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Gene co-expression network analysis
reveals coordinated regulation of three
characteristic secondary biosynthetic
pathways in tea plant (Camellia sinensis)
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Abstract

Background: The leaves of tea plants (Camellia sinensis) are used to produce tea, which is one of the most popular
beverages consumed worldwide. The nutritional value and health benefits of tea are mainly related to three abundant
characteristic metabolites; catechins, theanine and caffeine. Weighted gene co-expression network analysis (WGCNA) is a
powerful system for investigating correlations between genes, identifying modules among highly correlated genes, and
relating modules to phenotypic traits based on gene expression profiling. Currently, relatively little is known about the
regulatory mechanisms and correlations between these three secondary metabolic pathways at the omics level in tea.

Results: In this study, levels of the three secondary metabolites in ten different tissues of tea plants were determined,
87,319 high-quality unigenes were assembled, and 55,607 differentially expressed genes (DEGs) were identified by
pairwise comparison. The resultant co-expression network included 35 co-expression modules, of which 20 modules were
significantly associated with the biosynthesis of catechins, theanine and caffeine. Furthermore, we identified several hub
genes related to these three metabolic pathways, and analysed their regulatory relationships using RNA-Seq data. The
results showed that these hub genes are regulated by genes involved in all three metabolic pathways, and they regulate
the biosynthesis of all three metabolites. It is notable that light was identified as an important regulator for the
biosynthesis of catechins.

Conclusion: Our integrated omics-level WGCNA analysis provides novel insights into the potential regulatory
mechanisms of catechins, theanine and caffeine metabolism, and the identified hub genes provide an important
reference for further research on the molecular biology of tea plants.
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Background
Tea, produced from the leaves of the tea plant, Camellia
sinensis (L.), belonging to family Theaceae, is one of the
most popular natural non-alcoholic beverages consumed
worldwide. To date, nearly 4000 bioactive compounds
have been identified in tea [1] including catechins, caf-
feine, theanine and volatile oils [2]. Catechins generally
contain six different monomers, namely catechin (C),

gallocatechin (GC), epicatechin (EC), epigallocatechin
(EGC), epicatechin gallate (ECG) and epigallocatechin
gallate (EGCG) [3]. Catechins, caffeine and theanine are
the main three characteristic biologically active com-
pounds in tea [4]. They are not only important contribu-
tors to flavour, but also have beneficial effects on human
health due to their autoxidation and anticancer activity
[5] and their ability to lower blood pressure [6], prevent
cardiovascular diseases [7], and assist weight loss [8].
Gene co-expression network analysis (GCNA) is a gen-

etic approach for analysing correlations between genes
using large-scale gene expression profiling data that is
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especially useful for investigating relationships between
functional modules and phenotypic traits [9, 10]. Weighted
GCNA (WGCNA) is one of the most popular
GCNA-based approaches, and this correlation-based tech-
nique describes and visualises co-expression networks be-
tween genes using transcriptomic data [11]. This technique
has been successfully utilized to identify the gene modules
in Arabidopsis and rice that are related to drought and bac-
terial stress [12]. Module assignment in WGCNA is a flex-
ible process which reduces the complexity of a dataset from
hundreds of genes to a smaller number of modules.
Researchers have focused on the molecular mecha-

nisms involved in plant growth, development [13, 14]
and the production of secondary metabolites [15] in tea
plants. Regulatory mechanisms underlying secondary
metabolite biosynthesis, particularly those related to cat-
echins, theanine and caffeine, have been explored at the
molecular level. Recent advances in next-generation se-
quencing of RNA [16] have been accompanied by an in-
crease in the amount of available transcriptomic data
from different tissues of tea plants [17], from different
species of the genus Camellia [18], and from plants
grown under different stress conditions [19, 20]. Most
research has focused on using RNA-Seq data from tea
plants to reveal the regulatory mechanisms and relation-
ships between gene expression and production of the char-
acteristic secondary metabolites. Li et al. constructed a
possible transcription factor regulation network of flavon-
oid, caffeine and theanine biosynthesis using 13 different
samples from tea plants (various organs and developmental
stages) through correlation analysis [21]. However, relatively
few studies have investigated co-expression networks in tea
plants using RNA-Seq data. In the present study, WGCNA
was performed using RNA-Seq data from ten tissues, and
modules significantly correlated with the three characteris-
tic compounds were identified and analysed. Furthermore,
highly-connected hub genes related to these modules were
identified. This novel approach revealed the regulatory
mechanisms of characteristic metabolic pathways in tea
plants, and highlighted the important role of light in the
biosynthesis of catechins, theanine and caffeine.

Results
Determination of catechins, theanine and caffeine
content
High-performance liquid chromatograph (HPLC) analysis
was used to determine the content of catechins (C, EC,
GC, EGC, ECG and EGCG), theanine and caffeine in ten
different tissues from C. sinensis cv. Shuchazao. (Fig. 1).
The results indicated that accumulation of individual cat-
echin compounds and caffeine varied between different
tissues and seasons. The total amounts of catechins and
caffeine were greater in tender shoots than other tissues,
especially in buds and first leaves (> 200 mg/g).

Galloylated catechins such as ECG and EGCG were the
predominant characteristic phenolic compounds, and
reached 48.3 and 122.5 mg/g, respectively. Similarly, the
caffeine content was significantly higher in tender shoots,
but variation between new and old shoots was less than
for catechins. By contrast, total catechins and caffeine
were much less abundant in roots than in other tissues
(0.67 and 0.0029 mg/g, respectively). However, theanine,
an important compound in tea, reached 40.8 mg/g in
roots, which was 6-fold higher than in buds.

De novo assembly and functional annotation of the C.
sinensis transcriptome
We obtained 111 gigabases of sequencing data (average
11 gigabase/sample) from ten samples. De novo assem-
bly of the C. sinensis transcriptome was performed
using the Trinity package [22], and 91,494 unigenes
were obtained after removing short contigs (≤200 bp)
and redundancy by TGICL [23]. In order to reduce po-
tential assembly errors, we filtered unigenes with a
Fragments Per Kilobase per Million mapped fragments
(FPKM) value less than 0.3 in at least eight of the ten
tissues [24]. Finally, a high-quality transcriptomic li-
brary of 87,319 unigenes with an N50 of 1406 bp and
an average length of 874 bp was obtained. Functional
annotation successfully aligned 54,827 (62.79%), 58,770
(67.30%), 40,700 (46.61%), 43,910 (50.29%), 25,172
(28.83%) unigenes to the NT (Non-redundant nucleo-
tide database), NR (Non-redundant protein database),
Swiss-Prot (Annotated protein sequence database),
KEGG (Kyoto Encyclopaedia of Genes and Genomes),
and GO (Gene Ontology) databases, respectively. Over-
all, 72.68% (63,464 of 87,319) of unigenes were anno-
tated (Table 1).
The E-value distribution of the top hits in the NR, NT,

KEGG and Swiss-Prot databases shows that an average
of 51% of mapped sequences shared significant hom-
ology (< 1.0E− 50), and nearly 41.99% of sequences shared
greater than 80% similarity. These results confirmed the
high quality of the assembled unigenes in the transcrip-
tomic library (Fig. 2).

Analysis of gene expression and identification of
differentially expressed genes (DEGs)
Clean reads from ten different C. sinensis tissues were
mapped to the high-quality unigene sets using Bowtie2
[25]. Expression levels of unigenes were calculated in
each tissue using FPKM values, and unigenes with an
FPKM ≥0.3 [26] were defined as expressed. The number
of genes expressed in each tissue ranged from 65,799 to
74,258, with an average FPKM of 16.47 (Fig. 3). A total
of 55,607 DEGs were identified by in pairwise compari-
son for further analysis.
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Construction of the gene co-expression network
We constructed an unassigned network using DEGs
identified by pairwise comparison from the ten tissues
[27, 28]. All tissues were clustered initially without any
outlier tissues (Additional file 1). A scale-free topology
model with a soft threshold of 30 was used to ensure
that the network was biologically relevant, resulting in
53,279 (95.81%) out of 55,607 unigenes parsed into 35
co-expression modules, with the module size ranging
from 55 to 9041.

Identification of content-related modules
We investigated correlations between the characteristic
components (C, GC, EC, EGC, ECG, EGCG, theanine and
caffeine) of tea and the 35 co-expression modules. We
identified 20 modules that were significantly (p < 0.05) cor-
related with characteristic components (content-related
modules), with highly positive coefficients for modules as-
sociated with C (0.91), GC (0.87), EC (0.88), EGC (0.72),
ECG (0.76), EGCG (0.85), theanine (0.97) and caffeine (0.9)
coloured blue, blue, blue, blue, green, white, yellow and
green, respectively. In addition, EGCG was significantly

negatively correlated with the dark red module (− 0.68),
while total catechins were negatively correlated with the
light green module (− 0.88), turquoise module (− 0.71) and
pale turquoise module (− 0.61). Importantly, there was only
two modules (yellow and light cyan) significantly associated
with theanine (Fig. 4 and Additional file 2).

Functional annotation and enrichment of content-related
modules
To identify the biological roles of modules associated
with catechins, theanine and caffeine, functional annota-
tion and enrichment of these modules were analysed by
KEGG pathway analysis. Detailed functional enrichment
information from KEGG pathway annotation related to
these modules (Q-value < 0.05) is shown in Fig. 5. Ac-
cording to KEGG pathway enrichment analysis, unigenes
in content-related modules were enriched in different
metabolic pathways, especially those related to charac-
teristic metabolites in tea. For example, ‘Biosynthesis of
amino acids’ was enriched in red modules with EGC,
and ‘Isoflavonoid biosynthesis’, ‘Anthocyanin biosynthesis’,
‘Flavonoid biosynthesis’, ‘Phenylpropanoid biosynthesis’

Fig. 1 Content of catechins, theanine and caffeine in different tissues of Camellia sinensis. Tissues include apical buds in May (CS-B1) and June
(CS-B2), first young leaves (CS-YL1), second young leaves (CS-YL2) and mature leaves in summer (CS-SL), mature leaves in winter (CS-WL), stems
(CS-S), flowers (CS-FL), fruits (CS_FR) and roots (CS-R)

Table 1 Summary of sequence assembly and functional annotation

Level Item No. of sequences Percentage (%)

Assembly Total number of Unigenes 87,319 –

Total bases (Mb) 76,328,365 –

N50 (bp) 1406 –

Average Unigene length (bp) 874 –

Annotation NT-annotated 54,827 62.79

NR-annotated 58,770 67.30

SwissProt-annotated 40,700 46.61

KEGG-annotated 43,910 50.29

COG-annotated 22,252 25.48

GO-annotated 25,172 28.83

All annotated Unigenes 63,464 72.68
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and ‘Degradation of aromatic compounds’ were enriched
in the yellow and light cyan modules associated with thea-
nine. ‘Purine metabolism’ and ‘Tropane, piperidine and
pyridine alkaloid biosynthesis’ were enriched in the green
and magenta modules associated with EGCG and caffeine.
‘Nitrogen metabolism’, ‘Arginine biosynthesis’ and ‘Alanine,
aspartate and glutamate metabolism’ were enriched in the
turquoise module associated with total catechins.

Functional analysis of unigenes related to photosynthesis
Unigenes in blue, red and magenta modules were signifi-
cantly enriched in ‘Photosynthesis’ according to KEGG
pathway enrichment analysis. Further functional analysis
indicated that these unigenes were associated with ferre-
doxin, photosystem II, photosystem I, ferredoxin--NADP
+ reductase, F-type H + −transporting ATPase subunit
delta, and some other categories (Additional file 3). Light

is an important environmental parameter that drives
photosynthesis, and photosynthesis might influence cat-
echin biosynthesis via the provision of carbon sources.

Hub gene identification and visualisation
Hub genes in modules may be more important than other
genes in the network, and they can be considered represen-
tative of the module in the biology network. Detailed infor-
mation on all hub genes of each content-related module is
listed in Additional file 4. Hub gene analysis identified
WD40 repeat, ethylene-responsive transcription factor,
MYB, WRKY and bHLH in the blue module. Heat shock
proteins in the blue module were also identified, as were
ABC transporters in yellow and light cyan modules. The
green module contains flavonoid 3’,5’-hydroxylase (F3’5’H),
flavonol synthase (FLS) and beta-glucosidase (βG). The yel-
low module includes two glutamine synthetase (GS) genes,

a b

Fig. 2 E-value and sequence similarity analysis of unigenes against NR (Non-redundant protein), Nt (Non-redundant nucleotide), KEGG (Kyoto
Encyclopedia of Genes and Genomes) and Swiss-Prot (Annotated protein sequence) databases. a E-value distribution of BLAST hits for each
unigene with a cutoff E-value of 1.0E-5. b Similarity distribution of the top BLAST hits for each unigene
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as well as shikimate O-hydroxycinnamoyltransferase (HCT)
and UDP-glycosyltransferase. The correlation coefficient
between F3’5’H and ECG, and EGCG and caffeine was
more than 0.76 (p-value < 0.05), and the correlation coeffi-
cient between βG and ECG, and EGCG and caffeine was
more than 0.67 (p-value < 0.05). However, two GS genes
were not significantly correlated with catechins and caf-
feine, although they were significantly correlated with
theanine (correlation coefficient > 0.98, p-value < 0.001;
Fig. 6 and Table 2).

Genes highly co-expressed with F3’5’H, FLS, βG and
GSs are shown in Fig. 7. Many more genes were
co-expressed with F3’5’H and βG than with FLS. We
also found five genes involved in ‘Purine metabolism’
that were co-expressed with F3’5’H and βG, and 11
genes involved in ‘Biosynthesis of amino acids’ that
were co-expressed with F3’5’H, βG and FLS (Fig. 7a). A
number of genes were co-expressed with GSs, along
with ten, one and three genes involved in ‘Phenyl-
propanoid biosynthesis, ‘Flavonoid biosynthesis’ and
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Fig. 4 Module-trait relationships. Each row corresponds to a module eigengene (correlation between a column and a trait). Each cell contains the
corresponding correlation and p-value. The table is colour-coded by correlation in accordance with the figure

Tai et al. BMC Genomics  (2018) 19:616 Page 5 of 13



‘Anthocyanin biosynthesis’, respectively. We also identi-
fied six genes involved in ‘Purine metabolism’ (Fig. 7b).

Validation of unigenes by qPCR
In order to confirm the accuracy of unigene expression
levels, eight unigenes from 18 content-related modules
were selected for qPCR analysis, and their relative ex-
pression levels were compared with FPKM values from
RNA-Seq data. The results showed that expression of all
eight unigenes measured by qPCR was consistent with
the RNA-Seq data. Of the eight unigenes, correlation
analysis between FPKM values and qPCR data showed

that three had a correlation coefficient > 0.9, and three
had a correlation coefficient > 0.7 (Fig. 8).

Discussion
We constructed a C. sinensis gene co-expression network
using a WGCNA approach and identified co-expression
modules using transcriptome data from ten tissues. Correl-
ation analysis between co-expression modules and three
characteristic metabolites (catechins, theanine and caffeine)
was carried out, and 20 significant content-related modules
(p-value < 0.05) and 6 highly significant content-related
modules (correlation coefficient ≥ 0.8 and p-value < 0.05)
were identified. These modules consist of highly connected
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functional genes, and different modules appear to be in-
volved in individual functions [29]. Meanwhile, KEGG
pathway enrichment analysis of modules associated with
catechins, theanine and caffeine indicated that the three
characteristic secondary pathways in tea plants are related
to each other at the transcriptomic level. The results also
indicated that one component can be regulated by multiple
modules, and one module can simultaneously be associated
with multiple components (Fig. 5).
Amino acid metabolism-related pathways were also

found to be enriched in modules associated with cate-
chins. For instance, ‘Glycine, serine and threonine metab-
olism’, and ‘Biosynthesis of amino acids’ were significantly
enriched in the red module, which was highly positively
correlated with EGC. ‘Arginine biosynthesis’, ‘Alanine, as-
partate and glutamate metabolism’, and ‘Nitrogen metab-
olism’, were significantly enriched in the turquoise
module, which was highly negatively correlated with total
catechins. ‘Carbon metabolism’ was significantly enriched
in the red module. Pathways enriched in the red and tur-
quoise modules suggest that carbon and amino acid me-
tabolism may have an important influence on EGC,
EGCG and total catechins. Unigenes in the yellow and
light cyan modules, which were significantly associated
with theanine, were enriched in pathways involved in cat-
echin biosynthesis such as ‘Flavonoid biosynthesis’, ‘Antho-
cyanin biosynthesis’ and ‘Isoflavonoid biosynthesis’. These
results indicate that biosynthesis of theanine is highly cor-
related with catechins, which suggests that theanine might
play a vital role in the biosynthesis of catechins as un-
known precursors. This result is consistent with the work

of Feldheim et al. [30] who monitored the turnover of
theanine in tea by investigating the distribution of isotop-
ically labelled N-ethyl theanine in tea seedlings and young
shoots. They found that the N-ethyl group of theanine
was incorporated into the phloroglucinol nucleus of cate-
chins. Similarly, Tanaka et al. [31] demonstrated that thea-
nine is degraded to a Strecker aldehyde and conjugated
with polyphenol rings to generate a novel polyphenol,
ethylpyrrolidinonyl theasinensin, during the production of
black tea.
In plants, nucleotides can be derived de novo from

5-phosphoribosyl-1-pyrophosphate and various simple
molecules, but they can also be synthesised from pre-
formed nucleosides and nucleobases via salvage reactions
[32]. The de novo pathway of purine and pyrimidine bio-
synthesis is constitutive, but salvage enzymes may perform
a special role in the activation of resting cells and in the
response to environmental changes [33]. The green mod-
ule was positively correlated with caffeine, ECG and
EGCG. Based on KEGG pathway enrichment analysis,
‘Purine metabolism’, ‘Nucleotide excision repair’, ‘DNA rep-
lication’, ‘Homologous recombination’ and ‘Base excision
repair’ were significantly enriched, suggesting salvage reac-
tions, rather than the de novo pathway, may play a more
important role in the biosynthesis of caffeine.
Module hub genes are generally considered representa-

tive of a given module in a biological network. Previous
studies reported that MYB-bHLH-WDR (MBW) ternary
complexes comprise the essential regulatory machinery
for catechin and anthocyanin biosynthesis [34, 35]. In the
present study, transcription factors MYB, bHLH, WD40,
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Table 2 Correlation analysis of gene expression related to caffeine and catechins

Gene ID Correlation coefficient p-value

Caffeine ECG EGCG Theanine Caffeine ECG EGCG Theanine

F3’5’H_Unigene20838 0.86 0.76 0.81 – 0.001483 0.01045 0.004592 –

FLS_Unigene16195 0.88 0.76 0.83 – 0.000645 0.01005 0.003184 –

βG_CL6189.Contig3 0.79 0.67 0.76 – 0.006371 0.03351 0.0110702 –

GS_Unigene22464 – – – 0.98275 – – – 0.00000038

GS_CL1326.Contig1 – – – 0.98167 – – – 0.000000483

Tai et al. BMC Genomics  (2018) 19:616 Page 7 of 13



WRKY, and zinc finger were identified as hub genes in
modules related to C, GC, EC and EGC. In addition, three
genes involved in flavonoid biosynthesis (F3’5’H, FLS and
βG) were identified in modules related to ECG, ECGC
and caffeine, along with two genes involved in theanine

biosynthesis (GS) in a module related to theanine.
Flavonoid-3’5’-hydroxylase (F3’5’H), which belongs to the
cytochrome P450 family, is the key enzyme related to
anthocyanin biosynthesis [36]. Galloylated catechins such
as ECG or EGCG are produced by ECGT from the

Biosynthesis of amino acids

Flavonoid biosynthesis

Plant-pathogen interaction

Phenylpropanoid biosynthesis

Purine metabolism Purine metabolism

Biosynthesis of amino acids

Flavonoid biosynthesis

Plant-pathogen interaction
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a b

F3’5’H

FLS
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GS2

Fig. 7 Genes highly co-expressed with genes involved in catechin and theanine pathways. a Genes highly co-expressed with F3’5’H, FLS and βG
in the catechin pathway. b Genes highly co-expressed with GS in the theanine pathway. Coloured circles represent genes, and edges represent
correlations among genes

Fig. 8 Validation of the expression of candidate unigenes by qPCR. Gene expression levels were determined by qPCR and are presented as
mean ± SD values calculated by the 2ΔCt method
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substrates βG and nongalloylated catechins EC or EGC
[37]. Correlation analysis between F3’5’H, FLS, βG, cate-
chins and caffeine showed that F3’5’H, FLS and βG were
significantly positively correlated not only with ECG and
EGCG, but also caffeine, which indicates the existence of
a regulatory relationship between catechin and caffeine
pathways. Genes highly co-expressed with F3’5’H, βG and
FLS were also involved in purine metabolism and biosyn-
thesis of amino acids, while genes highly co-expressed
with GSs were also involved in phenylpropanoid biosyn-
thesis, flavonoid biosynthesis, anthocyanin biosynthesis
and purine metabolism.
Tea is a sciophilous plant adapted to the understorey of

tropical rainforests that possesses numerous inducible
physiological adaptations protecting against light-associated
damage. In previous studies, researchers found that shade
treatment can effectively improve the quality of tea bever-
ages [38], and the leaves of tea plants grown in the shade
contain higher amino acid levels and a lower catechin con-
tent [39]. Furthermore, shade treatment can effectively re-
duce the biosynthesis of flavonoids and lignins by reducing
the expression of genes in the flavonoid pathway [40]. Re-
searchers [41] cloned a novel CsDFR gene that actively re-
sponds to light treatment, and showed that light might be
effective for activating the biosynthesis of phenylpropanoids
that protect against light stimuli. Recently, Tai et al. [42]
analysed the promoters of LAR, TCS and TS in a tea BAC
library, and identified numerous light-responsive cis-acting
elements in LAR, TCS and TS genes. Light is an important
environmental parameter that drives photosynthesis, and it
might regulate genes related to the catechin biosynthesis
pathway [40, 41]. In the present study, we found that
photosynthesis-related unigenes were significantly enriched
in modules positively associated with C, GC, EC, EGC and
EGCG based on KEGG pathway enrichment analysis.
These findings strongly indicate that photosynthesis might
influence catechin synthesis via provision of carbon
sources. Further investigations are clearly required to un-
cover the relationship between light and the biosynthesis of
catechins.

Conclusion
We analysed the content of catechins, theanine and caffeine
in ten different tissues from tea plants, and constructed a
co-expression network to investigate relationships between
genes and these three characteristic metabolites. The re-
sults indicated that genes related to catechins, theanine
and caffeine were influenced by each other, especially
key genes associated with the metabolic pathways of
these characteristic compounds. Furthermore, light was
identified as an important factor in the biosynthesis of
catechins. WGCNA proved to be a novel method for
analysing the connection between metabolites and gene

expression. This method holds potential for further ex-
ploration of large-scale transcriptomic data.

Methods
Plant material
Six-year-old tea plants (C. sinensis L. O. Kuntze cv. Shu-
chazao) were used in this study. The field experiment
was performed in a typical tea-producing garden at De
Chang Fabrication Base in Anhui Province, China (Shu-
cheng, latitude 31.3 N, longitude 117.2E above sea level)
under natural conditions. Tea plants were grown in an
experimental plot with 150 cm between rows and 40 cm
between plants within a row, and yellow brown acidic
soil was employed. Tea plants were divided into three
groups, each group consisted three rows, with at least
100 plants pooled per group, and samples were ran-
domly selected from these three groups, with no fewer
than 6−10 samples obtained from ten different tissues of
tea plants. The maximum air temperature in the tea gar-
den was about 27°C in the daytime and a minimum of
21°C at night during May and June, and ~ 27°C in the
daytime and a minimum of 21°C at night in December.
Apical buds (CS-B1) in May, apical buds (CS-B2) in
June, first young leaves (CS-YL1) in June, second young
leaves (CS-YL2) in June, mature leaves in summer
(CS-SL) in June, stem (CS-S), mature leaves in winter
(CS-WL) in December, flowers (CS-FL), fruits (CS-FR)
in June, and roots (CS-R) in June comprised the ten dif-
ferent tissue samples studied. Tea plants were watered
and fertilised equivalently, and tea plants with uniform
height and crown breadth, and without signs of disease
and insects, were selected for experiments. Three bio-
logical replicates were performed for each sample. All
samples were immediately frozen in liquid nitrogen, and
stored at − 80°C until RNA extraction.

Extraction and HPLC determination of catechins, theanine
and caffeine
Catechins, theanine and caffeine were extracted from
samples as described previously [18] with some modifi-
cations. Catechins and caffeine were extracted with 80%
methanol, while theanine was extracted with hot water
as previously described [43]. The obtained supernatants
(catechins, theanine and caffeine) were filtered through a
0.22 μm membrane prior to HPLC analysis. All samples
were analysed using three biological repeats. The catechin
and caffeine content was determined using a Waters 2695
HPLC system (Waters, USA). The column temperature
was set to 25°C, and the detection wavelength was
278 nm. The theanine content was measured using a Wa-
ters 600E series HPLC system (Waters, USA) at a detec-
tion wavelength of 199 nm [44]. The mobile phase ratio
and injection approach were as described previously [18].
C, GC, EC, EGC, ECG, EGCG, theanine and caffeine
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standards were purchased from Shanghai Winherb Med-
ical Technology, Ltd., China.

RNA isolation, transcriptomic library construction and
RNA-Seq
Total RNA was extracted separately from the ten tissues
using a modified CTAB (cetyltrimethyl ammonium brom-
ide) method with three biological replicates [45]. The yield
and quality of RNA were determined by agarose gel elec-
trophoresis (AGE) and a Nanodrop 2000 instrument.
RNA samples with an A260/A280 > 1.8, A260/A230 > 1.8,
and RNA integrity number (RIN) > 8 were considered ac-
ceptable for library construction. Equal amounts of RNA
from three different samples were pooled before cDNA li-
brary preparation, and mRNA enrichment, cDNA synthe-
sis, fragmentation, adapter addition, selection of fragment
size, PCR amplification, and transcriptomic sequencing
were performed by staff at the Beijing Genome Institute
(BGI; Shenzhen, China) as previously described by Liu et
al. [46] and Gu et al. [47]. Briefly, mRNAs were purified
from total RNA using magnetic beads with Oligo (dT)
and cleaved into short sequences. First-strand cDNA syn-
thesis was then performed with random primers (TaKaRa,
Japan), and double-stranded cDNAs were then prepared
using these short fragments as templates. Adapters were
ligated to the short fragments using T4 DNA ligase (Invi-
trogen, USA), and after end repair and ligation of
adapters, products were enriched by PCR to generate the
cDNA library. The cDNA library was examined using an
Agilent 2100 Bioanalyzer prior to sequencing on an Illu-
mina HiSeq 2000 sequencing platform [48]. Paired-end
reads were generated with a length of 90 bp for each read.

Data preprocessing and de novo assembly
Raw sequencing reads were subjected to preliminary
screening to remove low-quality reads and reads with
adaptor sequences using the filter command in SOAP-
nuke (version 1.5.6) with the low-quality threshold set to
10 [49]. We obtained 111 gigabases (average 11 giga-
base/sample) from ten samples, and in order to reduce
the assembly error, remaining reads were then de novo
assembled using the Trinity package (release-20,130,225)
with parameters ‘--min_glue 3 and --min_kmer_cov 3’.
These assembly parameters were used previously by
Shao et al. [50] and Li et al. [51]. Assembled unigenes
were defined after removing short and redundant contigs
(≤200 bp) with TGICL software (version 2.1) [23] from
the Trinity assembly. Final assembled datasets were de-
fined by removing unigenes with FPKM values less than
0.3 based on the work of Ramskold et al. [26], as applied
in several other studies including Łabaj et al. [52] and
Sam et al. [53]

Annotation and classification of unigenes
All assembled non-redundant and filtered unigenes were
annotated by alignment to the NR database, the
Swiss-Prot protein database, and the COG database using
BLASTX with an E-value cut-off of 1×10− 5 [54]. Mean-
while, these unigenes were also annotated using the NT
database and BLASTN. KEGG metabolic pathway annota-
tion of unigenes was carried out after mapping to the
KEGG database [55], which helped to elucidate the com-
plex biological functions of genes. Based on the BLAST
results from the NR database, GO annotation was carried
out using the Blast 2 GO program (version 2.3.4) [56].

Identification of gene expression and DEGs
Expression levels of unigenes were calculated using the
FPKM method. Firstly, reads were mapped to unigene
datasets by Bowtie2 (version 2.1.0, http://bowtie-bio.-
sourceforge.net/bowtie2/index.shtml) at a sensitive set-
ting. Based on the Bowtie results, FPKM values for each
unigene were subsequently calculated by RESM (version
1.2.29) [57] with default parameters. DEGs were identi-
fied based on the method described by Audic et al. [58].
Genes with|log2ratio| ≥ 1 and false discovery rate (FDR)
< 0.05 were identified as DEGs.

Construction of gene co-expression networks
Gene co-expression networks were constructed using
the WGCNA approach with R packages (version 3.2.2).
DEGs expressed in at least one pairwise comparison in
ten tissues were retained for co-expression network con-
struction by WGCNA analysis [11]. All tissues were ini-
tially clustered to analyse the sample height. Following
application of the scale-free topology criterion described
previously, a soft threshold of 30 was chosen. Based on
the topological overlap-based dissimilarity measure [59],
unigenes were first hierarchically clustered, and the gene
dendrogram was used for module detection by the dy-
namic tree cut method (mergeCutHeight = 0.25, minMo-
duleSize = 30). In the weighted gene co-expression
network, gene connectivity was based on the edge
weight (ranging from 0 to 1) determined by the topology
overlap measure, which reflects the strength of the com-
munication between two genes. The weights across all
edges of a node were summed and used to define the
level of connectivity, and nodes with high connectivity
were considered hub genes.

Identification of content-related modules
To identify modules associated with catechins, theanine
and caffeine, we first calculated the module eigengenes
of each module, then correlated these with the catechin,
theanine and caffeine content using Pearson’s correlation
coefficients and an asymptotic confidence interval
based on Fisher’s Z transformation. Modules with
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p-values < 0.05 were identified as content-related mod-
ules. To further characterise these modules, enrichment of
annotated unigenes in each content-related module was
investigated using the phyper function within the R plat-
form based on KEGG pathway annotation, and q-value or
FDR corrections were applied by multiple testing [60]. We
defined KEGG pathways with a q-value or FDR < 0.05 as
significantly enriched [61].

Module hub gene selection and visualisation
The most central and connected genes, involved in numer-
ous interactions, were considered hub genes [62], which are
likely to play a more important role in a given module than
other genes in the overall co-expression network. In this
study, we categorised the top 2% of the most highly con-
nected genes in a module as hub genes based on the size of
the module. Co-expression interactions and patterns of hub
genes were visualised using Cytoscape [63].

qPCR validation of selected unigenes
In order to evaluate the assembly quality of RNA-seq data,
the expression patterns of eight selected transcripts were
monitored by qPCR. RNA samples were isolated from
samples using the CTAB method [45], and total RNA was
reverse-transcribed into single-stranded cDNAs using a
reverse transcription kit for real-time PCR (TaKaRa).
Detailed information (unigene IDs and primer sequences)
related to the selected transcripts used for qPCR is listed
in Additional file 5. PCR amplification was performed
according to the manufacturer’s instructions using a
CFX96TM real-time PCR system (Bio-Rad) with an an-
nealing temperature of 60 °C. The housekeeping gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as an internal reference gene, and relative expression
levels of target genes were calculated using the 2ΔCt

method [64]. All qPCRs were analysed using three tech-
nical and three biological replicates.
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transcripts used for qPCR validation. (XLSX 9 kb)
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