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Features of the CRISPR-Cas system, in which bacteria integrate
small segments of phage genome (spacers) into their DNA to
neutralize future attacks, suggest that its effect is not limited
to individual bacteria but may control the fate and structure of
whole populations. Emphasizing the population-level impact of
the CRISPR-Cas system, recent experiments show that some bac-
teria regulate CRISPR-associated genes via the quorum sensing
(QS) pathway. Here we present a model that shows that from
the highly stochastic dynamics of individual spacers under QS
control emerges a rank-abundance distribution of spacers that is
time invariant, a surprising prediction that we test with dynamic
spacer-tracking data from literature. This distribution depends on
the state of the competing phage–bacteria population, which due
to QS-based regulation may coexist in multiple stable states that
vary significantly in their phage-to-bacterium ratio, a widely used
ecological measure to characterize microbial systems.
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Complex communities of microorganisms are important eco-
logical forces in almost every environment from hot springs

(1) to humans (2–6). Phages, viruses which infect bacteria, are
integral components of microbial populations: Phage preda-
tion has been shown to strongly influence bacterial evolution,
diversity, and numbers (7, 8). To counter phages, bacteria have
evolved many and complex immune mechanisms (9). CRISPR-
Cas is one such defense mechanism which is both adaptive and
heritable; i.e., it not only learns from past infections but also
passes this knowledge to future generations. Many models have
addressed the effects of CRISPR-Cas on microbial populations,
but a conceptual vacuum remains: What experimental features of
natural populations should be measured to compare with model
predictions?

CRISPR-Cas machinery for adaptive immunity allows bac-
teria to acquire unique genetic elements (called spacers) from
prior phage encounters to specifically target and evade recur-
rent attacks. The spacers are tens of nucleotides long and at each
encounter may be acquired from any of the hundreds of possible
locations on the infecting phage genome (called protospacers).
Since individual spacers are distinguishable and because they are
integrated in the genome, the result is a lineage of cells that can
be identified by its spacer(s). The fate of an individual lineage,
however, is subject to large fluctuations due to the stochas-
tic dynamics of individual bacteria in a large rapidly evolving
population. Experiments show that the abundance of individual
spacers in a bacterial population under phage attack is indeed
highly dynamic and varies over several orders of magnitude from
one spacer to the next (7, 10–13). This leads to a natural ques-
tion: What controls spacer diversity and abundance? In other
words, how does recurrent phage attack alter the structure and
composition of interacting spacer-marked lineages in a bacterial
population?

Several previous models have addressed the role and dynam-
ics of observed diversity of spacer types (14–21) in a qualitative
way: (i) They have shown how system parameters such as phage

adsorption rate (21), spacer acquisition rate (16, 21), and phage
mutation and recombination (18) affect spacer diversity; (ii)
they have shown how increasing diversity promotes population
stability (16, 19); and (iii) they have reproduced the observed
asymmetry in diversity along the locus in natural populations (14,
15, 18) by modeling biased acquisition at the leader end of the
CRISPR locus. Most recently, Bradde et al. (20) showed a con-
nection between spacer acquisition rates and spacer effectiveness
to spacer diversity. To make a direct connection with data, we
analyzed sequencing data from Paez-Espino et al. (12), a coevo-
lution experiment with phage and bacteria which tracked spacer
dynamics. Our analysis shows that despite rapid turnover of
individual spacer types, the spacer rank-abundance distribution
quickly stabilizes, which is a striking observation that previous
models have not addressed.

Recently, similar questions about diversity in the adaptive
immune system have gained traction in the context of ver-
tebrates which generate and maintain a large population of
specialized immune cells that, as a group, contain an extremely
diverse set of binding sites that individually recognize differ-
ent viruses. Like spacer abundance, the abundance of individual
binding sites is highly variable (22–24). This observation has
led to the suggestion that a broad abundance distribution of
binding sites may strike a balance between generating a rapid
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response against likely invaders and capturing new invaders (24).
Although this is hard to test in vertebrates, laboratory experi-
ments that alter bacterial population composition synthetically
show that bacteria are more successful at fending off phages as
their population-level spacer diversity increases (25). How the
dynamics of individual bacterial lineages shape spacer diversity
and how diversity in spacer sequences or types relates to diversity
in spacer abundances remain unanswered.

Beyond the role of individual spacer lineages in shaping
population structure, recent experiments have shown that bac-
terial populations exert top–down control on the CRISPR
system: Two species of bacteria have been observed to reg-
ulate their CRISPR-Cas systems in response to cell density
(26, 27). Interestingly, this control acts via the quorum sens-
ing pathway, a pathway which also controls population-level
responses such as virulence. This suggests a different paradigm
where the effects of CRISPR-Cas need to be considered at
the collective population level, rather than at the level of
individual cells. Previous population-level models have not
addressed this effect (20, 21, 28–38), and modeling efforts
addressing CRISPR-Cas regulation have focused on the rele-
vant gene circuits and production of transcribed spacers called
CRISPR RNAs (crRNAs), not on the population-level effects of
regulation (39–41).

We build a model that addresses the two aforementioned fun-
damental and unaddressed aspects of the CRISPR-Cas system:
(i) Our model shows how stable rank-abundance distributions
may arise despite rapid turnover of individual spacer types that
are identical in their ability to provide immunity, and (ii) our
model shows that density-dependent regulation of CRISPR-
Cas admits a bistable state at the population level where the
phage–bacterial population can be stable with two different con-
figurations under the same external conditions. We further argue
how having the knowledge of spacer diversity along with bistable
states may shed light on the fate of natural microbial populations.

Model
Adaptive immunity in bacteria is controlled by a set of Cas pro-
teins, which in a nutshell accomplish two different tasks: (i)
When an invading phage inserts its genome into a bacterial cell
but is not successful in killing the bacterium, Cas proteins take
a small piece of phage genome and insert it into the bacterial
genome at a specific site called the CRISPR locus. (ii) During a
subsequent phage attack, the bacterium can use the information
stored in the CRISPR locus to recognize the invading phage and
neutralize it. Multiple spacers can be stored at a CRISPR locus,
providing a genetic record of immunization that is inherited
during DNA replication. The immunization record in principle
can be read via next-generation sequencing and provides a rich
presence/absence observable: the binary variable sijk indicating
whether spacer type i is in locus position j in host bacterium k
(Fig. 1A and Eq. S1).

We model the abundance of the ith spacer, n i
B (t), which

is obtained by summing over all bacteria and locus positions;
i.e., n i

B (t)=
∑

j ,k sijk (t). An important simplifying assumption
of our model is that each locus has at most one spacer; i.e.,
j =1; this assumption is borne out of analysis of a laboratory
experiment that shows that spacer dynamics stabilize rapidly
within tens of generations with each bacterium predominantly
having one new spacer (see SI Appendix, section 1.2 for details
of data analysis) (12). Additionally, a model that allowed more
than one spacer also found that only the most recently acquired
spacers dominate the dynamics (16). With this assumption, the
abundance of individual spacer types can be mapped to the num-
ber of bacteria with a particular spacer, n i

B . In addition, we
assume each spacer to have equal effectiveness; this both is a
simplifying assumption and also acknowledges our lack of exper-
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Fig. 1. (A) CRISPR locus. Small (∼30 nt) samples of invasive phage DNA
called spacers (colored rectangles) are incorporated into the CRISPR genetic
locus. Spacers are separated by short (∼30 nt) sequences called repeats
(black diamonds). Multiple spacers can be stored at a CRISPR locus, resulting
in a genetic record of immunization (42). In our analysis of the experimental
data shown in Fig. 3 A–C, we identify spacers with a type i, a locus position
j, and a bacterium k. (B) In our model, bacteria and phages interact in a
chemostat (flow cell) with a constant inflow and outflow rate F. Nutrients
flow into the chemostat at a fixed concentration C0. Phages are assumed
to be identical with a large, fixed number of possible protospacers. Phages
adsorb to bacteria with rate α and successfully infect and kill naive bacte-
ria with probability pV . Each bacterium can acquire a single spacer (j = 1).
Spacers are tracked in the population as the number of bacteria contain-
ing a spacer of type i, ni

B. If a naive bacterium survives an infection, it can
acquire a spacer with probability η. All spacers are assumed to be equally
effective: The probability of phage success in an infection is reduced by e if
a bacterium has a spacer. Bacteria with spacers revert to naive bacteria by
losing a spacer with rate r.

imental knowledge about differences among spacers and their
effectiveness.

To capture the inherent stochastic nature of spacer dynam-
ics, we model the probability distribution P(n0

B , {n i
B},nV ,C , t),

which is the probability at time t of observing n0
B bacteria without

spacers and {n i
B} bacteria with spacer type i , nV phages, and a

nutrient concentration of C . Interactions included in the model
are illustrated in Fig. 1B and described in detail in SI Appendix,
section 2. This construction highlights another important simpli-
fying assumption which is also valid for short timescales: lack
of phage diversity; i.e., all phages are assumed to be identical.
In addition, we model the phage–bacteria population in a flow
cell or chemostat, a well-stirred vessel in which nutrients flow in
at a constant rate and concentration and the mixture flows out
with the same rate. A chemostat is not only comparable to peri-
odic dilution experiments in the laboratory, it is also a reasonable
approximation of real-world microbial populations from a gutter
to a gut. In many of these natural environments, nutrients and
waste flow in and out—the environment is not static like a Petri
dish. Additionally, the chemostat flow rate F is an experimental
“knob” that can be used to tune a population-level bifurcation
we describe later.
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Our stochastic model has a corresponding mean-field or
population-level description for average values of the differ-
ent random variables, each represented by the same symbol as
their corresponding random variable. At the mean-field level,
all of the spacer-containing bacteria can be pooled into a sin-
gle variable ns

B =
∑

i n
i
B , and the number of bacteria without

spacers is n0
B . The mean-field equations are given below. Param-

eter descriptions can be found in Fig. 1 and SI Appendix, Table
S1. We assume that the bacterial growth rate is linear with the
concentration of nutrients C ; relaxing this assumption does not
qualitatively change our results (SI Appendix, section 3.2):

dC

dt
= FC0︸︷︷︸

flow in

− gC (ns
B +n0

B )︸ ︷︷ ︸
bacterial growth

− FC︸︷︷︸
flow out

dnV

dt
=−αnV (ns

B +n0
B )︸ ︷︷ ︸

phage adsorption

+αBpV nV (ns
B (1− e)+n0

B )︸ ︷︷ ︸
phage burst and bacterial lysis

−FnV

[1]

dn0
B

dt
=gCn0

B −αpV nV n0
B −α(1− pV )ηnV n0

B︸ ︷︷ ︸
spacer acquisition

+ rns
B︸︷︷︸

spacer loss

−Fn0
B

dns
B

dt
=gCns

B −αpV (1− e)nV ns
B +α(1− pV )ηnV n0

B

− rns
B −Fns

B .

Results
Mean-Field Steady States. For phages to invade a bacterial popu-
lation that is stable in a chemostat, their probability of success-
fully infecting bacteria without the benefits of adaptive immunity,
pV , needs to be above a certain minimum value given by p0

V =
1
B

(
gf

(1−f )α
+1
)
, where f =F/(gC0). For gf

(1−f )α
<< 1 (satisfied

at the parameters we use for low flow rates), p0
V is approximately

1/B : Phages must succeed approximately every 1/B interactions
to persist in the population. p0

V is surprisingly small for realistic
values of the burst size B ; for example, if B =100, then p0

V ≈
0.01. As pV rises above the threshold value, the steady-state
phage population, nV , first rises while the bacterial population
decreases as they get killed by phages. Interestingly, the steady-
state bacterial population keeps decreasing with increasing pV ,
but the phage population exhibits a nonmonotonic behavior
with a maximum population size at an intermediate value of

p?V = p0
V +

√
p0
V
f
(p0

V −
1
B
). This steady-state behavior is qualita-

tively the same for bacteria with adaptive immunity (e > 0) as
for bacteria without adaptive immunity (e =0). Quantitatively,
however, bacteria always fare better in the presence of adap-
tive immunity (Fig. 2A). One surprising observation is that the
minimum success probability required for phages to invade a
bacterial culture is independent of adaptive immunity. This is
because there are no bacteria with spacers at steady state below
pV = p0

V , and, as a result, phage invasion occurs independently
of the CRISPR system (SI Appendix, Fig. S12).

Much like increasing pV , an increasing spacer effectiveness e
causes the total number of bacteria at steady state to increase
monotonically (Fig. 2B), since a bacterium with a spacer is less
likely to be killed by phages as e increases. However, even for
e > 0, not all bacterial cells in a population have a spacer, and
the steady-state fraction of the bacterial population with spacers,
ν, is governed by a balance of spacer acquisition η, spacer loss
r , and the effect of e on the bacterial population. As a result,
the steady-state level of bacteria can increase by either increased
spacer acquisition or improved spacer effectiveness; contours
in Fig. 2B show the tradeoff between η and e that maintains
bacterial population size.

A B

C

Fig. 2. (A) Bacteria, phage, and nutrients at steady state as a function of
the probability of phage success pV for a model without CRISPR (spacer
effectiveness e = 0, solid lines) and for a model where bacteria have CRISPR
systems and are able to acquire spacers (e = 0.5, dashed lines). Population
sizes are normalized by the inflow nutrient concentration C0, and phages
are additionally scaled by the burst size B. As the probability of phage
success pV increases, bacteria decrease in number. Below pV = p0

V , phages
cannot persist and the fraction of bacteria with spacers is 0. Phages increase
with increasing pV and then decrease at high pV because the bacterial pop-
ulation is too small to support more phages. (B) Normalized total bacteria as
a function of spacer acquisition probability η and spacer effectiveness (equal
for all spacers). (C) Fraction of bacteria with spacers (ν) as a function of η
and e.

In contrast to the total bacterial population, ν first increases as
e increases but reaches a maximum at an intermediate value of
e (Fig. 2C). This can be understood as ν qualitatively tracking
the phage population size, which shows a peak at intermedi-
ate spacer effectiveness (SI Appendix, Fig. S14). Qualitatively,
this behavior is similar to the total phage population having a
nonmonotonic behavior with increasing pV .

Spacer Rank-Abundance Distributions. Even at steady state with
stable populations of phage and bacteria, the individual spacer
abundances in the bacterial population are highly dynamic and
vary significantly over time. This has been seen most directly in
laboratory experiments (12, 13) but has also been observed in
natural samples such as a hypersaline lake (43), human saliva
(44), and acid mine drainage (10, 15). This continual spacer
turnover is influenced by bacterial reproduction and death,
spacer acquisition, and spacer loss, all of which have been
observed in natural and laboratory populations.

In our stochastic model, we keep track of individual spacer
acquisition and loss events. Not surprisingly, we find that spacer
abundances fluctuate over time (Fig. 3 D and E and SI Appendix,
section 4.1). However, we also find that the spacer rank-
abundance distribution reaches a stationary state from an initial
state with no spacers, shown in Fig. 3F and SI Appendix, section
2.5. Not only does the spacer distribution in our simple model
reach a stationary state while individual spacers turn over rapidly,
it also shows 1,000-fold variation in spacer abundances despite
the fact that all spacers are functionally identical in our model
and provide resistance to the same phage. The exact shape of the
distribution depends on various parameters (SI Appendix, section
2.5) and is well approximated by a gamma distribution which has
been used to describe species abundance distributions in ecology
(45–48) (SI Appendix, section 2.6).

To test predictions with data, we analyzed experimental data
reported by Paez-Espino et al. (12) from a bacterial popula-
tion under constant phage attack. We summarized their raw
sequencing data into the presence/absence tensor sijk as shown
in Fig. 1A, and we tracked dynamics of individual spacers
n i
B (t)=

∑
j ,k sijk (t). Our analysis showed that the abundance

of individual spacer types fluctuated throughout the 15 d (∼80
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Fig. 3. Comparison of spacer distributions between simulations (D–F) and
experimental data from ref. 12 (A–C). (A and D) Subset of spacer-type tra-
jectories over time in generations for experimental data (A) and simulated
data with η= 10−5 and e = 0.387 (D). Qualitative simulation results are
insensitive to the choice of e and η. Individual spacer abundances fluctu-
ate throughout the experiment and simulation. (B) As a function of time
difference at steady state (day 4/generation 26 onward), we calculated the
fraction of spacer types that have gone extinct (blue circles), averaged over
all times (red line). Error bars are SD. (E) Same as B but for simulated data
from generation 300 to 500. A large fraction of spacer types go extinct dur-
ing the course of the experiment and simulation. (E, Inset) Fraction of spacer
types that go extinct for a long simulation from generation 500 to 3,000.
The fraction that go extinct continues to increase with time. (C) The rank-
abundance distribution of spacer clone sizes reaches a steady state in the
experiment after about 20 generations (day 3 of the experiment). Darker
blue indicates later times. (F) The distribution of spacer clone sizes reaches
a steady state in the simulation after about 100 generations. Plotted is the
same quantity as in C. Even after the distribution of clone sizes has reached
steady state, individual spacer types experience continual turnover.

generations) of the experiment (Fig. 3A), with more than 40%
of spacers going extinct within a time difference of a few gen-
erations from any starting time (Fig. 3B). In contrast, we find
that the spacer rank-abundance distribution reaches a stationary
state, as shown in Fig. 3C. Notably, the rank-abundance distri-
bution is broad with some spacers having a roughly 1,000-fold
higher abundance than others. However, in contrast to the intu-
ition that highly abundant spacers may be more effective, these
high-abundance spacers also experience continual turnover,
shown in SI Appendix, Fig. S16 (SI Appendix, section 4). Both
the simulated and experimental data show similar mean times
to extinction as a function of spacer abundance (SI Appendix,
section 4.1), another indication of continual spacer turnover at
steady state.

In general our analysis highlights that individual spacer iden-
tity and abundance may not themselves be important but col-
lectively may provide a time-invariant observable in the form of
steady-state rank-abundance distributions. And somewhat coun-
terintuitively, spacers need not be functionally different in their

effectiveness or acquisition probability to get large variability in
spacer abundances.

Regulation of cas Expression. Merely having an effective spacer,
however, is not enough: To effectively neutralize phage, bacte-
ria need to express cas genes when under attack. Experimental
work has shown that bacteria can regulate their CRISPR-Cas
systems in response to cell density, controlled under the quorum
sensing pathway (26, 27). A cell increases its expression of Cas
proteins at high cell density in response to a high concentration
of quorum sensing molecules and down-regulates its expression
of Cas proteins at low cell density. To understand the role of
cell density-dependent regulation of the CRISPR-Cas system,
we made spacer effectiveness e to be a function of cell density,
e(x )= emin +(emax − emin)

(
xn

xn+xn
0

)
, where x is the normalized

bacterial population size. This function is characterized by three
numbers: minimum effectiveness emin , maximum effectiveness
emax , and typical population size where the behavior changes
from low to high effectiveness (SI Appendix, section 5). Regu-
lation of cas genes may also alter other parameters of the model
such as acquisition, spacer loss, and growth rates, but we show in
SI Appendix, section 5.3 that adding regulation to other possible
parameters independent of effectiveness has little effect and that
in conjunction with density-dependent effectiveness they do not
change the qualitative features we describe below.

Notably, the dependence of spacer effectiveness on popula-
tion size changes both the number and value of the steady-state
fixed points. We find that the whole bacteria–phage–nutrient
system undergoes a saddle-node bifurcation and is bistable for
a range of parameters. The bistability results from a positive
feedback that is established under quorum sensing (QS) con-
trol of the CRISPR-Cas system but is absent otherwise: The
total bacterial population size increases with increasing spacer
effectiveness, and in turn effectiveness increases as CRISPR-
Cas is up-regulated by higher bacterial density (SI Appendix,
Fig. S20). There are various parameters that can be used as the
bifurcation parameter, but one that can be easily controlled in
experimental systems and perhaps plays a role in natural systems
is the normalized chemostat flow rate f =F/(gC0), which can
also be thought of as the inverse of nutrient availability. Fig. 4
shows how bacterial and phage abundance varies as flow rate is
changed in the presence of density-dependent regulation of the
CRISPR-Cas system. At the two extremes, for low flow rate the

A B

Fig. 4. Bacterial upregulation of cas gene expression at high density can
induce bistability (A, yellow shaded area) as a function of the normal-
ized chemostat flow rate f = F/(gC0), a parameter that is easy to tune
experimentally. The blue shaded region in A is monostable, and in the
pink shaded region in A phages cannot persist. (A) The bacterial popu-
lation size (solid black lines) exhibits hysteresis (blue arrows) between a
low-expression, low-density state and a high-expression, high-density state.
(B) The spacer rank-abundance distribution shape depends on the ecological
state of the population. Plotted are two rank-abundance distributions from
simulations of the high- and low-expression states, respectively; population
sizes for each distribution are indicated by dots in A. B, Inset shows linear
frequency scale.
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system behaves with no adaptive immunity and bacterial (and
phage) population size is low, while at high flow rate adaptive
immunity kicks in and bacteria can maintain a higher popula-
tion size. The phage population remains low at high flow rate
both because bacteria are more resistant and because phages are
removed from the system at a higher rate. At very high flow rate,
phages go extinct and the bacterial population starts decreasing
linearly with flow rate. For intermediate flow rate, the low and
high states are both stable, allowing the system to be in either
state. In principle these two population-level states could coexist
and interact.

This bistable system may also exhibit hysteresis, which may
have important ecological consequences, possibly functioning
as a memory of past phage pressure or providing a switch-
like behavior between “on” and “off” states of the CRISPR
system. Not only can the phage-to-bacterium ratio [called virus-
to-prokaryote ratio (VPR)] be significantly different between the
two states but also spacer composition and diversity can be quite
different (Fig. 4B and SI Appendix, section 2.5).

Our model exhibits bistability quite generically for large
parameter ranges but requires choosing an appropriately steep
function for effectiveness (discussion in SI Appendix, section 5).

Discussion
CRISPR-Cas is a unique system in that adaptive immunity is
both hereditary and acquired. Its impacts on population dynam-
ics are thus unlike any other immune system, and experimental
observations must be interpreted with theory specific to the
CRISPR-Cas system. Our analysis of experimental data yielded
a striking result: Rank-abundance spacer distributions are sta-
ble over time, paralleling population-level stability, despite
what looks like ongoing turnover in the abundances of indi-
vidual spacer types. This overall stability suggests a need for
a population-level approach in which questions about spacer
diversity are addressed alongside questions about CRISPR-Cas
regulation. In this framework, communities of bacteria function
collectively more like a single organism capable of complex sig-
naling and behavior than like a collection of individual bacteria
undergoing selective dynamics.

In this work, we propose and analyze a simplified model of
interacting bacteria and phage in which bacteria regulate the
CRISPR-Cas system in a density-dependent way, which in turn
controls the spacer-marked clonal composition of the bacterial
population under phage attack. We find that the bacteria–phage
population exhibits bistability with the possibility of coexistence
between two ecologically different states. These two stable states
may differ by orders of magnitude in the phage-to-bacterium
ratio as well as differing in the spacer diversity and composition
of the population. Our model also provides a framework where
large variability in spacer abundance may arise due to population
dynamics rather than due to individual parameters of spacers,
since our model is neutral with no selective advantage for par-
ticular spacers. And finally, our model shows how a stable spacer
rank-abundance distribution may emerge while individual spacer
types turn over rapidly.

Sequencing provides an easy way to track spacers, which in
turn provide a direct record of past interactions between a bac-
terium and its phages. Although there has not been much effort
toward spacer tracking in individual bacteria, population-level
spacer dynamics are becoming readily accessible both from labo-
ratory experiments (12, 13, 38) and from natural populations (7,
10). In the laboratory, both large variability and rapid turnover
of individual spacer types have been observed. Understanding
these dynamics is certainly interesting but requires a much higher
level of sampling and resolution than what is currently avail-
able (49). Also, acquiring such data, especially time resolved, for
natural systems such as microbial mats and acid mine drainage
may not be practical. Here we show that the spacer rank-

abundance distribution may provide a more useful time-invariant
observable for understanding the underlying dynamics in both
natural and laboratory systems; our work predicts that mea-
suring spacer abundances in natural populations may reveal
abundance distributions that are stable in time and poten-
tially indicative of the environmental conditions despite differ-
ences in the level of spacer sequences between populations and
over time.

Even without phage diversity and phage mutations in our
model, we reproduce important features of the spacer dynamics
observed in recent laboratory experiments (12). In the presence
of mutant phages, the net effectiveness of different spacers in
providing immunity against phages may vary from one spacer
to the next. We expect that a spacer’s effectiveness will depend
on the fraction of the phage population with a matching pro-
tospacer. This fitness difference between spacers will have con-
sequences for the population dynamics, and some aspects have
been addressed in experiments (13, 50, 51) and models (16, 19,
31–33, 38, 52) and reviewed in ref. 53.

Multistability at the level of cellular states, where a fraction of
the population switches to an alternate state, has been explored
at length with implications from bet hedging to lytic–lysogenic
switching to antibiotic resistance and persistence (54–58). Simi-
larly structured populations are now being explored in contexts
from healthy regenerating tissues to pathologies such as cancer
(59). While recent models for large interacting microbial pop-
ulations using a statistical mechanical approach (60–63) show
that ecological multistability akin to what is seen in a spin glass
may be present in such populations, they remain experimen-
tally inaccessible. A notable exception is Gore et al. (54), who
observed population-level bistability and coexistence between

B

A

C D

Fig. 5. (A) The phage-to-bacterium ratio (virus-to-prokaryote ratio, VPR)
can differ by more than 10-fold between the two bistable states in the
model (solid black lines). These values reflect the two underlying ecolog-
ical states: VPR is low when bacteria are at high density and up-regulate
CRISPR-Cas expression, and VPR is high at low bacterial density and low
CRISPR-Cas expression. (B–D) VPR histogram and fitted log-normal distribu-
tions for organisms from eutrophic (high nutrient), mesotrophic (moderate
nutrient), and oligotrophic (low nutrient) environments [data from Parikka
et al. (64)]. We fit 1D Gaussian mixture models with one and two Gaus-
sian distributions, respectively, to the data and chose the best-fitting model
(blue line), using the Akaike information criterion (AIC). The data were
fitted better by a single Gaussian distribution for the eutrophic data (∆
AIC =45.7) and two Gaussian distributions for the mesotrophic (∆ AIC =

10.2) and oligotrophic (∆ AIC =8.1) data. For each fit, we calculated the
likelihood that the not-chosen model was a better fit: e−∆AIC/2 (65). This
likelihood is 1.2× 10−10, 0.006, and 0.017 for the eutrophic, mesotrophic,
and oligotrophic data, respectively.

E7466 | www.pnas.org/cgi/doi/10.1073/pnas.1802887115 Bonsma-Fisher et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802887115-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802887115-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1802887115


PH
YS

IC
S

BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

two cooperating yeast strains in a mixed culture. Here we
provide an example of multistable, multispecies ecological states
that may be readily accessible in experiments. We show that
for a population of bacteria and phages the flow rate of a
chemostat or dilution rate of a serially diluted population can
serve as a bifurcation parameter. Since both nutrient concentra-
tion (which controls population density) and dilution rate are
easy to control experimentally, ecological states in our phage–
bacteria population should be readily accessible (SI Appendix,
section 5.4).

In natural populations where phages and bacteria coexist, the
phage-to-bacterium ratio, also called VPR, has been measured
and reported for a wide range of conditions. While viruses are
generally assumed to outnumber bacteria by a factor of 10 (8, 34,
66, 67), the measured ratio can vary between samples by as much
as a factor of 106 (64). The underlying factors and ecological sig-
nificance of observed VPR values are not well understood. Our
model predicts a variable phage-to-bacterium ratio for different
parameters. Notably, the VPR for the low-expression branch of
the bistable system is approximately 10 times higher than that
for the high-expression branch (Fig. 5A). These values reflect
the two underlying ecological states: VPR is low when bacteria
are at high density and up-regulate CRISPR-Cas expression, and
VPR is high when bacteria are at low density and have turned
down CRISPR-Cas expression. This suggests that low observed
VPR values may be indicative of an active bacterial defense sys-
tem, while high VPR may correspond to a bacterial population
strongly controlled by phages. With deep metagenomic sequenc-
ing it will be possible to measure VPR in natural environments
for phage–bacteria species pairs that are known to interact, shed-
ding more light on the significance of phage pressure in natural
microbial communities.

In our model, the normalized chemostat flow rate f is inversely
proportional to the inflow nutrient concentration C0, which
suggests that the model’s VPR predictions and the ecological
conditions under which CRISPR-Cas is advantageous may be
impacted by nutrient availability. A study by Payet and Suttle
(68) found that phage production and phage-induced mortality
of bacteria were both highest in marine samples when the water
was most productive and nutrient rich, while lysogens were more
common when the water was oligotrophic. This is also consis-
tent with the finding that phage infection risk is higher at high
bacterial density (26, 69, 70).

To connect this qualitative feature of our model to natural
populations, we analyzed VPR data from Parikka et al. (64) and

found that the distribution of measured VPR values appears
bimodal in low and moderate nutrient environments. It may be
the case that at high nutrient levels where bacteria live in dense
communities and are at high risk of lytic phage predation, most
or all bacteria use a highly expressed CRISPR-Cas system and
VPR is peaked at a single low value in that environment (Fig.
5B). Conversely, at low to moderate nutrient levels, different
bacteria may use different immune strategies and so VPR values
may span a wider range (Fig. 5 C and D). Note that at very low f
and high nutrient availability, our model predicts monostability
in the low-density, low-expression stable state corresponding to
high VPR, yet we observe a unimodal low VPR in high-nutrient
environments (Fig. 5B). In these conditions when phages are a
large threat, bacteria may use another signal besides density to
up-regulate the CRISPR-Cas system. In this work we provide an
intuitive connection between an observed quantity such as VPR
and a nontrivial insight into the ecological state of interacting
bacteria and phages.

Materials and Methods
Data Analysis. We analyzed data from an experiment in which Streptococ-
cus thermophilus bacteria were mixed with phages and sequenced to track
the expanding portion of the CRISPR locus over 15 d (12) by labeling spacers
with a type i corresponding to a unique spacer sequence, a locus position j,
and a bacteria label k. All spacers within an edit distance of 2 from each
other were grouped into the same type. See SI Appendix, section 1 for
details.

We compared data reported by Parikka et al. (64) with our model. When
plotting VPR values, we combined average VPR measurements and individ-
ual VPR measurements (“VPR av” and “VPR” columns) to create a combined
dataset of VPR values.

Our processed data can be found on GitHub at https://github.com/
mbonsma/CRISPR-immunity.

Model Analysis. The mean-field model was solved exactly at steady state in
Mathematica. Steady-state values with regulation added were calculated
numerically. See SI Appendix, section 3 for stability analysis.

Simulations. Simulations were written in C++ and performed using the
tau leaping method (71). See SI Appendix, section 2.3 for details. Simula-
tion code can be found on GitHub at https://github.com/mbonsma/CRISPR-
immunity.
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