbtI) and one flavin-dependent 

monooxygenase (RbtA). Results from characterization of the ΔrbtI deletion mutant 

suggested that it might be involved in the hydroxylation reaction in the production of 

maleidride monomers. Genetic and biochemical characterizations have suggested that the 

four αKG-dependent NHFe enzymes (RbtB, RbtG, RbtE and RbtU) are hydroxylases, 

catalyzing four hydroxylations at the C5, C6, C11 and C7′-position, respectively (Fig. 26).288 

RbtA then catalyzes the oxidation of 238 to an aldehyde 239. RbtB is a bi-functional 

enzyme, which further oxidizes 239 to generate a carboxylate 240.288

5 Biosynthesis and Metabolism of Phosphorous Products

Over the last sixty years, ~40 natural phosphonates have been isolated.289 Due to their 

structural mimicry to carboxylates and phosphates,83, 290, 291 phosphonates have great 

pharmaceutical potential.290, 292 Some representative phosphonates and their corresponding 

enzyme substrate/transition states are shown in Fig. 27. Fosfomycin 243 has long been used 

in the treatment of urinary tract infection293, 294 and, in conjunction with other antibiotics, it 

has also been used for the treatment of multidrug resistant bacteria.295 Fosfomycin 

inactivates UDP-GlcNAc enoylpyruvyl transferase (MurA), which is the first committed step 

in bacterial peptidoglycan biosynthesis.296 Phosphinothricin 245 (part of phosphinothricin-

tripeptide, PTT 256) is unique due to its C-P-C functionality.83, 290, 297–299 Phosphinothricin 

245 binds slowly to glutamine synthetase and is subsequently phosphorylated by ATP to 

produce a phosphorylated product 246, which irreversibly inhibits glutamine synthetase 

(Fig. 27A).300, 301 As a result, PTT 256 is widely used as the herbicide commercially known 

as Glufosinate.302, 303 Dehydrophos 247 was isolated as a tripeptide, and once this tripeptide 

is taken up by a cell, it is hydrolyzed into an analogue of dehydroalanine, a mimic of 

pyruvate 248, and inhibits alanine racemase activity.304–306 Dehydrophos 247 has been used 

as a broad-spectrum antibiotic.307 Fosmidomycin 249 and related compounds were isolated 

from a few Streptomyces strains.308–310 It is an inhibitor of 1-deoxy-D-xylulose 5-phosphate 

(DXP, 250) synthase, which is one of the key steps in the methyl erythritol phosphate 
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pathway, an essential pathway for providing isoprenoid biosynthetic precursors in bacteria.82 

Fosmidomycin 249 is currently being evaluated for the treatment of malaria.311 (Z)-L-2-

amino-5-phosphono-3-pentenoic acid (APPA, 251) is a key component of several natural 

products (e.g. rhizocticins A-D, plumbermycins A-B, and phosacetamycin)312–314 and 

exhibits anti-fungal activities (Fig. 27A).315 K-4 and K-26 (252 & 253, Fig. 27B) contain a 

phosphonate analogue of tyrosine, (R)-1-amino-2-(4-hydroxyphenyl) ethylphosphonic acid 

(AHEP) 260 (Fig. 27C).316, 317 K-4 and K-26 are inhibitors of the angiotensin-converting 

enzyme (ACE) and are anti-hypertensive drug-candidates.318

Based on how their C-P bonds are constructed, these natural phosphonates can be roughly 

divided into four categories,83, 290 as represented by K-26 253, 2-aminoethylphosphonic 

acid (AEP, 254), N-acetyl demethylphos-phinothricin (AcDMPT, 255) and PTT 256 (Fig. 

27B). Phosphoenolpyruvate mutase (Ppm) is still the only well-characterized enzyme 

involved in C-P bond formation.319–321 Ppm catalyzes the isomerization of PEP 244 to 

phosphonopyruvate (PnPy 257). Equilibrium favours PEP by a factor of more than 500-fold.
319 As a result, in all Ppm-involving biosynthetic pathways, the immediate next step is an 

irreversible reaction,290 and the decarboxylation of PnPy 257 to phosphonoacetaldehyde 

PnAA 258 (Fig. 27C) is one of these reactions that drives the equilibrium between PnPy and 

PnAA towards PnAA during Ppm-catalysis. Analysis of the publicly-available actinomycete 

genomes has indicated that ~5% of the sequenced actinomycetes have Ppm genes,289 

implying that many more Ppm-involving phosphonate biosynthetic pathways might be 

uncovered in the future. PTT (256, Fig. 27) has a C-P-C functionality and involves 

phosphinate (e.g. AcDMPT, 255) as a key intermediate. Its second C-P bond formation is 

catalyzed by a P-methylase (255 → 259 conversion, Fig. 27C),297, 322–326 which is a 

member of the radical SAM enzyme superfamily (>114,000 members).327, 328 K-4 and K-26 

(252 & 253, Fig. 27B) contain a phosphonate analogue of tyrosine, AHEP. The gene cluster 

for K-26 has not yet been discovered and the results from feeding studies suggest that K-26 

biosynthesis does not involve the Ppm gene for its C-P bond construction, and instead an 

unknown type of C-P bond formation chemistry is likely involved.316, 317

Thus far, a few phosphonate biosynthetic pathways have been biochemically characterized. 

As with other types of natural products, extensive modifications are part of the phosphonate 

biosynthetic pathways, with many of them being unprecedented chemical reactions, 

suggesting that biosynthetic studies of natural phosphonates production are a gold mine for 

the identification of novel chemistries.83 Here, we briefly summarize some αKG-NHFe 

enzymes involved in several phosphonate biosynthetic pathways. Two αKG-NHFe enzymes 

play a role in the biosynthesis of O-methylated dehydroaminophosphonate (266, Fig. 28),305 

the precursor for the phosphorous antibiotic dehydrophos 247. The first enzyme, DhpA, 

hydroxylates 2-hydroxyethyl-phosphonate (2-HEP, 261) to generate a 1,2-

dihydroxyethylphosphonate (1,2-DHEP, 262) during the early stage of the biosynthesis of 

266 (Fig. 28A).329 Another αKG-NHFe enzyme, DhpJ, is active in the later stage of this 

pathway, where it converts 264 to 265.330 Subsequent glycine addition mediated by DhpK, a 

Gly-tRNAGly-dependent peptidyl transferase, affords 266 as the final product (Fig. 28A).330 

DhpJ can also catalyzes the hydroxylation of 263 to compound 267 (Fig. 28A).330 However, 
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the 263 → 267 conversion is not as efficient as the 264 → 265 conversion, suggesting that 

compound 264 is probably the native substrate for DhpJ.

FzmG catalyzes multiple hydroxylation reactions in biosynthesis of fosfazinomycin A 271, 

including the oxidation of PnAA 258 to PnA 268 and a stereospecific hydroxylation of Me-

PnA 269 to compound 270 (Fig. 28B).331 The subsequent steps of fosfazinomycin A 

biosynthesis, especially the N-N and N-P bond construction steps (270 → 271), have not yet 

been biochemically characterized.

AEP 254 is a prevalent organophosphonate in many organisms and is frequently used to 

complement inorganic phosphate in phosphate-limited environments.290, 333 The αKG-

NHFe enzyme PhnY plays an important role in this process by mediating the hydroxylation 

of the α-carbon of 254 to produce 2-amino-1-hydroxyethylphosphonic acid (2-AHEP, 272).
332 The C-P bond of 272 is then cleaved to generate an inorganic phosphate and glycine 

(PhnZ-catalysis, Fig. 28C).332

Thus far, structural information for these αKG-NHFe enzymes is not yet available. With the 

discovery of new phosphonate biosynthetic pathways, many more αKG-NHFe enzymes are 

highly likely to be uncovered in the future.

6 Lipid and fatty acid modifications

Jasmonic acid (JA, 273, Fig. 29A) is a hormone synthesized by plants for the activation of 

self-defence mechanisms against attacks by pathogens and herbivores.334 Four αKG-NHFe 

enzymes, named jasmonate-induced oxygenases 1–4 (JOXs 1–4), play a crucial role in 

balancing the JA level during plant growth by mediating the hydroxylation of JA 273 to 

yield the inactive 12-OH-JA 274, which prevents the inhibitory effects of high JA levels on 

plant growth and development (Fig. 29A).335

Lipid A is the hydrophobic membrane anchor for lipopolysaccharides, which are the 

principal constituents of the outer membrane of Gram-negative bacteria.339 Some lipid A 

molecules contain hydroxylated acyl chains.340 Two αKG-NHFe enzymes, LpxO336 and 

KdoO,337 catalyze the hydroxylation of Kdo2-lipid A 275 (Fig. 29B). When LpxO was 

heterologeously expressed in E. coli K-12, the lipid A produced contained 2-

hydroxymyristate, providing evidence supporting the proposed function of LpxO as a lipid 

hydroxylase.341 Recently, a LpxO homologue KdoO was identified from both Burkholderia 
ambifaria and Yersinia pestis.337 KdoO also makes use of the Kdo2-lipid A 275 as a 

substrate. However, the KdoO enzyme from B. ambifaria and Y. pestis hydroxylates the 

deoxysugar moiety of Kdo2-lipid A 275 to produce 277 (Fig. 29B).337 Therefore, LpxO and 

KdoO have different regioselectivity.

Similar to the α-hydroxylation reaction observed in LpxO catalysis, PhyH, an αKG-NHFe 

enzyme, hydroxylates phytanoyl-CoA 278 to 2-hydroxyphytanoyl-CoA 279, which is a fatty 

acid α-hydroxylation reaction (Fig. 29C). Phytanic acid is a compound found in common 

dietary sources. Impaired PhyH activity is responsible for 90% of cases of the neurological 

condition called Refsum disease,338 although the pathological mechanisms of this disease 

are not yet well understood. No cure has been found for this disease, but strict dietary 
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restriction can slow the pathological progress. The mapping of clinically relevant mutations 

in the published structure of PhyH strongly support the conclusion that a loss of PhyH 

enzymatic activity is the main cause of Refsum disease.338

The reported structure of PhyH indicates that αKG coordinates the Fe(II) centre in a distal-

type binding mode.106 As a result, the O2 binding and activation site is away from the 

substrate. One likely scenario is that αKG goes through a conformational change to re-orient 

the Fe(IV)=O species towards the substrate, enabling a direct hydrogen atom abstraction and 

subsequent hydroxyl radical rebound to form the hydroxylation product 279 (Fig. 29C).

7 Examples of nucleoside antibiotics

Many nucleoside-derived natural products exhibit biological activity.342 Their biosyntheses 

employ materials from primary metabolism (e.g. nucleic acids, proteins and glycans). Like 

other classes of natural products summarized in previous sections, extensive modifications 

are common in this class of natural products, and in this section, some examples of αKG-

NHFe enzymes are briefly discussed.

5′-C-glycyluridine (GlyU) 282 (Fig. 30), a component of the nucleoside antibiotic 

capuramycin 283,343 is synthesized from uridine monophosphate (UMP) 280 and L-Thr by 

sequential reactions catalyzed by the αKG-NHFe enzyme Cpr19 and a transaldolase Cpr25 

(Fig. 30).344 In vitro characterization of Cpr19 indicated that it catalyzes the hydroxylation 

at the C5 position of 280 to produce a germinal hydroxyl-phosphoester intermediate 280a, 

which is followed by phosphate elimination to yield uridine-5-aldehyde 281 (Fig. 30).344–346

Polyoxin 292 (Fig. 31), a nucleoside-derived natural product, can inhibit fungal cell wall 

biosynthesis by targeting chitin synthetase. Polyoxin is also an efficient agricultural 

fungicide.347 Structurally, polyoxin is constructed from three building blocks: a nucleoside 

and two amino acids (L-Ile and L-Glu). Many of the biosynthetic details of polyoxin remain 

enigmatic. The polyoxin biosynthetic gene cluster has been identified from Streptomyces 
cacaoi.348 Biosynthesis of the nucleoside portion of polyoxin is initiated by the condensation 

of UMP 280 with PEP 244 by PolA, followed by a rearrangement, which is proposed to be 

catalyzed by PolJ, to form octofuranuloseuronic acid 288. In the subsequent steps, oxidative 

elimination of the two terminal carbon atoms and the introduction of an amino group at the 

C5′ position were achieved by PolH, PolD, PolI and PolK catalysis to form the nucleoside 

skeleton 291.

Homologues of these enzymes have also been identified in the nikkomycin biosynthetic 

pathway.349 The polyoxamic acid (295, POIA) moiety was derived from L-Ile 90 through 

the introduction of a β,γ-double bond followed by a cyclization reaction. These chemical 

transformations were catalyzed by PolC, PolE and PolF. The genes responsible for 

biosynthesis of the carbamoylpolyoxamic acid moiety (303, CPOAA) were assigned based 

on the results from biochemical characterizations (Fig. 31).350 L-Glu is first acetylated by a 

bi-functional N-aceytyltransferase, PolN, followed by PolP-mediated phosphorylation 

resulting in 298. Subsequently, an NADPH-dependent PolM sequentially reduces the acyl-

phosphate to an aldehyde moiety in 299, and to an alcohol moiety in 300.350 The subsequent 
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deacetylation of 300 is also mediated by the aforementioned N-aceytyltransferase, PolN, 

resulting in α-amino-δ-hydroxyvaleric acid (AHV, 301). Transcarbamoylation-mediated 

PolO affords α-amino-δ-carbamoylhydroxyvaleric acid (ACV, 302). In the last two steps of 

CPOAA 303 biosynthesis, two hydroxyl groups are introduced by an αKG-NHFe enzyme, 

PolL. The three moieties, namely the nucleoside skeleton 291, POIA 295 and CPOAA 303, 

are then assembled into polyoxin by PolG (Fig. 31). In this biosynthetic pathway, the 

mechanistic details for several novel reactions, including the PolL catalysis, still await 

further exploration.350

8 Conclusions

NHFe enzymes catalyze reactions as diverse as haem-containing enzymes,
1, 12, 25, 41, 71, 351–353 including hydroxylation, ring fragmentation, C-C bond cleavage, 

epimerization, desaturation and heterocycle formation via either C-N, C-O or C-S bond 

formation. Recently, some unique transformations were reported as additional examples of 

NHFe enzyme functional versatility, including oxidative dehydrogenation in epoxidation, 

chlorination, epimerization and endoperoxidation. αKG-NHFe enzymes are one of the main 

sub-groups of NHFe enzymes. The examples covered in this article are some recent 

examples; and additional examples of this enzyme family in fungal biosynthetic pathways 

can be found in a recent review by Abe et a.l354 and a recent edited book on αKG-NHFe 

enzymes.6

Given that more and more structural information is becoming available for these enzymes, 

and that many novel reactions are constantly being discovered, increased structure–function 

and structure–reactivity relationship information will further enrich our knowledge on this 

large class of enzymes. One of the interesting discoveries from their structural 

characterizations is that both the proximal- and distal-type αKG binding modes are equally 

distributed among the structures in PDB, which suggests that a switching of αKG binding 

conformation is most likely a common phenomenon in cases where the corresponding 

enzyme adopts the distal-type αKG binding conformation. It is also possible that nature 

specifically exploits the distal-type αKG binding conformation to catalyze novel chemical 

transformations, as we recently observed in FtmOx1 catalysis. Given the prevalence of 

distal-type αKG-NHFe enzymes, many more examples of this type are likely to be 

uncovered in the future.
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Fig. 1. 
Hydroxylation mediated by αKG-dependent NHFe enzymes. (A) The generic mechanism of 

the αKG-NHFe enzyme-mediated hydroxylation reaction, involving an Fe(IV)=O species.45 

(B) Hydroxylation of taurine catalysed by TauD.
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Fig. 2. 
αKG-NHFe enzyme structural information. (A) The double-stranded helical fold (DSBH 

fold) first observed in IPNS structure.70 (B) A typical proximal αKG binding conformation 

represented by the TauD•Fe•αKG complex.77 (C) Distal-type αKG binding conformation 

represented by the FtmOx1•Fe•αKG complex.68 The proposed αKG conformational switch 

from the proximal (D) to the distal mode upon exposing the CAS•Fe•αKG•substrate 

complex to NO (E).78 (F) Schematic representation of αKG conformational switch between 

a proximal (F1)- and distal (F2)-type of conformation. (G) Another type of αKG binding 

conformation observed in the EFE•Fe•αKG binary complex where αKG binds to the Fe(II) 

centre monodentately using its C5 carboxylate.79 The iron centre is shown as yellow sphere, 

αKG is shown as brown sticks, water is shown as a red sphere, and NO is shown as sticks.
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Fig. 3. 
Halogenation on protein-tethered substrates. (A) Halogenation reaction catalyzed by SyrB2 

on L-Thr tethered on SyrB1 4 in Syringomycin E biosynthesis.113 (B) The proposed 

mechanism for SyrB2 reaction begins with oxygen activation, similarly to other enzymes in 

this family, to form the Fe(IV)=O species. Notably, the carboxylate ligand is replaced with a 

chloride ligand at the iron centre allowing the halogen atom to react with a substrate-based 

radical to give the halogenated product.113
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Fig. 4. 
Halogenation on protein-tethered substrates. (A) In barbamide 11 biosynthesis, BarB2 works 

along with BarB1 to yield a trichloro-Leu 10, which is further incorporated into the final 

product 11.124 (B) A similar chlorination strategy is observed in CytC3 reaction in the 

biosynthesis of dichloroaminobutyrate 15.125 (C) HtcB-mediated chlorination reactions in 

hectochlorin 20 biosynthesis.126 (D) Chlorination reaction using a piperazyl-group tethered 

to a carrier protein as the substrate has been observed in KthP catalysis in the biosynthesis of 

kutzneride 2.127
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Fig. 5. 
Halogenation-initiated formation of cyclopropane. (A) Halogenation reactions catalyzed by 

CmaB on CmaD-tethered Ile 24 in the coronatine 28 biosynthetic pathway.121 (B) KtzD 

chlorinates KtzC-tethered L-Ile 29 and the chlorinated product is further cyclized by KtzA-

catalysis.129
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Fig. 6. 
Halogenation-initiated formation of cyclopropane. (A) In the biosynthesis of curacin 37 and 

jamaicamide 39, two homologous megasynthases, namely CurA and JamE, catalyze the 

chlorination of (S)-3-hydroxy-3-methylglutaryl-ACP 32.133 In the curacin pathway, the 

ECH2 domain catalyzes the decarboxylation to give an α,β-enoyl thioester 35, while the 

ECH2 domain in the jamaicamide pathway catalyzes the formation of the vinyl chloride 

moiety 38.132 (B) Structure of CurA halogenase in a ligand-free open form. (C) CurA 

halogenase•Fe•αKG• structural complex showing that αKG (brown stick) and chloride ion 

(blue sphere) binding trigger a conformation change to a closed form, which allows substrate 

binding.
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Fig. 7. 
Halogenation versatility of WelO5 and AmbO5. (A) WelO5 chlorinates hapalindole-type 

molecules, while AmbO5 exhibits a higher substrate tolerance chlorinating ambiguine, 

fisherindole and hapalindole alkaloids.138 (B) Structure of WelO5•Fe•αKG•substrate117 

shows a chloride ligand (blue sphere) at the iron centre (yellow sphere). A second-

coordination shell Ser189 was proposed to be involved in controlling the rearrangement of 

αKG (brown sticks) binding conformation to re-orient the chloride group in the halo-oxo-

iron(IV) intermediate towards the substrate for the chlorination reaction.
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Fig. 8. 
Carnitine biosynthesis. (A) L-carnitine 59 biosynthesis involves two αKG-NHFes: TMLH 

and BBOX.142 (B) The biocatalytic versatility of TMLH-mediated hydroxylation on 

trimethyl-Lys analogues.143 (C) BBOX also oxidizes THP 68 as the substrate through a 

Stevens-type rearrangement reaction.144 (D) Structure of BBOX in complex with zinc 

(orange sphere), N-oxalylglycine (NOG, green sticks) andγBB substrate (magenta sticks) 

showing a distal-type αKG binding mode. (E) The studies of PsBBOX show that the 

positively charged trimethylammonium group on the substrate is crucial for recognition.145
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Fig. 9. 
Amino acid modifications by αKG-NHFe enzymes. (A) In EFE catalysis, L-Arg 84 
hydroxylation and αKG fragmentation to ethylene 89 are the two reactions. (B) 

EFE•Fe•αKG•L-Arg complex shows that αKG (brown stick) binds to the Fe(II) centre 

bidentately.79 (C) Hydroxylation on L-Ile mediated by IDO. (D) BtIOD not only catalyzes 

hydroxylation on a wide range of substrates, but also catalyzes reactions other than 

hydroxylations.160 (E) In the biosynthesis of glucoraphasatin, GRS1 catalyzes the 

desaturation of the side chain of compound 107 to form the aliphatic glucoraphasatin 108.161 

(F) SadA-mediated β-hydroxylation of N-succinyl-L-Ile 109.162
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Fig. 10. 
Hydroxylations of lysyl residues. (A) Collagen polypeptide lysyl 111 hydroxylation 

mediated by LH1/LH2/LH3.196 In contrast to LH1 and LH2, LH3 can further modify 

hydroxylysyl 112 to galactosyl hydroxylysyl 113 and glucosylgalactosyl hydroxylysyl 

114.188 (B) Reactions catalyzed by JMJD6/JMJD4 on lysyl residue in post-translational 

modifications of proteins.193, 194
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Fig. 11. 
L-Pro modifications catalyzed by PHs. (A) Four different isomers of monohydroxyl-L- Pro 

(119a–d) produced by stereo- and regio-specific PHs. (B) Stereospecific epoxidation 

reactions catalyzed by SgP4H. (C) SrPH can hydroxylate both L-Pro 118 and L-pipcolinic 

acid 122.207 (D) In pneumocandin (126 and 127) biosynthesis, Gloxy4 catalyzes the 

oxidative cyclization of L-Leu 97 to methyl-Pro 124, which is further hydroxylated by GloF 

to produce hydroxyproline as one of the building blocks for pneumocandin biosynthesis.208
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Fig. 12. 
L-Arg hydroxylation reactions catalyzed by αKG-NHFe oxygenases. (A) VioC hydroxylates 

L-Arg 84 and VioD further hydroxylates the product 128 to (2S,3R)-capreomycidine 129, 
which serves as a building block for viomycin biosynthesis. (B) In mannopeptimycin β 135, 
L-Arg 84 hydroxylation is mediated by MppO to produce a hydroxyenduracididine 134 
moiety in the final product.218 (C) Crystal structure of VioC•Fe•αKG complex.116
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Fig. 13. 
Asparagine and aspartate hydroxylation reactions mediated by αKG-NHFe enzymes. (A) L-

Asn 136 hydroxylation is catalyzed by AsnO, to generate the building block 137 for CDA 

138 biosynthesis.89 (B) Biosynthetic pathway of ectoine 144. The hydroxylation of ectoine 

144 to hydroxylectoine 145 is mediated by an αKG-dependent EctD.223
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Fig. 14. 
Hydroxylation of glutamate tethered to a carrier protein mediated by KtzO/KtzP in 

kutzneride 2 biosynthesis, which results in the production of threo 147 and erytho 148.231
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Fig. 15. 
Reactions of 4-hydroxyphenylpyruvate oxygenases. (A) In vancomycin biosynthesis, HmaS-

mediated hydroxylation affords L-4-hydroxymandelate 150. (B) HPPD hydroxylates 

aromatic carbon to yield homogentisate. (C) In the reaction catalyzed by the HPPD F337I 

variant, both 150 and 154 are produced.236
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Fig. 16. 
Hydroxylation of tryptophan derivatives. (A) DAO-catalyzed production of the natural plant 

auxin IAA 155. (B) M2H-catalyzed melatonin 157 hydroxylation. (C) FqzB-catalyzed 

rearrangement in the biosynthesis of spirotryprostatin A 162.240
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Fig. 17. 
Endoperoxide formation in verroculogen biosynthesis. (A) FtmOx1 reaction with ascorbate 

affords verruculogen 164 as the dominant product, while in the absence of ascorbate, 

compound 165 is the dominant product. The reactions of FtmOx1 Y224 variants produce the 

N-1 deprenylation 166 as the major product. (B) Proposed FtmOx1 catalysis involves a 

tyrosyl radical species, which is key to the endoperoxidation reaction.68
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Fig. 18. 
AsqJ catalysis. (A) AsqJ-catalyzed dehydrogenation and epoxidation.247 (B) Probes used in 

the AsqJ-dehydrogenation reaction mechanistic study.62
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Fig. 19. 
The biosynthetic pathway of bicyclomycin involves five αKG-NHFe enzymes in the 

tailoring reactions to produce the final product bicyclomycin 183.252
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Fig. 20. 
β-Hydroxylation of Asp15 in the precursor peptide CinA catalyzed by an αKG-NHFe 

enzyme CinX in the cinnamycin 184 biosynthetic pathway.257
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Fig. 21. 
Multiple oxidative modifications in the astaxanthin 189 biosynthetic pathway involving two 

αKG-dependent NHFe enzymes: CtrZ and CrtW. CrtZ hydroxylates either the 3 or 3′ 
position of the β-ionone ring, while CrtW oxidizes methylene to keto groups at the 4 or 4′ 
position of the β-ionone ring.263
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Fig. 22. 
Pentalenolactone and neopentalenolactone biosynthesis. (A) The biosynthetic pathways of 

pentalenolactone 203 and neopentalenolactone 206. PenH/PntH/PtlH catalyzes the 

hydroxylation of 1-deoxypentalenic acid to 11-β-hydroxy-1-deoxypentalenic acid 198.275 

(B) Crystal structure of PtlH•Fe•αKG showing a proximal-type αKG (brown sticks) 

coordination to the iron centre (yellow sphere). (C) Notably, the structure of PtlH with the 

substrate analogue ent-1-deoxypentalenic acid (green sticks) reveals a conformation change 

of an active site Y142 relative to that in (B), where there is no substrate.
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Fig. 23. 
Modification reactions in terpene biosynthesis. In the biosynthesis of phenalinolactone A, 

PlaO1 is responsible for converting PL CD6 207 to a γ-butyrolactone moiety formation of 

PL HS6 208 through a proposed cyclopropanone intermediate.278
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Fig. 24. 
Multiple chemical transformations catalyzed by αKG-NHFe enzymes in the paraherquonin 

and acetoxydehydroaustin pathways. (A) PrhA mediates the dehydrogenation of 215, 
followed by oxidation to yield paraherquonin as the final product.280 AusE acts on the same 

substrate 215. Unlike PrhA, AusE-catalysis goes through a dehydrogenation reaction 

followed by rearrangements to form the spiro-ring.69 (B) Crystal structure of 

AusE•Mn•αKG with substrate 215 modelled into the active site. (C) Crystal structure of 

PrhA•Fe•αKG•substrate preaustinoid A1 215 (cyan sticks). The residues involved in the 

structure–function studies are labelled in red.
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Fig. 25. 
The biosynthetic pathway of okaramine D. Okaramine A 225 can be converted to 12-

deshydroxyl okaramine E 226 and okaramine 227 by OkaE-catalysis via radical 

intermediates.
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Fig. 26. 
Proposed biosynthetic pathway of rubratoxin A. Four αKG-NHFe enzymes RbtB, RbtG, 

RbtE and RbtU catalyze the sequential hydroxylations, converting 234 to 238.
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Fig. 27. 
Natural phosphonates. (A) Phosphonates and their corresponding enzymatic substrates or 

transition state analogues. (B) Four categories of phosphonates are represented by K-26: 

253, 2-aminoethylphosphonic acid (AEP) 254, N-acetyl demethylphos-phinothricin 

(AcDMPT) 255 and PTT 256, based on how their C-P bonds are constructed. (C) Key steps 

of the biosynthesis of PnAA 258, PTT 256 and K26 253.
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Fig. 28. 
Phosphonate modifications mediated by αKG-NHFe enzymes. (A) Reactions catalyzed by 

DhpA and DhpJ in the O-methylated dehydroamino phosphonate 266 biosynthetic pathway.
329 (B) FzmG mediates multiple hydroxylation reactions in the biosynthesis of 

fosfazinomycin A 271.331 (C) The organophosphate metabolism involves the PhnY-

mediated hydroxylation of 254 to yield 2-amino-1-hydroxyethylphosphonic acid 272.332
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Fig. 29. 
Lipid and fatty acid modification reactions. (A) Hydroxylation of jasmonic acid 273 
mediated by JOXs 1–4.335 (B) LpxO and KdoO-catalyzed hydroxylations of Kdo2-lipid A 

275.336, 337 (C) Hydroxylation of phytanoyl-CoA 278 catalyzed by PhyH in the phytanic 

acid metabolism.338
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Fig. 30. 
Biosynthesis of capuramycin 283. The αKG-NHFe Cpr19 catalyzes the conversion of UMP 

280 to uridine-5-aldehyde 281 through a germinal hydroxyl-phosphoester intermediate 

280a, followed by phosphate elimination.345
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Fig. 31. 
The biosynthetic pathway of polyoxin 292. The reactions catalyzed by PolL introduce two 

hydroxyl groups onto the structure of CPOAA 303, which is one of the modules used in the 

biosynthesis of polyoxin.348
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