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Plasma Homoarginine 
Concentrations According to Use of 
Hormonal Contraception
Thea Helm1, Kristin Varsi2, Christina Herland Fløtre1, Agnethe Lund3, 
Gard Frodahl Tveitevåg Svingen4, Per Magne Ueland2,5 & Anne-Lise Bjørke-Monsen2,5

Estrogen is a potent vasodilator through activation of endothelial nitric oxide synthase (eNOS). Arginine 
and its homologue homoarginine are substrates for NOS, while asymmetric dimethylarginine (ADMA) 
is a NOS inhibitor. Healthy, never-pregnant women aged 18 to 40 years (n = 158) were categorized 
according to use of hormonal contraception into non-users (n = 76), users of estrogen contraceptives 
(EC-users, n = 58) and users of progestins-only contraceptives (PC-users, n = 24). Plasma homoarginine, 
arginine, ADMA and SDMA concentrations were assayed using a LC-MS/MS method. Compared to non-
users, EC users had higher plasma homoarginine (median (interquartile range) 1.63 (1.24, 2.04) vs. 2.39 
(2.05, 2.85) µmol/L, p < 0.001), lower arginine (80.8 (72.4, 94.3) vs. 72.1 (62.9, 85.1) µmol/L, p = 0.008) 
and ADMA (0.52 (0.46, 0.59) vs. 0.48 (0.42, 0.54) µmol/L, p = 0.003) concentrations. The lowest median 
plasma homoarginine concentration (1.34 (0.92, 1.75) µmol) was seen in PC-users. No differences were 
seen in SDMA concentrations according to use of hormonal contraception. In healthy, never-pregnant 
women aged 18 to 40 years, use of estrogen containing contraception was associated with significantly 
higher plasma concentrations of homoarginine and lower plasma concentrations of arginine and 
ADMA as compared to non-users, while the lowest plasma homoarginine concentrations were seen in 
progestin-only users. Whether the observed changes in relation to use of hormonal contraception have 
an impact on cardiovascular status, should be evaluated in an intervention study.

Estrogen is a potent vasodilator, and conditions with high estrogen concentrations, as during the latter part of 
the follicular phase of the menstrual cycle, use of oral contraception (OC) and pregnancy, are all associated 
with increased endothelial dependent vasodilatation1–3. Estrogen mediates its effect on the vascular endothelium 
partly via activation of endothelial nitric oxide synthase (eNOS)4. The resulting increase in circulating nitric 
oxide (NO) is crucial for endothelial function, including arteriolar relaxation, an important determinant of blood 
pressure5. L-Arginine and its homolog L-homoarginine are competitive substrates of NOS6, whereas asymmetric 
dimethylarginine (ADMA), a guanindine (NG)-dimethylated derivate of arginine, is a NOS inhibitor7. ADMA 
and the stereoisomer symmetric dimethylarginine (SDMA) may also indirectly reduce NO synthesis by inhibiting 
cellular uptake of arginine8. Accordingly, the ratio between arginine and ADMA is regarded as a marker of NOS 
activity7. A favourable cardiovascular risk profile has been related to high circulating homoarginine9 and low 
ADMA concentrations10.

Higher arginine and lower ADMA concentrations are reported in women using OC compared to non-users11, 
while lower arginine and ADMA concentrations are reported in pregnant women12. A marked increase in 
homoarginine concentrations are observed in women using OC13 and and in pregnant women during the second 
and third trimester. In pregnancy, homoarginine concentrations are reported to be more strongly correlated to 
brachial artery flow-mediated dilatation than arginine12.

We investigated systemic amino acids involved in NO regulation in healthy, never-pregnant women aged 18 
to 40 years. The purpose of the study was to evaluate plasma homoarginine, arginine, ADMA and SDMA concen-
trations in relation to use of hormonal contraception.
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Results
Demographics.  The population included never-pregnant women with a mean (range) age of 25.3 (18–40) 
years. The participants were healthy, well-educated, with a median (IQR) BMI of 21.8 (20.6, 23.7). The majority 
(124/158, 78%) had an omnivore diet, and a minority (21/158, 30%) were regular users of both multivitamins/
minerals and omega 3 fatty acids/cod oil supplements.

Demographic data according to reported current use of contraceptives (non-users, n = 76, EC-users, n = 58 
and PC-users, n = 24) are given in Table 1. Apart from a higher consumption of alcohol in women who used hor-
monal contraceptives compared to non-users, there were no significant differences in demographic data among 
the three groups (Table 1).

Plasma homoarginine, arginine, ADMA and SDMA concentrations according to use of hor-
monal contraceptives.  There were significant differences in the plasma concentrations of homoarginine, 
arginine and ADMA, but not in SDMA, according to use of hormonal contraception (Table 2, Fig. 1). Plasma 
homoarginine concentrations were higher in EC-users (+47%, p < 0.001) and lower in PC-users (−18%, 
p = 0.005), as compared to non-users (Table 2). The majority of the EC-users (13/58, 78%) had homoarginine 
concentrations >2.0 µmol/L, while the majority of the non-users (56/76, 74%) and almost all PC-users (23/24, 
96%) had concentrations <2.0 µmol/L.

EC-users had lower median arginine and ADMA concentrations compared to non-users (p = 0.008 and 
p = 0.003, for arginine and ADMA respectively), and lower ADMA concentrations compared to PC-users 
(p = 0.004).

Non-users 
N = 76

Users of hormonal contraceptives

P value

With estrogen 
and progestins 
N = 58

Progestin-only 
N = 24

Age, y, mean (SD) 25.6 (5.6) 24.9 (4.1) 24.8 (4.0) 0.61*

BMI, kg/m2, median (IQR) 22.2 (20.8, 24.5) 21.0 (20.1, 21.8) 22.3 (20.6, 23.6) 0.13**

Higher education, n (%)

   <12 years 10 (13%) 4 (7%) 0 (0%)

0.09***   13–17 years 19 (25%) 24 (41%) 7 (29%)

   >17 years 47 (62%) 30 (52%) 17 (71%)

Vegetarian diet, n (%) 17 (22%) 11 (19%) 6 (25%) 0.81***

Regular users of supplements, (≥3 days/week), n (%)

   Multivitamins/minerals 15 (20%) 14 (24%) 6 (25%) 0.80***

   Omega 3 fatty acids/Cod oil 30 (40%) 30 (52%) 10 (42%) 0.35***

   Iron 11 (15%) 9 (16%) 2 (8%) 0.68***

Regular users of tobacco, based on 
plasma cotinine >85 µmol/L, n (%) 8 (11%) 7 (12%) 2 (8%) 0.87***

Alcohol, number of units/week, 
median (IQR) 1.0 (0.3, 3.0) 2.0 (1.0, 4.0) 2.8 (1.0, 4.0) 0.006**

Table 1.  Baseline characteristics of healthy, never-pregnant women according to use of contraceptives 
(n = 158). *Comparison by Anova test. **Comparison by Kruskal Wallis test. ***Comparison by Pearson Chi-
Square test.

Parameters Non-users N = 76

Users of hormonal contraceptives

P value*
With estrogen and 
progestins N = 58

Progestin-only 
N = 24

Plasma 
homoarginine, 
µmol/L

1.63 (1.24, 2.04) 2.39 (2.05, 2.85) 1.34 (0.93, 1.73) <0.001

Plasma arginine, 
µmol/L 80.8 (72.4, 94.3) 72.1 (62.9, 85.1) 72.7 (62.8, 91.8) 0.03

Plasma ADMA, 
µmol/L 0.52 (0.46, 0.59) 0.48 (0.42, 0.54) 0.53 (0.48, 0.58) 0.003

Plasma SDMA, 
µmol/L 0.54 (0.46, 0.61) 0.56 (0.49, 0.59) 0.52 (0.49, 0.60) 0.86

Arg/ADMA ratio 157.5 (134.8, 178.9) 156.4 (138.5, 178.3) 141.3 (123.8, 168.5) 0.24

hArg/ADMA ratio 3.02 (2.36, 4.09) 5.34 (3.86, 5.93) 2.39 (1.78, 2.99) <0.001

Table 2.  Plasma concentrations of homoarginine, arginine, ADMA, SDMA and Arg/ADMA and hArg/ADMA 
ratios according to use of contraceptives (n = 158). *Median (IQR), comparison by Kruskal Wallis test.
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EC-users had higher median homoarginine/ADMA (hArg/ADMA) ratio compared to both non-users and 
PC-users (p < 0.001), while the lowest ratio was seen in PC-users. No significant differences in median arginine/
ADMA (Arg/ADMA) ratios were observed between the groups (Table 2).

Use of hormonal contraception was the strongest positive predictor of homoarginine and the hArg/ADMA 
ratio, and the strongest negative predictor of ADMA concentrations, in a multiple linear regression model which 
additionally included age, BMI, use of alcohol and tobacco (based on cotinine levels ≥85 nmol/L) (Table 3).

Discussion
In healthy, never-pregnant women aged 18 to 40 years, the use of estrogen containing contraception was associ-
ated with significantly higher plasma concentrations of homoarginine, higher hArg/ADMA ratio and lower con-
centrations of arginine and ADMA as compared to non-users. The lowest homoarginine concentrations were seen 
in progestin-only users. No difference in Arg/ADMA ratio was seen according to use of hormonal contraception.

Figure 1.  Plasma homoarginine, arginine and ADMA concentrations and hArg/ADMA ratio in relation to use 
of hormonal contraception.

Variables included 
in the model

Homoarginine Arginine ADMA SDMA Arg/ADMA hArg/ADMA

Beta P Beta P Beta P Beta P Beta P Beta P

Use of 
contraception* 0.41 <0.001 −0.13 0.13 −0.18 0.03 −0.00 1.00 −0.02 0.82 0.42 <0.001

Age 0.06 0.47 0.05 0.55 −0.16 0.06 −0.05 0.60 0.16 0.08 0.07 0.35

BMI 0.16 0.05 −0.08 0.34 −0.07 0.42 −0.05 0.60 −0.03 0.78 0.14 0.07

Alcohol intake** −0.15 0.07 −0.01 0.94 −0.01 0.88 0.08 0.36 −0.01 0.90 −0.14 0.09

Regular use of 
tobacco*** 0.02 0.93 −0.03 0.72 −0.03 0.74 −0.05 0.59 −0.01 0.93 0.02 0.82

Table 3.  Determinants of plasma amino acids concentrations in healthy never-pregnant women (n = 158) 
by multiple linear regression. *Use of contraception: Non-user, user of progestin-only contraception, user of 
estrogen and progestins containing contraception. **Number of alcohol units/week. ***Based on plasma 
cotinine concentrations, categorized into <85 nmol/L or ≥85 nmol/L.
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Premenopausal women who do not use hormonal contraception, have the highest circulating estrogen con-
centrations in the latter part of the follicular phase, just prior to ovulation14. Oral contraceptive pills are classically 
prescribed as a constant supply of estrogen for 21 days, followed by 7 days of placebo15. The transdermal patch 
or vaginal ring is worn for 21 days when it delivers a continuous estrogen and progestin formulation and is then 
removed for 7 days16. As a result, women who use combination contraceptives have a constant high estrogen 
concentration for 21 of a 28 days cycle, and a lower estrogen concentration during the 7 days with placebo. The 
various forms and doses of progestins in progestin-only contraceptives differ in their inhibition of ovarian activ-
ity17. The estrogen levels differ accordingly, but are reported to be lower or remain comparable to normal early 
or mid-follicular phase levels17–19. In pregnant women, the estrogen concentrations increase continuously during 
pregnancy with the highest concentrations observed in the last trimester20.

Homoarginine is endogenously synthesized by L-arginine:glycine amidinotransferase (AGAT)13, and gene 
expression is shown to be modulated by estrogen in chick liver cells21. Conditions with higher estrogen concen-
trations are associated with higher circulating homoarginine concentrations, as confirmed in the present and 
previous studies on oral oestrogen contraceptive users13 and also in pregnant women12.

The majority (78%) of the EC-users in our population had high homoarginine concentrations (>2 µmol/L), 
but in one quarter of the sample the concentration was below 2 µmol/L. One quarter of the non-users had a 
high homoarginine concentration (>2 µmol/L). The observed variations could be explained by cyclic changes in 
estrogen concentrations in our population. Assuming this was a representative sample of premenopausal women, 
one would expect one quarter of the EC-users to be in their placebo-phase (7/28 days) with low estrogen concen-
trations and one quarter of the non-users to be in their late follicular phase with high estrogen concentrations.

The lowest homoarginine concentrations were seen in PC-users. This might be explained by lower estrogen 
levels in PC-users compared to non-users and EC-users; however, as various progestins have different effects on 
ovarian activity, this may also reflect specific progestin subtypes and doses. Progestins might also have an inde-
pendent effect on endogen homoarginine production, but this is currently unknown.

Arginine concentrations are reported to be higher in in the follicular phase compared to the luteal phase11, 
although one study did not observe any changes in arginine concentrations during the menstrual cycle12. Lower 
ADMA concentrations have been reported in conditions associated with higher estrogen concentrations, as in 
pregnancy22, after ovarian hyperstimulation23 and after hormone therapy in postmenopausal women24, which are 
observations in agreement with the results in the present study. We observed no differences in SDMA according 
to hormonal contraceptive use.

In our population of fertile women, the hArg/ADMA ratio was the strongest predictor of hormonal contra-
ception use, with the highest ratio seen in EC-users, followed by non-users and PC-users. Association of hArg/
ADMA ratios with higher estrogen levels are also reported by Valtonen et al. Nonpregnant women had a hArg/
ADMA ratio of 5, while the values increased from 6 to 10 during pregnancy12. The hArg/ADMA ratio is consid-
ered to be mainly determined by circulating concentrations of homoarginine, which shows a larger variation than 
ADMA that is more closely controlled25.

We observed no differences in Arg/ADMA ratio. The Arg/ADMA ratio was reported to be higher in OC-users 
compared to non-users in one study11, while no change was seen in postmenopausal women after hormone 
replacement24. Slightly higher Arg/ADMA ratios have been found in pregnant women in their second and third 
trimester, although this was not related to improved endothelial function22. The Arg/ADMA ratio may reflect 
the capacity of NOS catalysed NO formation from arginine; however, as the ratio is mainly determined by large 
fluctuations in circulating concentrations of arginine, the utility of this ratio has been questioned25.

Physiological states associated with high estrogen concentrations are associated with increased endothelial 
dependent vasodilatation1–3. In premenopausal women with variant angina, the frequency of ischemic episodes 
was lowest in the late part of the follicular phase26, associated with the highest estrogen concentrations in the 
menstrual cycle20. Use of estrogen containing contraceptives has also been shown to cause vasodilatation2,3,27. 
These estrogen effects are probably mediated by increased expression and activation the endothelial isoform of 
NO synthase (eNOS)4, which uses both arginine and homoarginine as substrates for NO production6.

A higher cardiovascular risk has been related to high ADMA10, high SDMA28 and low circulating homoargi-
nine concentrations9,25. High circulating homoarginine concentrations have also been associated with cardiovas-
cular risk factors like hypertension, obesity and insulin resistance13. A 10 year follow-up study of young Finnish 
adults reported no effect of lifetime exposure of higher homoarginine levels on cardiovascular disease risk13, so 
the role for homoarginine as a biomarker for cardiovascular status still remains uncertain in young adults13.

ADMA and homoarginine are considered to have opposite effects on NO production, with ADMA serving as an 
inhibitor of NOS and homoarginine as a substrate29. The vascular effects of ADMA and SDMA have however been 
questioned, as ADMA and presumably also SDMA, are considered to be weak inhibitors of eNOS25. Homoarginine 
has a low affinity for NOS30, but is considered an alternative substrate to arginine and has been shown to increase NO 
availability31. Homoarginine is however, also reported to reduce NO production by acting as an inhibitor rather than 
a substrate for the three NO synthase isoforms (eNOS, neuronal and inducible NOS)32. Homoarginine may compete 
with arginine at the substrate binding site33 and has been shown to impair cellular arginine transport34 by inhibiting 
the cationic amino acid transporter (CAT-1), thereby reducing intracellular arginine availability for NOS35, and 
possibly also for other enzymatic reactions. However, high concentrations of L-homoarginine (1 mmol/L) were used 
to inhibit arginine uptake34 and it is unlikely that such levels can be reached in humans. Therefore, the exact mecha-
nisms for homoarginine inhibition of NO production are still not clear.

Arginine is an important amino acid in pregnancy and serves both as a building block for proteins and is addi-
tionally hydrolyzed by the enzyme arginase to ornithine and converted into the polyamines putrescine, spermine, 
and spermidine36,which are key regulators of placental angiogenesis, trophoblast growth, and embryogenesis37. 
Arginine is reported to be abundant in the amniotic fluid in early pregnancy38, and a predictor for birth weight, 
length, and head circumference39.
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The study included 158 healthy never-pregnant premenopausal women, of whom approximately 50% used 
hormonal contraception, which was a sufficient population size to detect statistically significant differences in 
concentrations of arginine metabolites studied. As we did not have information about the menstrual phase, sex 
hormone concentrations, or endothelial dependent vasodilatation, we were unable to relate our data to estrogen 
concentrations and vascular effects more directly, which are all limitations of this study.

Conclusion
In healthy, never-pregnant women aged 18 to 40 years, use of estrogen containing contraception was associ-
ated with significantly higher plasma concentrations of homoarginine and lower concentrations of arginine and 
ADMA compared to non-users. The lowest homoarginine concentrations were seen in progestin-only users.

Whether the observed changes in arginine and its metabolites in relation to use of hormonal contraception 
have an impact on cardiovascular health should be evaluated in an intervention study.

Material and Methods
Study population and design.  Between June 2012 and March 2015, healthy, never-pregnant women aged 
18 to 40 years were recruited among employees and students at Haukeland University Hospital and the University 
of Bergen, Norway.

Ethical approval of the protocol was granted by the Regional Committee for Medical Research Ethics West 
(2011/2447). All methods were performed in accordance with the relevant guidelines and regulations. Written 
informed consent was obtained from all women.

The dataset generated and analyzed for the current study are available from the corresponding author on 
reasonable request.

Clinical data.  The women completed a questionnaire concerning age, body weight, health status, years of 
completed education, diet, and the use of multiple micronutrient supplements (MMN), alcohol and tobacco. 
Regular use of supplements was defined as use more than three days per week and the definition of a regular 
tobacco user was based on a plasma cotinine concentration >85 nmol/L40.

Use of hormone containing contraceptives.  Use of hormonal contraception, including oral contracep-
tives, hormone implants and injections, was recorded. Progestins-only contraceptives contain different forms and 
doses of progestins, while combination contraceptives additionally contain ethinylestradiol (range 20–35 µg)15.

Women who did not use hormonal contraception were defined as non-users, women who used estrogen 
containing contraceptives were defined as the EC-users, whereas women who used progestin-only contraceptives 
were defined as the PC-users.

Blood sampling and analysis.  Non-fasting blood samples were obtained by antecubital venipuncture and 
collected into EDTA Vacutainer Tubes (Becton Dickinson), placed in ice water, and plasma was separated within 
4 hours. The samples were stored at −80 °C until analysis. Plasma concentrations of arginine, asymmetric dimeth-
ylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine were assayed using a LC-MS/MS 
method41 by the laboratory of Bevital AS (www.bevital.no).

Statistical analysis.  Results are presented as mean and standard deviation (SD), compared by Student’s 
t-test or ANOVA, and median and interquartile range (IQR), compared by Mann-Whitney U test or Kruskal 
Wallis test. Chi-square test was used for categorical data. Multiple linear regression models were used to assess 
the association of plasma homoarginine, arginine and ADMA with age, BMI, use of hormonal contraception, 
alcohol and tobacco.

The R Foundation for Statistical Computing (version 3.3) was used for graphical illustrations of the relation 
between use of hormonal contraception and homoarginine, arginine and ADMA. The SPSS statistical program 
(version 24) was used for statistical analyses. Two-sided p-values < 0.05 were considered statistically significant.
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