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Summary	 Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality 
worldwide. HCC a heterogeneous disease occurring on the background of cirrhosis. The 
presence of cirrhosis limits the sensitivity of conventional imaging modalities in differentiating 
HCC from surrounding cirrhotic parenchyma. Positron emission tomography (PET) using 
18F-fluorodeoxyglucose (18F-FDG) is widely used for assessing a variety of malignancies, 
however, has poor sensitivity in the evaluation of HCC. This has led to the investigation of 
other radiotracers such as 11C-acetate and 11C-choline, with improved sensitivity in terms 
of detection and therapeutic response. In this review, we discuss the emerging field of 
PET imaging for the detection, staging and assessment of treatment response in HCC. 
In particular we discuss the role of 18F-FDG-PET in imaging hepatocellular cancer, the 
limitations of this PET tracer and emerging novel PET tracers being investigated that exploit 
key metabolic processes including fatty acid and lipid synthesis, choline kinase activity and 
gene expression.
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Hepatocellular carcinoma (HCC) is the most common primary liver tumor worldwide and the third 
most common cause of cancer-related death [1,2]. It is the fifth most common cancer in men and 
seventh in women [3], with an increasing incidence rate of 3 per 100,000 in the western world, with 
up to 15 per 100,000 in areas with prevalent hepatitis B and C infections [4]. More than 80% of 
newly diagnosed HCCs arise in the context of liver cirrhosis, secondary to alcoholic liver disease, 

Practice points

●● 	There is a clinical need for better imaging in hepatocellular carcinoma (HCC) as 
conventional imaging has low sensitivity in differentiating regenerative nodules from 
HCC.

●● 	The utility of 18F-FDG in detecting HCC is limited because of high background uptake 
of 18F-FDG by normal hepatocytes.

●● 	Clinically, 18F-FDG is limited to detecting extra-hepatic disease and assessing response 
to poorly differentiated tumors.

●● 	The addition of complementary radiotracers to 18F-FDG can improve the overall 
diagnostic sensitivity of HCC and also predict survival and recurrence following liver 
resection or transplantation.

●● 	Several novel PET tracers are currently under investigation and larger studies are 
needed to establish their role in HCC.
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chronic infection by hepatotropic viruses or 
metabolic derangements like α-1 antitrypsin 
deficit and haemochromatosis. Cirrhosis is a 
progressive process that involves diffuse fibrosis 
of the liver characterized by the development 
of nodules that range from benign regenerative 
nodules to dysplastic nodules to HCC. Early 
diagnosis and staging of HCC is critical in 
determining long-term outcome in patients. In 
those patients where HCC is detected at an early 
stage, 5-year survival rates of at least 70% can 
be achieved through surgical interventions and 
transplantation. However, in patients with late-
stage disease, 5-year survival rates are less then 
10% despite advances in targeted therapies [5]. 
Therefore, accurate staging of HCC is critical 
in determining not only therapeutic options but 
for prognostication.

A wide range of imaging modalities such 
as ultrasound (USS), multiphase computed 
tomography (CT), dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI) are 
used in diagnosis, staging and monitoring of 
treatment response, and although each imaging 
modality has its own individual merits, univer-
sal difficulties arise when characterizing small 
and hypovascular lesions due to their atypical 
enhancing patterns. The cirrhotic liver is not 
homogenous but contains regenerative or dys-
plastic nodules as well as HCC, which presents 
a challenge to conventional imaging techniques 
that have limited sensitivity in differentiating 
the varying pathological processes. Furthermore, 
there lie challenges in biopsy of lesions in the 
cirrhotic liver, with risk of needle track seeding, 
intraperitoneal bleeding and tumor heterogene-
ity [6]. Therefore, there is a real need for accu-
rate imaging modalities to better image these 
tumors [7,8].

PET imaging has emerged as an important 
decision-making tool in oncology particular with 
the advent of targeted therapies, which tend to 
produce cytostatic responses on standard imag-
ing, with changes in tumor size taking months 
to develop, such that patients can be exposed to 
potential adverse side effects of drugs without 
any therapeutic benefit [9]. PET allows imaging 
of molecular pathways and biological processes, 
and several radiotracers have been investigated 
within oncology exploiting the key hallmarks of 
tumorigenesis (e.g., cell proliferation, angiogen-
esis, apoptosis)  [10]. PET imaging involves the 
intravenous administration of trace amounts of 
radiolabeled isotopes, which are either substrates 

of normal physiological processes or specifically 
bind to biological targets, allowing the evalua-
tion of these processes or substrate–target inter-
action [11]. It is a noninvasive functional imag-
ing technique that can be combined with CT or 
MRI to improve spatial resolution. In this way, 
molecular biological processes such as glucose 
metabolism, choline kinase activity, gene expres-
sion as well as lipid synthesis can be imaged. 
Figure 1 highlights different radiotracers that 
have shown potential use in HCC. 

18F-fluorodeoxyglucose
18F-fluorodeoxyglucose (18F-FDG) has emerged 
as an important noninvasive diagnostic and prog-
nostic tool in several malignancies (e.g.,  lung, 
breast and lymphoma) [12]. 18F-FDG is taken up 
by the cell and phosphorylated by the enzyme 
hexokinase, it then becomes trapped within the 
cell. In hepatocytes, however, 18F-FDG is released 
from the cell due to the high rate of glucose-
6-phosphatase, thereby, resulting in reduced 
accumulation of 18F-FDG in low and interme-
diate grade HCC. In the primary diagnostic set-
ting, several studies have shown 18F-FDG to have 
poor sensitivity rates (50–55%) compared with 
contrast-enhanced CT, USS and MRI[13–16]. It is 
worth noting, however, that these earlier studies 
only utilized PET while later scans employ the 
use of PET/CT that improve resolution. These 
earlier studies were also limited in the small 
numbers of patients enrolled. In the largest series 
of patients with HCC (n = 91), Wudel and col-
leagues, reported sensitivity rates of 64% with 
18F-FDG  [17]. Routine use of 18F-FDG, there-
fore is limited in the primary setting as the rate 
of gluconeogenesis in well-differentiated HCC 
and the surrounding liver is similar resulting 
in almost equivalent uptake of 18F-FDG and 
therefore poor differentiation of tumors.

18F-FDG has, however, shown promise in the 
detection of extrahepatic disease, where it can 
be used in complement with CT. Extrahepatic 
disease is not uncommon in patients with HCC, 
reported in up to 37% of patients with the main 
sites of disease being lung, lymph nodes and 
bone  [18]. Additionally, poorly differentiated 
HCCs tend to metastasize, and are more likely 
to be 18F-FDG avid [19]. Sugiyama et al., reported 
on the use of 18F-FDG in detection of extra-
hepatic disease in a prospective study involving 
19 patients. 18F-FDG had a sensitivity rate of 
83% for detecting extrahepatic disease measur-
ing greater than 1 cm, and 13% for lesions less 
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than or equal to 1 cm [20]. On the basis of their 
results, resection of isolated extrahepatic metas-
tases was carried out in five patients, with two 
out of five patients being alive and disease free 
for greater than 12 months at latest followup.

Yoon et al., compared the sensitivity of 18F-
FDG PET with MRI and CT prior to treatment 
for the detection of extrahepatic disease [21]. Out 
of 87 patients, 24 were found to have extrahe-
patic disease, all of which were detected with 
18F-FDG. In addition, MRI and CT performed 
poorly, unable to detect lymph node metasta-
ses in four patients and bone metastases in six 
patients. As a result, a change in TNM stag-
ing was seen in 5% of patients which led to a 
change in clinical management. Furthermore, 
the authors note that those with primary tumors 
≥5 cm were more likely to develop extrahepatic 
metastases. A recent systematic review and meta-
analysis by Chun Yi Lin et al. [22], summarized 
the findings of eight studies (seven retrospective, 
one prospective), using 18F-FDG in the detec-
tion of extrahepatic metastases or recurrent 
HCC. Pooled estimates of sensitivity and speci-
ficity for the detection of extrahepatic disease 
was reported as 77 and 98%, respectively. The 
detection of recurrent intrahepatic HCC with 

18F-FDG was reported as having a sensitivity of 
82% and specificity of 89%. This meta-analysis 
is important in that it confirms the poor sensitiv-
ity of 18F-FDG in the assessment of the primary 
disease, but suggests a role in the early detection 
of extrahepatic metastases, which may poten-
tially offer the chance for surgical resection and 
long-term survival [23,24].

18F-FDG has also shown a promising role 
in the setting of detecting HCC recurrence. 
Early detection of recurrent disease is critical, 
with early surgical resection correlating with 
better post-recurrent survival rates  [7]. Due 
to high recurrence rates post liver resection 
(50–60% at 5 years) and liver transplantation 
(LT; 15–20%) [25,26], 18F-FDG has been investi-
gated as a potential marker of disease recurrence. 
Yang et al. [27] investigated the role of 18F-FDG 
in determining tumor recurrence following LT 
in a retrospective study of 38 patients with HCC 
meeting Milan criteria [5,25]. They reported a sig-
nificant association between tumor recurrence 
and PET positivity (p = 0.016) with patients 
with PET-positive tumors having an overall 
higher risk of recurrence than PET-negative 
patients (OR = 7.6; 95% CI: 1.9–28.9). In addi-
tion, the study reported a statistically significant 

Figure 1. Chemical structures of common tracers involved in imaging of hepatocellular 
carcinoma.
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association between PET-positive scans and 
pre-operative serum alpha feto-protein (AFP), 
whereby positivity of PET imaging correlated 
with serum AFP greater than 200 ng/ml and vas-
cular invasion (p < 0.05). The authors concluded 
that PET positivity may reflect the aggressive-
ness of HCC supported by several studies that 
have reported pre-operative AFP levels as well 
as vascular invasion to be key factors for tumor 
recurrence post LT [26,28–31].

The utility of 18F-FDG in the assessment 
of residual, viable tumor following transarte-
rial chemoembolization (TACE) therapy and 
radiofrequency ablation (RFA) has also been 
reported  [32,33]. TACE is an effective palliative 
treatment option for patients with intermediate 
stage disease but follow up with imaging has 
proven difficult, as CT is unable to distinguish 
viable tumor, due to the hyperattenuating lip-
oidal deposition, which is seen post TACE [32]. 
The predictive value of 18F-FDG post TACE 
was reported in a recent study by Song et al. [34]. 
Based on a retrospective review of 83 patients 
treated with TACE, they evaluated the utility 
of 18F-FDG in predicting treatment response. 
All patients underwent 18F-FDG PET within 
3 days prior to TACE. They reported that the 
standardized uptake value ratio (T

SUV
 max, SUV 

max of tumor/L
SUV

 max, Liver mean SUV; cut-
off value 1.90) was significantly associated with 
overall survival. Those patients whose tumors 
had a high SUV ratio (≥1.90) had an overall sur-
vival of 38 months compared with 10 months in 
those with a low SUV ratio (<1.90). The results 
from Song et al., are provocative in suggesting 
that FDG uptake is a measure of the biological 
behavior of HCC, and in turn, a marker of treat-
ment response, results that need further explo-
ration in large, prospective, multicenter studies 
with biological correlates from tumor biopsies.

The use of 18F-FDG has also been reported as 
a potential tool in detecting earlier recurrence 
post RFA in HCC [33]. This small retrospective 
study (n = 24) showed that disease recurrence 
was detected in more patients using 18F-FDG 
post RFA in the first 4–9 months compared with 
CT (8 vs 4 months), and an overall detection 
rate of 92 versus 75% was observed. Although 
this was a small study, a significant correlation 
was noted between SUV values pre-RFA to the 
time to recurrence detected by 18F-FDG, with 
patients with high SUV tending to recur earlier 
than those with lower SUV values. While, sev-
eral studies have investigated the role of 18F-FDG 

and its predictive value, it is clear that larger 
scale studies are needed for further validation 
of the utility of this tracer, in particular given its 
limitations in imaging intrahepatic lesions [35].

11C-acetate
The advent of new radiopharmaceuticals has 
sparked interest in the imaging of HCC, espe-
cially given the limitations of 18F-FDG in the 
primary diagnostic setting. 11C-acetate is used to 
evaluate fatty acid synthesis which is associated 
with tumor cell growth and invasiveness  [36]. 
Through an anabolic pathway, acetate is con-
verted into fatty acids by acetyl coenzyme A of 
the Krebs cycle and then incorporated into the 
intracellular phosphatidylcholine membrane 
microdomains. The uptake of acetate is thought 
to be related to the expression of fatty acid 
synthetase – a multienzyme that catalyzes the 
formation of palmitate from acetyl coA and is 
elevated in well-differentiated HCC [37]. Hence, 
there is a rationale for using 11C-acetate to bet-
ter differentiate between neoplastic lesions and 
inflammation within the liver compared with 
18F-FDG. The use of 11C–acetate in the primary 
diagnosis of HCC, has been reported in a study 
by Ho et al. where differentiation between liver 
masses was evaluated  [38]. The sensitivity rate 
11C-acetate in detecting HCC was 87% with no 
uptake observed in other liver masses (i.e., meta-
static lesions secondary to colon, breast and lung, 
cholangiocarcinoma and carcinoid tumors).

The differential uptake pattern seen with dif-
ferent tracers due to heterogeneity within tumors 
can be exploited, and in a further study, Ho et al. 
reported the use of 11C-acetate in conjunction 
with 18F-FDG in patients with HCC [19]. They 
reported that while sensitivity using 11C-acetate 
alone was good in well-differentiated tumors, 
18F-FDG was better in the detection of poorly 
differentiated tumors. By using both tracers, 
there was a 100% sensitivity rate in the detec-
tion of HCC. Park et al. also evaluated the use 
of dual tracers (11C-acetate and 18F-FDG) in a 
prospective study involving 90 patients diag-
nosed with HCC [39]. They reported a sensitiv-
ity rate of 83% using the combination of tracers 
compared with 60% with 18F-FDG alone, and 
75% with 11C-acetate. The study also high-
lighted that higher sensitivity rates were related 
to larger tumor size (≥5 cm), and again confirm-
ing the results from previously discussed stud-
ies that 18F-FDG had higher detection rate for 
extrahepatic metastases.
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In a similar study, Cheung et al., utilized a 
dual tracer approach with 11C-acetate and 18F-
FDG to predict microvascular invasion before 
LT or surgical resection in 58 patients with 
HCC  [40]. The sensitivity in detecting HCC 
using a dual tracer approach was 93% compared 
with 43% using 18F-FDG alone. The addition 
of 11C-acetate improved the overall sensitivity 
of 18F-FDG, providing more information on 
the number of lesions, histological grade of the 
tumor as well as the probability of microvas-
cular invasion in patients being considered for 
LT  [40]. Overall, 11C-acetate may be of use in 
primary setting but used in combination with 
18F-FDG seems to be of benefit in metastatic 
HCC. However, routine clinical use of a dual 
tracer approach is limited given the duration of 
time to perform, the high overall radiation dose 
delivered to the patient as well as the short half-
life of 11C-acetate (20.4 min) necessitating an 
onsite cyclotron.

11C-choline
Choline is a substrate for the synthesis of phos-
phatidylcholine, a major phospholipid in the cell 
membrane  [41]. During malignant transforma-
tion, overexpression of key enzymes involved 
in choline metabolism are seen (e.g.,  choline 
kinase-α [CHKα]), leading to increased phos-
phocholine and total choline containing com-
pounds [41]. Deranged choline metabolism, and 
in particular, overexpression of CHK-α, has been 
reported in several cancers such as prostate, colon, 
ovarian and breast [42,43]. As such PET imaging 
with choline tracers is used clinically for staging 
prostate cancer, and is being investigated in sev-
eral other tumor types. Despite its promising role 
in imaging malignancy, 11C-choline has not been 
established in HCC. A recent retrospective study 
by Yamamoto et al., failed to show statistical sig-
nificance in evaluation of 11C-choline, with sensi-
tivity rate of 63 vs 50% compared with 18F-FDG 
in the detection of HCC  [44]. A further, small 
prospective study (n = 12) by Talbot et al. using 
18F-fluorocholine (18F-FCH) reported a 100% 
detection rate on a per-patient analysis in newly 
diagnosed and recurrent HCC [45]. The authors 
observed a trend between high SUV and well-
differentiated HCC. 18F-FCH may therefore be 
potentially useful in visualizing HCC, however, 
this was a small study and patients selected had 
large lesions, mean size (8.15 ± 3.9 cm).

The complementary role of radiolabeled cho-
line analogs has also been investigated in HCC, 

as it can preferentially detect well-differentiated 
lesions that are not 18F-FDG-avid [46]. A prospec-
tive study by Wu et al., evaluated 76 patients 
with HCC who underwent 18F-FDG PET/CT. 
They reported that 48 out of 76 (61%) patients 
had positive 18F-FDG PET/CT scans. Those 
with no uptake seen on 18F-FDG scans (n = 28) 
were subsequently scanned with 11C-choline 
PET/CT. The study showed that imaging with 
11C-choline increased the sensitivity of 18F-FDG 
alone from 63 to 90% (p < 0.001), and that 
18F-FDG showed a lower sensitivity for well-
differentiated HCC (36 vs 67%) compared 
with 11C-choline [46]. Larger studies are needed 
to confirm use of these tracers and evaluate their 
specificity.

Other potential PET tracers in imaging 
HCC
●● 18F-fluorothymidine

Thymidine is a nucleoside utilized in DNA repli-
cation by proliferating cells, and both thymidine 
and its analogs have been extensively studied as 
markers of cellular proliferation. After injection, 
18F-fluorothymidine (18F-FLT) enters the cell by 
both active transport, via sodium-dependent 
nucleoside transporters, and by passive diffu-
sion. 18F-FLT follows the salvage pathway of 
DNA synthesis and like thymidine undergoes 
phosphorylation by thymidine kinase–1 (TK1) 
to 18F-FLT-monophosphate  [47]. 18F-FLT is a 
selective substrate for TK1 whereas thymidine 
is also phosphorylated by TK2. TK1 is virtu-
ally absent in quiescent cells but is increased in 
proliferating cells [48,49]. Phosphorylated 18F-FLT 
is not incorporated into DNA and is trapped 
within the cytosol. The rate-limiting step for 
18F-FLT accumulation is the initial phospho-
rylation by TK1; it is also the rate-limiting step 
in the salvage pathway of DNA synthesis, there-
fore the handling of 18F-FLT reflects cellular 
proliferation [50].

The ‘accuracy’ of 18FFLT PET in demonstrat-
ing proliferation has been illustrated in a number 
of studies where 18F-FLT PET parameters have 
been shown to correlate with the histological 
marker of proliferation, Ki67 labeling index, in 
colorectal, breast and lung cancer  [51–53]. In a 
small pilot study, Eckel et al. utilized 18F-FLT 
PET to visualize HCC [54]. Eighteen untreated 
patients with clinical suspicion of HCC under-
went USS, MRI or CT followed by 18F-FLT PET. 
The results showed a mixed pattern of uptake 
on PET and poor sensitivity rates: (69%) in the 
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detection of HCC. However, the sensitivity of 
18F-FLT PET in detecting HCC was hampered 
by high background activity within the normal 
liver, the result of rapid delivery and metabolism 
of 18F-FLT to 18F-FLT-glucuronide. This limits 
the utility of 18F-FLT in assessing proliferation 
in liver tumors and further studies in HCC have 
not been pursued.

●● 9–(4–18F-Fluoro-3-hydroxymethylbutyl)
guanine (18F-FHBG)
18F-FHBG is used to image gene expression of 
herpes simplex virus type-1 thymidine kinase 
(HSV1-tk) and is a safe and stable radiotracer 
with a rapid blood clearance and accept-
able radiation doses  [55]. Gene therapy offers a 
new area of treatment for patients with HCC, 
whereby the introduction of genetic material 
into tumor tissue produces therapeutic benefit 
either through the restoration of tumor sup-
pressor genes, the activation of a prodrug, the 
stimulation of antitumor immune activity or 
via oncolytic virotherapy [56]. PET offers a safe, 
sensitive and reproducible imaging modality of 
monitoring of transgene expression with the aid 
of a reporter gene and probe that accumulates 
only in the organ of interest. In a Phase I study 
performed by Penuelas et al. [57], 18F-penciclovir 
analog (18F-FHBG) was used to analyze 
transgene expression of herpes simplex virus 
thymidine kinase (HSV1-tk) in seven patients 
with HCC after intratumoral introduction of a 
recombinant adenoviral vector encoding thymi-
dine kinase (AdCMVtk). This study identified 
that all patients who displayed accumulation of 
18F-FHBG in tumor lesions within the first hours 
of injecting the viral vector containing HSV1-tk 
showed stable disease a month later compared 
with patients without detectable 18F-FHBG 
tumor lesions who progressed at 1 month. This 
study suggests that PET imaging can be used to 
assess transduction efficiency of a viral vector as 
well as predict the efficacy of gene-therapy strat-
egies, making it a potential tool in early phase 
clinical trials.

There is still no ideal PET tracer for the 
assessment of HCC, and the search for poten-
tial tracers continues to be in development 
(Table 1). Recent attempts, with 11C-metomidate 
(methyl derivative of etomidate), previously 
used as an imaging tool in detection of adreno-
cortical tumors, have been disappointing with 
low sensitivity for detection of HCC compared 
with 11C-acetate [58]. The tracer binds to GABA 

(gamma-aminobutyric acid) receptors, which are 
upregulated in HCC  [59]. Further preliminary 
work has also been carried out investigating the 
use of (4S)-4-(3–18F-fluoropropyl)-l-glutamate 
(18F-FSPG), for imaging of x

C
- transporter activ-

ity in HCC  [60]. x
C

-, is a sodium independent 
transporter system that is responsible for the 
defense machinery in cells against oxida-
tive stress and mediates uptake of cysteine in 
exchange for intracellular glutamate [61,62]. Thiol 
containing molecules such as glutathione are 
essential for the deactivation of reactive oxygen 
species, and this defense mechanism, offers a 
particular advantage for tumor cell growth [63].

Conclusion & future perspective
The low sensitivity of 18F-FDG in the assess-
ment of intrahepatic HCC patient, limits rou-
tine clinical use, and is limited to the evalu-
ation of extrahepatic disease in some centers. 
The advent of new radiotracers enables the 
visualization of other metabolic processes apart 
from glucose metabolism and have improved 
diagnostic sensitivity both in conjunction with 
18F-FDG PET or as when used as single agent for 
imaging of HCC. While the role of dual tracers 
in imaging will continue to evolve this strategy 
is limited because of need for on-site cyclotron 
facilities, cost and inconvenience for patients. It 
is also important to consider other limitations of 
PET, in particular the inability to detect small 
lesions (<2 cm) due to poor spatial resolution, 
and partial volume effects as well as additional 
radiation exposure. PET imaging also involves 
quite complex scanning protocols and set up and 
analysis is resource intensive. These limitations 
mean that we will continue to combine imag-
ing procedures using CT, MRI and PET. This 
multiparametric imaging approach uses both 
morphological and molecular information, ena-
bling us to understand the biologic processes 
and guides us in management decisions for 
patients [64].

The advent of PET/MRI hybrid imaging sys-
tems has the potential for improved accuracy 
of staging, with MRI providing information on 
tumor extent and identification of small lesions 
that are pivotal for treatment decisions and in 
assessing whether patients are suitable for radi-
cal or palliative approach. Treatment response 
is often difficult to assess using RECIST cri-
teria, especially with the advent of targeted 
drugs, which often produce cytostatic changes 
or necrosis. The role of PET, therefore, allowing 
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detection of changes in metabolic processes may 
lie primarily in response assessment and aid in 
identifying tumor recurrence. PET imaging has 
shown to predict response to therapy in other 
tumor types as well as guide targeted therapy 
with better understanding of the metabolic 
processes of liver tumor cells.

Current search for biomarkers in HCC are in 
development with cross collaboration in imag-
ing and drug development. Galectin-4, a multi-
functional lectin present intra- and extra-cellu-
larly, has recently been identified as a potential 
prognostic marker in HCC  [65]. Another 
avenue of potential research is the application 

of mathematical modeling techniques using 
18F-FLT-PET to enhance the visualization of 
liver lesions [66].
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Table 1. Summary of translational studies that have investigated use of positron emission tomography in hepatocellular 
carcinoma.

 Radiotracer Study  Number of 
patients

Sensitivity (%) Specificity (%) Accuracy (%) Ref.

18F-FDG Cheung  58 43% detection of primary HCC55% 
predicting MI

69  predicting MI   [67]

  Wu  76 63% detection of primary HCC83% 
detection of EM

95  in EM 91 in EM [68]

  Ho 121 79% detection of EM 91   [19]

  Chen  31 73% detecting HCC recurrence 100   [7]

  Wang  11 100% detecting HCC recurrence 67   [69]

  Ho  257 62% detection of EM     [70]

  Yamamoto  12 50% detection of primary HCC     [44]

  Khan  20 55% detection of primary HCC     [13]

  Park  99 64% detection of primary HCC; 86% 
detection of EM

100   [39]

  Paudyal  24 92% detection of recurrence 100   [33]
18F-FLT Eckel  16 69% detection of primary HCC     [54]
11C- 
Acetate(in 
combination 
with 18F-FDG)

Ho  39 87% primary HCC     [38]

  Ho  257 93% alone97% combined with 18F-FDG 
detection of EM

    [70]

  Park  99 84% alone; detection of primary HCC 77% 
alone; detection of EM86% combined 
with 18F-FDG detection of EM

    [39]

  Cheung  58 93% predicting MI 0   [67]
11C- Choline Wu  76 86% detection of primary HCC 90% (dual 

tracer with 18F-FDG)
    [68]

  Yamamoto  12 63% detection of primary HCC     [44]
18F-FDG: 18F-Fluorodeoxyglucose; 18F-FLT: 18F-Fluorothymidine; EM: Extrahepatic metastases; HCC: Hepatocellular carcinoma; MI: Microvascular invasion.
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