Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs

Kwan-Suk Kim,[†](#page-0-0).‡.[1](#page-0-1) Jacob T. Seibert,† Zewde Edea[,‡](#page-0-1) Kody L. Graves,† Eui-Soo Kim,†.[§](#page-0-0) Aileen F. Keating,† **Lance H. Baumgard,[†](#page-0-0) Jason W. Ross,[†](#page-0-0) and Max F. Rothschild[†](#page-0-0)**

† Department of Animal Science, Iowa State University, Ames, IA ‡ Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea § Recombinetics, St. Paul, MN

ABSTRACT: Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genomewide association analyses for respiration rate (RR) , rectal temperature (T_p) , and skin temperature (T_s) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (MR) from

thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal T_R (ΔT_R) , change in postpubertal ΔT_R , and change in T_s (ΔT_s), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (*GHR*) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (*PAIP1*, *NNT*, and $TEAD4$), ΔT_{R} (*LIMS2*, *TTR*, and *TEAD4*), and ΔT_s (*ERBB4*, *FKBP1B*, *NFATC2*, and *ATP9A*) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.

Key words: genome-wide association, gilt, heat stress, pig

© The Author(s) 2018. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: [journals.permissions@oup.com](mailto:journals.permissions@oup.com?subject=). J. Anim. Sci. 2018.96:2074–2085 doi: 10.1093/jas/sky131

INTRODUCTION

Heat stress (HS) is a hurdle to efficient animal agriculture productivity ([Renaudeau et al., 2012;](#page-10-0) [Baumgard and Rhoads, 2013\)](#page-8-0) and the global changes in temperature are expected to become increasingly erratic [\(IPCC, 2007](#page-10-1)). In pigs, HS is an annual limiting factor affecting production, health, and fertility and results in significant economic losses (St-Pierre et al., 2003; Ross et al., [2017\)](#page-11-1). From a traditional production parameter standpoint, HS increases mortality ([D'Allaire](#page-9-0) [et al., 1996\)](#page-9-0), reduces milk production [\(Renaudeau](#page-10-2) [and Noblet, 2001](#page-10-2)) and litter survival [\(Wettemann](#page-11-2) [and Bazer, 1985](#page-11-2); [Renaudeau et al., 2003](#page-10-3); [St-Pierre](#page-11-0) [et al., 2003\)](#page-11-0), markedly decreases growth rate and feed intake (FI) ([Collin et al., 2001;](#page-9-1) [Campos et al.,](#page-9-2) [2014\)](#page-9-2), and substantially increases the variability in market weight [\(Baumgard and Rhoads, 2013](#page-8-0)). Pigs are particularly sensitive to HS due to their

This work was supported by the National Pork Board, the Iowa Pork Producers Association, the Iowa Pork Industry Center, The Ensminger program, and Hatch and State of Iowa Funds.

¹ Corresponding author: [kwanskim@chungbuk.ac.kr](mailto:kwanskim@chungbuk.ac.kr?subject=) Received 8 September 2017. Accepted 12 April 2018.

inability to sweat and the presence of a thick layer of subcutaneous adipose tissue that prevents heat dissipation ([Renaudeau et al., 2006](#page-10-4); [Fernandez](#page-9-3) [et al., 2015\)](#page-9-3). Commercial pig breeds have been intensely selected for economically important phenotypes, such as increased growth rate and leaner body composition, and this has inadvertently resulted in increased HS susceptibility [\(Renaudeau](#page-10-0) [et al., 2012](#page-10-0)) since synthesizing and maintaining lean tissue increases basal heat production.

Genetic variation exists in thermal tolerance among species, between breeds, and within breed ([Blackshaw and Blackshaw, 1994](#page-8-1); [Hoffmann, 2010](#page-9-4); [Renaudeau et al., 2012\)](#page-10-0), and thus, may provide opportunity to improve thermal tolerance through using genetic tools to identify genomic regions of importance in the response to HS. For instance, recent genome-wide association studies (GWAS) in dairy cattle have identified genomic regions associated with T_R during HS (Dikmen et al., 2013). The development of a high-density Porcine SNP BeadChip has aided the implementation of efficient genomic evaluation and selection in the commercial pig industry [\(Fernández et al., 2012\)](#page-9-6). Despite the economic and animal welfare effects of HS on pork production and pig health, identifying genomic regions responsible for variation in HS tolerance has not yet been thoroughly explored. In the pig, single nucleotide polymorphism (SNP) markers have been chiefly used for association analysis of growth, meat, and carcass quality traits. The objectives of this study were to conduct GWAS to identify genomic regions associated with thermotolerance traits in crossbred gilts.

MATERIALS AND METHODS

Animals and Experimental Design

The Iowa State University Institutional Animal Care and Use Committee approved all procedures involving animals. Detailed description of experimental designs and how the body temperature variables were calculated during prepubertal and postpubertal development have been described in two other studies that established the HS phenotypes. [\(Graves et al., 2018;](#page-9-7) [Seibert et al., 2018](#page-11-3)). [Seibert et al. \(2018\)](#page-11-3) established the production phenotypes in response to HS while [Graves et al. \(2018\)](#page-9-7) utilized a subset of the same group of gilts and established the repeatability of the phenotypes later in life and the relationship between the HS response and reproductive success. Collectively, crossbred gilts ($n = 235$; PIC maternal \times Duroc terminal sire) from the same cohort were received on the 24th day of age and arrived immediately after weaning. Due to logistical constraints of the facilities, the experiment was conducted in five replications $(n = 44$ to 48/replicate). The initial BW from replications 1 to 5 were 59 ± 1.0 , 64 ± 1.2 , 77 ± 1.2 , 88 ± 1.1 , and 103 ± 1.6 kg, respectively (Seibert [et al., 2018\)](#page-11-3). During the experiment, water and feed were provided ad libitum during the entire experiment. All pigs were fed a standard diet consisting mainly of corn and soybean meal formulated to meet or exceed nutrient requirements [\(NRC, 2012](#page-10-5)). The study was divided into three experimental periods (P) for each replicate: P0, P1, and P2. Period 0 (72 h) served as an acclimation period in which all pigs were housed individually in thermoneutral (TN) conditions (21.9 \pm 0.5 °C, 62 \pm 13% relative humidity [RH]). After P0, pigs remained in TN conditions for 24 h (period 1; P1) and then exposed to HS (29.7 \pm 1.3 °C, 49 \pm 8% RH) conditions for 24 h (period 2; P2). Pigs were exposed to a 12:12 h light:dark cycle during P0, but continuous light during P1 and P2 to allow for accurate data collection.

 T_p (°C) was measured with a lubricated, calibrated digital thermometer (Welch Allyn SureTemp Plus 690, Skaneateles Falls, NY). T_s (°C) was measured using a calibrated infrared thermometer (ST 380A Infrared Thermometer, HDE, Allentown, PA), and RR (breaths per minute) was determined by counting the number of flank movements in 15 s and multiplying by four. During the initial study, FI was measured daily and body temperature indices were monitored during both the 24 h TN (21.9 \pm 0.5 °C, 62 \pm 13% RH) and HS $(29.7 \pm 1.3 \degree C, 49 \pm 8\% \text{ RH})$ phases. BW were collected at the beginning of the acclimation and TN periods and at the end of the HS period. The difference (Δ) for physiological traits (e.g. T_R, T_S, and RR) was determined by subtracting the TN from the HS value.

Following boar exposure and heat detection, the second study [\(Graves et al., 2018](#page-9-7)) utilized 100 cyclic (postpubertal) animals from the initial 235 gilts. Selecting these postpubertal 100 gilts was based on their ability or inability to maintain a minimal T_R during the 24 h HS challenge. During this study, T_R , RR, and T_S were collected at 0800, 1400, 1500, 1600, 1900, 2000, and 2100 h during TN (20 °C) conditions and condensed into a single average to represent each individual's TN thermoregulatory set point. All body temperature indices measured at the same time points during 9 d of HS were condensed into a single average value, representing HS thermortolerance parameters. The difference for

each physiological trait (ΔT_R , ΔT_s , and ΔRR) was calculated by subtracting TN from HS values for each trait.

Marker Data/Genotyping and Quality Control

All animals (235) were genotyped using the GGP-Porcine HD BeadChip (GeneSeek, Lincoln, NE), which contains 68,249 SNP that uniformly span the porcine genome according to Illumina's standard protocols (<http://www.illumina.com>). Autosomal and X chromosome markers were filtered for the call rate ≥95%; Hardy–Weinberg equilibrium (HWE) <0.0001 and minor allele frequency (MAF) ≥ 0.05 . Additionally, of the total animals genotyped, 21 individual samples failed to have at least a call rate of 95% and were excluded. After applying the above quality control criteria, a total of 52,528 SNP for 214 animals remained for the subsequent GWAS analysis. Quality control measures were performed using SNP and Variation Suit v8.3.1 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com).

Statistical Analyses

Genome-wide association tests were performed using single-locus mixed linear model Efficient Mixed-Model Association eXpedited (EMMAX), which includes a kinship matrix as random effect and implemented by SNP and Variation Suite Version 8.3.1 software (Golden Helix, Inc.). In GWAS, lack of accounting for population structure may lead to spurious association results [\(Kang](#page-10-6) [et al., 2010\)](#page-10-6). It has been demonstrated that the EMMAX approach can correct for population stratification and relatedness between samples ([Kang et al., 2010](#page-10-6)). To correct for confounding effects due to population structure and relatedness between individuals; an identity-by-state (IBS) between samples was computed from the genotype data and included as a random effect in the model. The EMMA approach and algorithm have been well described in SNP and Variation Suite Version 8.3.1 documentation (Golden Helix, Inc.).The model used can be expressed as:

$$
y = X\beta + Zu + e
$$

where *y* is an $n \times 1$ the vector of observed phenotypic values, *X* is an $n \times f$ matrix of fixed SNP effects, β is a $q \times 1$ vector representing coefficients of the fixed effect, Z is an $n \times t$ relating the instances of the random effects, *u* the vector of random effect, and *e* the residual effect.

Initial BW, replication, and room were included in the analyses as covariates for all of the traits. For each trait, pseudo-heritability, the fraction of phenotypic variance explained by the empirically estimated relationship matrix (Kang et al., 2010; [Segura et al., 2012](#page-11-4)) was estimated with the SNP and Variation Suite (Golden Helix, Inc.).

As for several genome-wide analysis using small sample size ([Dockery et al., 2017\)](#page-9-8), we did not detect any SNP that passed Bonferroni adjusted *P* value threshold; therefore, we considered the top SNP explaining the largest proportion of variance. To reduce the specious noise from single SNP based analyses, the observed phenotypic variance accounted by an individual SNP was smoothed over five SNP sliding windows. This approach has been applied to GWAS studies in cattle and poultry ([Dikmen et al., 2013](#page-9-5); [Fragomeni et al., 2014\)](#page-9-9). As previously demonstrated, SNP windows explaining the largest SNP variance were considered to represent candidate gene regions associated with variation in phenotypes ([Dikmen et al., 2013;](#page-9-5) [Fragomeni et al.,](#page-9-9) [2014\)](#page-9-9). In those studies, SNP window thresholds were arbitrarily selected. For instance, Fragomeni et al. (2014) considered the top 10 windows $(\sim 200$ SNPs) explaining the largest genetic variance using windows of 20 SNP, whereas [Dikmen et al. \(2013\)](#page-9-5) considered the top 20 loci explaining the largest proportion of variance using three- and five-SNP sliding windows. Therefore, we considered the top 0.1% (25 windows) smoothed variance explained by SNP windows. The candidate genes associated with the top 0.1% SNPs were searched for from the NCBI database [\(http://www.ncbi.nlm.nih.gov/](http://www.ncbi.nlm.nih.gov/)).

RESULTS AND DISCUSSION

Heritability estimates for prepubetal ΔT_{R} , ΔRR , postpubetal ΔT_R , and ΔT_S were 0.49, 0.39, 0.83, and 0.00, respectively. There are only limited studies on the heritabilities of thermotolerance traits in pigs to compare with our results. To the best of our knowledge, no prior study reported estimates of heritability for thermotolerance traits in pigs from genome-wide SNP data. Very recently, Gourdine et al. (2017) reported heritability estimates of 0.35 and 0.39 for T_R and RR, respectively, in lactating sows reared in a tropical climate. Generally, the value observed for T_R in the present study is higher than the range of values reported in cattle (0.11 to 0.44) ([Da Silva, 1973](#page-9-11); [Morris et al.,](#page-10-7) [1989](#page-10-7)) and poultry (0.36) ([Taouis et al. 2002](#page-11-5)). The higher heritability in this study could be partly attributed to small sample size. Concurrent with

this assumption, [Baco et al. \(1997\)](#page-8-2) showed that the average heritability decreased as the sample size increase from 100 to 400. The moderate and high heritabilities observed in this study imply that there is genetic variation in thermotolerance in pigs that can be exploited to improve heat tolerance.

In the present study, we performed GWAS for ΔRR , prepubertal or postpubertal ΔT_{R} and ΔT_s , to identify genomic regions associated with thermoregulatory and production responses to HS in pigs using the Porcine SNP 70 BeadChip technology. Significant SNP were declared when the *P* value was less than the genome-wide type I error rate, adjusted with Bonferroni correction by using α/K , where $\alpha = 0.05$ and $K =$ number of SNPs. We did not detect any SNP displaying the set significant

threshold $(0.05/52528 = 9.5187 \times 10^{-7})$ but this was not unexpected given the limited number of observations (214 prepubertal animals and 91 postpubertal animals).

We therefore considered the top 0.1% of the smoothed phenotypic variance explained by five SNP windows. The total number of genes associated with these SNPs were 26, 26, 21, and 14 for ΔRR , prepubertal ΔT_R , postpubertal ΔT_R , and $\Delta T_{\rm s}$, respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 (five SNPs) explained about 0.05% of the observed variation for ΔRR and includes the growth hormone receptor genomic locus (*GHR*; Table 1 and Figure 1). This is not surprising as growth hormone (GH) variables are influenced by HS. For example, HS decreases

Table 1. Phenotypic variance explained by SNP windows for delta respiration rate prior to puberty (prepubertal ΔRR)

SSC ^a	Position start $(bp)^b$	Position end $(bp)^c$	Variance explained (%) ^d	Candidate gene(s) ^e
14	139721921	139813511	0.077	
14	139607069	139757205	0.059	RAB11FIP2
16	29375218	29645155	0.056	LOC100524404, CCL28, PAIP1, LOC100524913
16	29513888	29742940	0.054	LOC100524404, PAIP1, LOC100524913, NNT
16	26931779	27129171	0.052	HEATR7B2, MROH2B
16	28409425	28629545	0.051	
16	27848815	28627099	0.049	OXCT1, FBXO4, LOC102165724
5	69383487	69487000	0.049	TSPAN9, TEAD4, TULP3/TUBl3
16	28850217	29102419	0.047	GHR
16	26415650	26619363	0.046	
5	69487000	69597659	0.046	TULP3/TUBI3, LOC100524913, LOC102162709, ITFG2, LOC102164154
16	26861794	27039793	0.045	LOC100737708, HEATR7B2
16	29200306	29513888	0.045	CCL28, LOC100524404
16	29645155	29881595	0.045	PAIP1, LOC100524913, PAIP1, NNT
16	29102419	29375218	0.044	LOC106506477, CCL28
16	29742940	30016395	0.044	NNT
14	139757205	139906120	0.044	$C14H10$ orf84
16	35074836	35176313	0.043	ARL15
16	26552965	26755662	0.043	
16	27039793	27242934	0.043	MROH2B, LOC106505864, C6
16	28627099	28800253	0.043	GHR,LOC102158502, GHR
5	60978291	61121151	0.043	ARHGDIB, ART4
16	26755662	26931779	0.042	LOC100737708
16	32429434	32520142	0.041	

Gene abbreviations: *RAB11FIP2* = *RAB11 family interacting protein 2*; *CCL28* = *C-C motif chemokine ligand 28*; *PAIP1* = *poly(A) binding protein interacting protein 1*; *NNT* = *nicotinamide nucleotide transhydrogenase*; *HEATR7B2* = *maestro heat-like repeat-containing protein family member 2B*; *MROH2B* = *maestro heat-like repeat family member 2B*; *OXCT1* = *3-oxoacid CoA-transferase 1*; *FBXO4* = *F-box protein 4; TSPAN9* = *tetraspanin 9*; *TULP3* = *tubby like protein 3*; *TEAD4* = *TEA domain transcription factor 4*; *GHR* = *growth hormone receptor*; *ITFG2* = *integrin alpha FG-GAP repeat containing 2*; *ARL15* = *ADP ribosylation factor like GTPase 15*; *ARHGDIB* = *Rho GDP dissociation inhibitor beta*; *ART4* = *ADPribosyltransferase 4*.

a Chromosome number of the pig genome for which the SNP window location is mapped.

b SNP window positions start location on the chromosome.

c SNP window position end location on the chromosome.

d Percentage of variance explained by five SNP windows.

e Candidate genes located within the SNP window.

Figure 1. Manhattan plot of delta respiration rate during first HS challenge prior to puberty (prepubertal ΔRR) percentage of variance explained by SNP windows in crossbred gilts. The variance accounted by an individual SNP was smoothed over five SNP sliding windows.

GHR mRNA abundance in hepatic tissue of lactating Holstein dairy cows [\(Deane and Woo, 2005](#page-9-12); [Rhoads et al., 2010\)](#page-10-8) and avian species [\(Gasparino](#page-9-13) [et al., 2014;](#page-9-13) [Del Vesco et al., 2015](#page-9-14)), and is independent of the heat-induced feed intake reduction ([Collier et al., 2008](#page-9-15)). Additionally, although not always observed [\(Rhoads et al., 2009](#page-10-9)), circulating GH levels decline in HS compared to TN cattle ([Farooq et al., 2010](#page-9-16)); this decrease in circulating GH is attributed to reduced GH secretion at the pituitary gland. Furthermore, primiparous cattle treated with growth hormone-releasing hormone (GHRH) during HS had increased BW gain, milk yield, pregnancy rates, and circulating prolactin (PRL), and reduced mortality ([Brown et al., 2008](#page-9-17)). Polymorphisms within *GHR* have known to significantly affect growth traits including in pigs and goats ([An et al., 2011;](#page-8-3) [Tian et al., 2014](#page-11-6)). Considering the critical physiological and metabolic role of GHR, SNPs within this gene are likely potential selection candidates for HS tolerance.

Another important candidate gene with close proximity to *GHR* is poly(A) binding protein interacting protein 1 (*PAIP1)* which falls within a five SNP window that explained about 0.06% the variance on SSC16 at 29.37 to 29.64 Mb. Based on an in vitro experiment using HeLa cells, the abundance of PAIP1 protein decreases in response to HS [\(Datu](#page-9-18) [and Bag, 2013](#page-9-18)). In mammals, HS increases free radical formation (reactive oxygen species; ROS) and induces oxidative stress ([Lord-Fontaine and Averill-](#page-10-10)[Bates, 2002\)](#page-10-10). HS also induces oxidative damage in pigs ([Montilla et al., 2014](#page-10-11)) and fish [\(Heise et al., 2006](#page-9-19)) and oxidative stress is involved in heat-induced cell death ([Davidson et al., 1996](#page-9-20)). Interestingly, we detected SNP on chromosome 16 that explain 0.05% of the variance for ΔRR and contained the nicotinamide nucleotide transhydrogenase (*NNT*) gene ([Table 1](#page-3-0) and [Figure 1](#page-4-0)). The *NNT* gene product is necessary to prevent ROS accretion [\(Arkblad et al., 2005](#page-8-4); [Nickel](#page-10-12) [et al., 2015](#page-10-12)) and loss of its activity has been implicated in increased mitochondrial oxidative damage, ultimately resulting in overall increased sensitivity to oxidative stress [\(Arkblad et al., 2005](#page-8-4); [Navarro et al.,](#page-10-13) [2012\)](#page-10-13). Moreover, *Nnt* knockdown in mice leads to increased ROS production and a stronger inflammatory response in macrophages [\(Ripoll et al., 2012](#page-10-14)). Interestingly, it has been reported that a mutated *Nnt* gene in mice results in loss of B-cell lymphoma 2 (BCL-2) [\(Navarro et al., 2012](#page-10-13)), a major antiapoptotic protein implicated in the prevention of heat-induced cell death [\(Setroikromo et al., 2007](#page-11-7)). In vitro heat shock downregulates *Bcl-2* expression [\(Khar](#page-10-15) [et al., 2006\)](#page-10-15), which may inhibit its activity to prevent permeability of the outer mitochondrial membrane and ultimate release of apoptogenic factors [\(Beere,](#page-8-5) [2004\)](#page-8-5). The effect of HS-induced autophagy signaling in the pig ovary demonstrated that BECN1 abundance correlates with an increase in phosphorylation of BCL2 [\(Hale et al., 2017](#page-9-21)). Thus, *NNT* could be involved in variation of HS-induced oxidative stress and autophagy in pigs.

For $\triangle RR$ and prepubertal $\triangle T_R$, the SSC 5: 69.38 to 69.48 Mb region accounted for 0.05% the observed variance and contained TEA domain transcription factor 4 (*TEAD4)* or related transcription enhancer factor-1 (*RTEF-1*) ([Tables 1](#page-3-0) and [2;](#page-5-0) [Figures 1](#page-4-0) and [2](#page-5-1)). However, this region was not detected for postpubertal ΔT_R . The lack of detecting a common significant region for prepubertal ΔT_R and postpubertal ΔT_R could be ascribed to differences in either animal age or sample size or both. TEAD4 protein prevents oxidative stress in blastocoels ([Kaneko and DePamphilis, 2013](#page-10-16)). Also, hypoxic inducible factor 1 alpha (*HIF-1*α) gene expression was decreased when *RTEF-1* was knocked down in endothelial cells [\(Jin et al., 2011](#page-10-17)). *HIF-1α* can interact with *HSP90*, which mediates heat-induced stabilization of *HIF-1α* ([Katschinski](#page-10-18) [et al., 2002](#page-10-18)). The region extending from 136.70 Mb to 139.10 Mb (10 loci) on SSC 14 accounted for about 0.05% of the observed variance for the prepubertal ΔT_R and encompasses the attractin-like 1 (*ATRNL1*) gene locus. Previous studies suggest selecting certain alleles in this gene may improve high-altitude adaptation (Simonson et al., 2010). Thus, *TEAD4* and *ATRNL1* represent gene candidates that could be explored as targets to improve heat tolerance in pigs.

SSC ^a	Position start $(bp)^b$	Position end $(bp)^c$	Variance explained $(\%)^d$	Candidate gene (s) ^e
5	69383487	69487000	0.049	TSPAN9, TEAD4
5	72245513	72424166	0.043	MICAL3, LOC102162673
5	69487000	69597659	0.041	TULP3, LOC102162709, ITFG2, LOC102164154
14	136702381	136891524	0.040	ATRNL1, LOC102161079
14	13443000	13564731	0.040	FZD3
5	69437477	69555670	0.039	TEAD4, TULP3, LOC102162709
14	39275817	39773984	0.038	
5	69333042	69437477	0.038	TSPAN9, TEAD4
5	72352991	72500090	0.037	LOC102162673
14	139721921	139813511	0.037	
5	72141748	72352991	0.036	BID, MICAL3
5	69555670	69691307	0.035	LOC102162709, ITFG2, LOC10216415, LOC102164154, LOC106510369, LOC100512907
14	13564731	13666604	0.035	LOC102157783, EXTL3
14	136824061	136939847	0.035	ATRNL1
14	13356571	13497286	0.034	FBXO16, FZD3
18	27560376	27761494	0.033	ING3, TSPAN12
14	39616077	39904195	0.033	LOC102157597
14	13497286	13621432	0.033	FZD3
1	283482216	283609728	0.032	SUSD1
7	111019262	111170076	0.032	
14	136939847	137099653	0.032	ATRNL1
5	70488420	70775116	0.032	ERC1, RAD52
13	215584218	215697149	0.031	C ₂ CD ₂ , LOC ₁₀₂₁₆₁₈₄₉
5	69597659	69759629	0.031	LOC102164154, LOC106510369, LOC100512907, IOSEC3

Table 2. Phenotypic variance explained by SNP windows for the change in T_R during heat stress prior to puberty (prepubertal ΔT_n)

Gene abbreviations: *TSPAN9* = tetraspanin 9; *TEAD4* = *TEA domain transcription factor 4*; *MICAL3* = microtubule associated monoox*ygenase, calponin and LIM domain containing 3*; *ITFG2* = *integrin alpha FG-GAP repeat containing 2*; *EXTL3* = *exostosin like glycosyltransferase 3*; *ATRNL1* = *attractin-like 1*; *FBXO16* = *F-box protein 16*; *FZD3* = *frizzled class receptor 3*; *ING3* = *inhibitor of growth family member 3*; *TSPAN12* = *tetraspanin 12*; *SUSD1* = *sushi domain containing 1*; *ERC1* = *ELKS/RAB6-interacting/CAST family member 1*; *RAD52* = *RAD52 homolog, DNA repair protein*; *C2CD2* = *C2 calcium dependent domain containing 2*; *IQSEC3* = *IQ motif and Sec7 domain 3*.

a Chromosome number of the pig genome for which the SNP window location is mapped.

b SNP window positions start location on the chromosome.

c SNP window position end location on the chromosome.

d Percentage of variance explained by five SNP windows.

e Genes located within the SNP window.

Figure 2. Manhattan plot of delta T_p first HS challenge (prepubertal ΔT_p) percentage of variance explained by SNP windows in crossbred gilts. The variance accounted by an individual SNP was smoothed over five SNP sliding windows.

Phenotypic variances explained by SNP windows postpubertal ΔT_R are shown in [Table 3](#page-6-0) and [Figure 3.](#page-6-1) The region between 65.86 and 66.79 Mb encompassed the LIM and senescent cell antigen-like domains 2 (*LIMS2*) gene. Hepatic *LIMS2* is differentially expressed in response to high ambient temperature [\(Coble et al., 2014](#page-9-22)). Another candidate region on SSC15 extending from 65.58 to 66.44 Mb contained the transthyretin (*TTR)* gene. Studies have revealed that the expression patterns of *Ttr* was altered by chronic stress in different rat strains ([Andrus et al., 2012](#page-8-6)). In addition, various stress stimuli upregulate *Ttr* and calcium binding-related genes in the prefrontal cortex of the cerebrum in mice. Our single marker based analyses also detected the death-domain association protein (*DAXX*) candidate gene for postpubertal ΔT_R ([Supplementary Table S1](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data) and [Supplementary](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data)

Gene abbreviations: *DST* = *dystonin*; *FMNL2* = *formin like 2*; *GPR17* = *G protein-coupled receptor 17*; *LIMS2* = *LIM zinc finger domain containing 2; TTR* = *transthyretin*; *ASXL3* = *additional sex combs like 3*; *STRIP2* = *striatin interacting protein 2*; *AHCYL2* = *adenosylhomocysteinase like 2*; *MAST4* = *microtubule associated serine/threonine kinase family member 4*; *ERBB2IP* = *erbb2 interacting protein*; *UGGT1* = *UDP-glucose glycoprotein glucosyltransferase 1*; *CCDC170* = *coiled-coil domain containing 170*.

a Chromosome number of the pig genome for which the SNP window location is mapped.

b SNP window positions start location on the chromosome.

c SNP window position end location on the chromosome.

d Percentage of variance explained by five SNP windows.

e Genes located within the SNP window.

Figure 3. Manhattan plot of delta T_p during the second HS challenge (postpubertal ΔT_p) percentage of variance explained by SNP windows in crossbred gilts. The variance accounted by an individual SNP was smoothed over five SNP sliding windows.

[Figure S1](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data)). This gene product plays a key role as a mediator of heat shock factor 1 (*HSF1*) activation ([Nefkens et al., 2003;](#page-10-19) [Boellmann et al., 2004](#page-8-7)). Other studies have reported that heat shock protein (HSP) expression is modulated by *DAXX* ([Boellmann et al., 2004\)](#page-8-7). Thus, taking into account the known direct and indirect association of these genes (*LIMS2*, *TTR*, and *DAXX*) with stress, they represent potential candidates for HS tolerance in pigs.

In Table 4 and Figure 4, phenotypic variance explained by SNP windows for ΔT_s is presented. The region of interest is flagged on SSC 15 (125.96 to 126.47 Mb) comprising the erb-b2 receptor tyrosine kinase 4 (*ERBB4*) genomic locus, which is a member of the tyrosine kinase family and is involved in the DNA damage response ([Gilmore-](#page-9-23)Hebert et al., 2010). Expression of this gene can

SSC ^a	Position start $(bp)^b$	Position end $(bp)^c$	Variance explained $(\frac{6}{6})^d$	Candidate gene(s) ^e
3	121853700	122019392	0.044	LOC100521960, FKBP1B, ATAD2B
15	126029433	126285452	0.042	ERBB4
15	25747414	25910541	0.041	
1	271950519	272028559	0.038	
9	140242929	140385683	0.038	
15	125958213	126098646	0.037	ERBB4
3	121766459	121896763	0.037	ITSN2, LOC100521960, FKBP1B
9	142991886	143124394	0.036	
4	12197136	12282429	0.035	
15	127761392	127886086	0.035	IKZF2, LOC100737978
15	126098646	126467297	0.034	ERBB4
8	19747348	19780058	0.034	
15	136273347	136352463	0.034	
17	59360910	59447126	0.034	ATP9A
1	271984966	272080412	0.034	LOC100153054
9	143029683	143164935	0.033	
4	12025385	12095880	0.033	
15	136764149	136868267	0.033	EPHA4, LOC102159610
7	9126277	9208606	0.033	
9	143124394	143242124	0.033	RPS6KC1
15	136981095	137108151	0.033	LOC106506372
17	59314509	59400449	0.032	NFATC2, ATP9A
4	12237013	12315209	0.032	
15	136181273	136319027	0.032	

Table 4. Phenotypic variance explained by SNP windows for delta T_s prior to puberty (prepubertal ΔT_s)

Gene abbreviations: *FKBP1B* = *FK506 binding protein 1B; ATAD2B* = *ATPase family, AAA domain containing 2B; ERBB4* = *erb-b2 receptor tyrosine kinase 4; ATP9A* = *ATPase phospholipid transporting 9A (putative); EPHA4* = *EPH receptor A4; RPS6KC1* = *ribosomal protein S6 kinase C1; NFATC2* = *nuclear factor of activated T-cells 2; ATP9A* = *ATPase phospholipids' transporting 9A*.

a Chromosome number of the pig genome for which the SNP window location is mapped.

b SNP window positions start location on the chromosome.

c SNP window position end location on the chromosome.

d Percentage of variance explained by five SNP windows.

e Candidate genes located within the SNP window.

Figure 4. Manhattan plot of delta T_s first HS challenge (prepubertal ΔT_s) percentage of variance explained by SNP windows in crossbred gilts. The variance accounted by an individual SNP was smoothed over five SNP sliding windows.

be induced in response to various cellular stresses and it plays a key role in preventing apoptosis [\(Hua](#page-10-20) [et al., 2012](#page-10-20)). Furthermore, this gene induces HSPs in a HSF1-dependent manner ([Khaleque et al., 2005](#page-10-21)) and is associated with maximum lifespan in rodents ([Edrey et al., 2012](#page-9-24)). Another potential candidate region associated with Δ Ts is the SSC 17: 59.36 to 59.44 Mb, which includes the ATPase phospholipid transporting 9A (*ATP9A)* gene. ATPases move ions across cellular membranes ([Altshuler et al., 2012](#page-8-8)) and are involved in maintaining ion homeostasis during heat stroke or stress [\(Kourtis et al., 2012](#page-10-22)). For instance, HSP-16.1 functions with the Ca²⁺- and Mn2+-transporting ATPase calcium-transporting (PMR-1) to maintain Ca^{2+} homeostasis under heat stroke [\(Kourtis et al., 2012](#page-10-22)). Moreover, it has been shown that mutant protein lacking ATPase domain resulted in loss of key activities of HSP72 ([Volloch](#page-11-9) [et al., 1999](#page-11-9)). The SNPs on SSC15 at 127.76 Mb to 127.88 Mb accounted for 0.04% of the observed SNP variance and contained the IKAROS family zinc finger 2 (*IKZF2*) gene. This is a stress-related gene and expressed in various lymphomas and leukemia ([Antica et al., 2008\)](#page-8-9) and is also associated with QTL regions for T lymphocyte subpopulations in swine [\(Lu et al., 2012](#page-10-23)). On SSC 3, the highest proportion of phenotypic variance explained (0.04%) by SNP windows was observed at 121.85 to 122.02 Mb and encompassed the FK506 binding protein 1B (*FKBP1B*) locus, which is differentially expressed in response to HS in catfish [\(Liu et al.,](#page-10-24) [2013\)](#page-10-24). In addition, members of the *FKBP* protein family are involved in modulating thermotolerance by interacting with HSP90.1 and are essential for survival at high temperatures (Meiri and Breiman, [2009\)](#page-10-25). Another potential candidate gene detected on SSC17 (59.31 to 59.40 Mb) is nuclear factor of activated T-cells 2 (*NFATC2)*. The *NFAT* gene family mediated transcription is induced in epidermal cells in response to UV light [\(Horsley and Pavlath,](#page-10-26) [2002\)](#page-10-26). *NFATC2* is a novel *HSF1* target that strongly inhibits polyglutamine aggregation (polyQ) and is required for *HSF1*-mediated suppression of ployQ aggregation [\(Hayashida et al., 2010](#page-9-25)). Single marker based analyses for ΔT_s identified a SNP on SSC 6 explaining 0.05% of the observed variance and located within the U6 snRNA gene ([Supplementary](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data) [Table S1](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data) and [Supplementary Figure S1\)](http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky131#supplementary-data). U6 snRNA is essential for mRNA splicing and interestingly enough, this gene has been associated with T_R under HS in Holstein cattle [\(Dikmen et al., 2013\)](#page-9-5).

LIMITATIONS AND CONCLUSIONS

To identify loci associated with thermotolerance traits in pigs, we employed a classical GWAS approach. GWAS using a large number of markers require thousands of samples to attain an adequate statistical power [\(Spencer et al., 2009](#page-11-10); [Hong and](#page-10-27) [Park, 2012\)](#page-10-27). As indicated in several studies, GWAS undertaken using smaller sample size, have little power to identify loci with small polygenic effects and only loci with very large effects are expected to reach the genome-wide significant threshold ([Davenport et al., 2015](#page-9-26)). As expected, with our small sample size, no SNPs reached the set genomewide significance threshold. Therefore, we conclude that the results of the present study are suggestive and warrant further replication and follow-up study using reasonable sample sizes.

Despite the above-indicated limitation of this study, we have identified some genes that are known to be involved in physiological adaptation to general stressors. The SNPs explaining the

Conflict of interest statement. Any opinion, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Pork Board. No conflicts of interest, financial, or otherwise are declared by the author(s).

SUPPLEMENTARY DATA

Supplementary data are available at *Journal of Animal Science* online.

LITERATURE CITED

- Altshuler, I., J. J. Vaillant, S. Xu, and M. E. Cristescu. 2012. The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA). Plos One 7:e52617. doi:10.1371/journal.pone.0052617
- An, X., L. Wang, J. Hou, G. Li, Y. Song, J. Wang, M. Yang, Y. Cui, and B. Cao. 2011. Novel polymorphisms of goat growth hormone and growth hormone receptor genes and their effects on growth traits. Mol. Biol. Rep. 38:4037– 4043. doi:10.1007/s11033-010-0522-3
- Andrus, B. M., K. Blizinsky, P. T. Vedell, K. Dennis, P. K. Shukla, D. J. Schaffer, J. Radulovic, G. A. Churchill, and E. E. Redei. 2012. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17:49–61. doi:10.1038/mp.2010.119
- Antica, M., L. Cicin-Sain, S. Kapitanovic, M. Matulic, S. Dzebro, and M. Dominis. 2008. Aberrant Ikaros, Aiolos, and Helios expression in Hodgkin and non-Hodgkin lymphoma. Blood 111:3296–3297. **doi**:10.1182/ blood-2007-12-125682
- Arkblad, E. L., S. Tuck, N. B. Pestov, R. I. Dmitriev, M. B. Kostina, J. Stenvall, M. Tranberg, and J. Rydström. 2005. A *Caenorhabditis elegans* mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress. Free Radic. Biol. Med. 38:1518–1525. doi:10.1016/j.freeradbiomed.2005.02.012
- Baco S., S. Inoue, S. Sudo, H. Hisadome, H. Harada, and R. Fukuhara. 1997. Effects of sample size on heritability estimates for field carcass characters in Wagyu population. The West Japan J. Anim. Sci. 40:33–39. doi:10.11461/ jwaras1968.40.33
- Baumgard, L. H., and R. P. Rhoads, Jr. 2013. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 1:311–337. doi:10.1146/ annurev-animal-031412-103644
- Beere, H. M. 2004. "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. j. Cell Sci. 117:2641–2651. doi:10.1242/jcs.01284
- Blackshaw, J. K., and A. Blackshaw. 1994. Heat stress in cattle and the effect of shade on production and behaviour: a review. Anim. Prod. Sci. 34:285–295. doi:10.1071/EA9940285
- Boellmann, F., T. Guettouche, Y. Guo, M. Fenna, L. Mnayer, and R. Voellmy. 2004. DAXX interacts with heat shock factor 1 during stress activation and enhances

its transcriptional activity. Proc. Natl. Acad. Sci. USA 101:4100–4105. doi:10.1073/pnas.0304768101

- Brown, P. A., A. M. Bodles-Brakhop, and R. Draghia-Akli. 2008. Effects of plasmid growth hormone-releasing hormone treatment during heat stress. DNA Cell Biol. 27:629–635. doi:10.1089/dna.2008.0758
- Campos, P. H., E. Labussière, J. Hernández-García, S. Dubois, D. Renaudeau, and J. Noblet. 2014. Effects of ambient temperature on energy and nitrogen utilization in lipopolysaccharide-challenged growing pigs. J. Anim. Sci. 92:4909–4920. doi:10.2527/jas.2014-8108
- Coble, D. J., D. Fleming, M. E. Persia, C. M. Ashwell, M. F. Rothschild, C. J. Schmidt, and S. J. Lamont. 2014. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genomics 15:1084. doi:10.1186/1471-2164-15-1084
- Collier, R. J., J. L. Collier, R. P. Rhoads, and L. H. Baumgard. 2008. Invited review: genes involved in the bovine heat stress response. J. Dairy Sci. 91:445–454. doi:10.3168/ jds.2007-0540
- Collin, A., J. van Milgen, S. Dubois, and J. Noblet. 2001. Effect of high temperature and feeding level on energy utilization in piglets. J. Anim. Sci. 79:1849–1857. doi:10.2527/2001.7971849x
- D'Allaire, S., R. Drolet, and D. Brodeur. 1996. Sow mortality associated with high ambient temperatures. Can. Vet. J. 37:237–239.
- Da Silva, R. G. 1973. Improving tropical beef cattle by simultaneous selection for weight and heat tolerance. Heritability and correlation of the traits. J. Anim. Sci. 37:637–642. doi:10.2527/jas1973.373637x
- Datu, A. K., and J. Bag. 2013. Enhanced translation of mRNAs encoding proteins involved in mRNA translation during recovery from heat shock. Plos One 8:e64171. doi:10.1371/ journal.pone.0064171
- Davenport E. R., D. A. Cusanovich, K. Michelini, L. B. Barreiro, C. Ober, and Y. Gilad. 2015. Genome-wide association studies of the human gut microbiota. Plos One 10:e0140301. doi:10.1371/journal.pone.0140301
- Davidson, J. F., B. Whyte, P. H. Bissinger, and R. H. Schiestl. 1996. Oxidative stress is involved in heat-induced cell death in *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. U. S. A. 93:5116–5121.
- Deane, E. E., and N. Y. Woo. 2005. Growth hormone increases hsc70/hsp70 expression and protects against apoptosis in whole blood preparations from silver sea bream. Ann. N. Y. Acad. Sci. 1040:288–292. doi:10.1196/annals.1327.044
- Del Vesco, A. P., E. Gasparino, D. O. Grieser, V. Zancanela, D. M. Voltolini, A. S. Khatlab, S. E. Guimarães, M. A. Soares, and A. R. Oliveira Neto. 2015. Effects of methionine supplementation on the expression of protein deposition-related genes in acute heat stress-exposed broilers. Plos One 10:e0115821. doi:10.1371/journal.pone.0115821
- Dikmen, S., J. B. Cole, D. J. Null, and P. J. Hansen. 2013. Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. Plos One 8:e69202. doi:10.1371/ journal.pone.0069202
- Dockery L. E., Tritchler, D., Krivak, T. C., Kaufman, K., Lankes, H., Bae-Jump, V. L., Berchuck, A., Backes, F. J., Rose, P.G., Tewari, K. S., et al. 2017. Genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) and the risk of platinum and taxane toxicities: an

analysis of GOG 172 and 182. Gynecol. Oncol. 145:42– 43. doi:10.1016/j.ygyno.2017.03.109

- Edrey, Y. H., D. Casper, D. Huchon, J. Mele, J. A. Gelfond, D. M. Kristan, E. Nevo, and R. Buffenstein. 2012. Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Aging Cell 11:213– 222. doi:10.1111/j.1474-9726.2011.00772.x
- Farooq, U., H. Samad, F. Shehzad, and A. Qayyum. 2010. Physiological responses of cattle to heat stress. World Appl. Sci. J. 8:38–43.
- Fernandez, M. V. S., J. S. Johnson, M. Abuajamieh, S. K. Stoakes, J. T. Seibert, L. Cox, S. Kahl,T. H. Elsasser, J. W. Ross, S. C. Isom, et al. 2015. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs. Physiol. Rep. 3:e12315. doi:10.14814/phy2.12315
- Fernández, A. I., D. Pérez-Montarelo, C. Barragán, Y. Ramayo-Caldas, N. Ibáñez-Escriche, A. Castelló, J. L. Noguera, L. Silió, J. M. Folch, and M. C. Rodríguez. 2012. Genomewide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip. BMC Genet. 13:41. doi:10.1186/1471-2156-13-41
- Fragomeni, B. D. O., I. Misztal, D. L. Lourenco, I. Aguilar, R. Okimoto, and W. M. Muir. 2014. Changes in variance explained by top SNP windows over generations for three traits in broiler chicken. Front. Genet. 5:332. doi:10.3389/ fgene.2014.00332
- Gasparino, E., A. P. Del Vesco, D. M. Voltolini, C. S. Nascimento, E. Batista, A. S. Khatlab, D. O. Grieser, V. Zancanela, and S. E. GuimarÃEs. 2014. The effect of heat stress on GHR, IGF-I, ANT, UCP and COXIII mRNA expression in the liver and muscle of high and low feed efficiency female quail. Br. Poult. Sci. 55:466–473. doi :10.1080/00071668.2014.925090
- Gilmore-Hebert, M., R. Ramabhadran, and D. F. Stern. 2010. Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways. Mol. Cancer Res. 8:1388–1398. doi:10.1158/1541-7786.MCR-10-0042
- Gourdine, J. L., N. Mandonnet, M. Giorgi, and D. Renaudeau. 2017. Genetic parameters for thermoregulation and production traits in lactating sows reared in tropical climate. Animal 11:365–374. doi:10.1017/S175173111600135X
- Graves, K. L., Seibert, J. T., Keating, A. F., Baumgard, L. H., and J. W. Ross. 2018. Characterization of the acute heat stress response in gilts: II. Assessing repeatability and association with fertility. j. Anim. Sci. 96:2419–2426. doi:10.1093/jas/skx037
- Hale, B. J., C. L. Hager, J. T. Seibert, J. T. Selsby, L. H. Baumgard, A. F. Keating, and J. W. Ross. 2017. Heat stress induces autophagy in pig ovaries during follicular development. Biol. Reprod. 97:426–437. doi:10.1093/biolre/iox097
- Hayashida, N., M. Fujimoto, K. Tan, R. Prakasam, T. Shinkawa, L. Li, H. Ichikawa, R. Takii, and A. Nakai. 2010. Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. Embo J. 29:3459–3469. doi:10.1038/emboj.2010.225
- Heise, K., S. Puntarulo, M. Nikinmaa, D. Abele, and H. O. Pörtner. 2006. Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout *Zoarces viviparus*L. J. Exp. Biol. 209:353–363. doi:10.1242/jeb.01977
- Hoffmann, I. 2010. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41 (Suppl 1):32–46. doi:10.1111/j.1365- 2052.2010.02043.x
- Hong, E. P., and J. W. Park. 2012. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 10:117–122. doi:10.5808/GI.2012.10.2.117
- Horsley, V., and G. K. Pavlath. 2002. NFAT: ubiquitous regulator of cell differentiation and adaptation. J. Cell Biol. 156:771–774. doi:10.1083/jcb.200111073
- Hua, Y., K. Gorshkov, Y. Yang, W. Wang, N. Zhang, and D. P. Hughes. 2012. Slow down to stay alive: HER4 protects against cellular stress and confers chemoresistance in neuroblastoma. Cancer 118:5140–5154. doi:10.1002/ cncr.27496
- IPCC. 2007. Climate Change 2007: The Physical Science Basis. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Jin, Y., J. Wu, X. Song, Q. Song, B. L. Cully, A. Messmer-Blust, M. Xu, S. Y. Foo, A. Rosenzweig, and J. Li. 2011. RTEF-1, an upstream gene of hypoxia-inducible factor-1α, accelerates recovery from ischemia. J. Biol. Chem. 286:22699–22705. doi:10.1074/jbc.M111.237024
- Kaneko, K. J., and M. L. DePamphilis. 2013. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–3690. doi:10.1242/dev.093799
- Kang, H. M., J. H. Sul, S. K. Service, N. A. Zaitlen, S. Y. Kong, N. B. Freimer, C. Sabatti, and E. Eskin. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42:348–354. doi:10.1038/ng.548
- Katschinski, D. M., L. Le, D. Heinrich, K. F. Wagner, T. Hofer, S. G. Schindler, and R. H. Wenger. 2002. Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J. Biol. Chem. 277:9262–9267. doi:10.1074/jbc. M110377200
- Khaleque, M. A., A. Bharti, D. Sawyer, J. Gong, I. J. Benjamin, M. A. Stevenson, and S. K. Calderwood. 2005. Induction of heat shock proteins by Heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24:6564–6573. doi:10.1038/sj.onc.1208798
- Khar, A., A. L. Kumari, B. V. Pardhasaradhi, C. h. Varalakshmi, and N. Rangaraj. 2006. Heat stress induced apoptosis in BC-8 cells derived from AK-5 tumor involves downregulation of Bcl-2 and generation of reactive oxygen species. Indian J. Exp. Biol. 44:802–808.
- Kourtis, N., V. Nikoletopoulou, and N. Tavernarakis. 2012. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490:213–218. doi:10.1038/nature11417
- Liu, S., X. Wang, F. Sun, J. Zhang, J. Feng, H. Liu, K. V. Rajendran, L. Sun, Y. Zhang, Y. Jiang, et al. 2013. RNAseq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol. Genomics 45:462–476. doi:10.1152/physiolgenomics.00026.2013
- Lord-Fontaine, S., and D. A. Averill-Bates. 2002. Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Radic. Biol. Med. 32:752–765. doi:10.1016/S0891-5849(02)00769-4
- Lu, X., W. X. Fu, Y. R. Luo, X. D. Ding, J. P. Zhou, Y. Liu, J. F. Liu and Q. Zhang. 2012. Genome-wide association

study for T lymphocyte subpopulations in swine. BMC Genomics 13:488. doi:10.1186/1471-2164-13-488

- Meiri, D., and A. Breiman. 2009. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with hsp90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J. 59:387–399. doi:10.1111/j.1365-313X.2009.03878.x
- Montilla, S. I., T. P. Johnson, S. C. Pearce, D. Gardan-Salmon, N. K. Gabler, J. W. Ross, R. P. Rhoads, L. H. Baumgard, S. M. Lonergan, and J. T. Selsby. 2014. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature (Austin). 1:42–50. doi:10.4161/temp.28844
- Morris, C. A., K. R. Jones, and J. A. Wilson. 1989. Heritability of rectal temperature and relationships with growth in young cattle in a temperate climate. New Zeal. J. Agr.Res. 32:375–378. doi:10.1080/00288233.1989.10421755
- Navarro, S. J., T. Trinh, C. A. Lucas, A. J. Ross, K. G. Waymire, and G. R. Macgregor. 2012. The C57BL/6J mouse strain background modifies the effect of a mutation in Bcl2l2. G3 (Bethesda). 2:99–102. doi:10.1534/g3.111.000778
- Nefkens, I., D. G. Negorey, A. M. Ishow, J. S. Michaelson, E. T. Yeh, R. M. Tanguay, W. E. Müller, and G. G. Maul. 2003. Heat shock and Cd2+ exposure regulate PML and Daxx release from ND10 by independent mechanisms that modify the induction of heat-shock proteins 70 and 25 differently. J. Cell Sci. 116:513–524. doi: 10.1242/jcs.00253
- Nickel, A. G., A. von Hardenberg, M. Hohl, J. R. Löffler, M. Kohlhaas, J. Becker, J. C. Reil, A. Kazakov, J. Bonnekoh, M. Stadelmaier, et al. 2015. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 22:472–484. doi:10.1016/j. cmet.2015.07.008
- NRC. 2012. Nutrient Requirements of Swine, 11th rev. ed. Natl. Acad. Press, Washington, DC. doi:10.17226/13298
- Renaudeau, D., A. Collin, S. Yahav, V. de Basilio, J. L. Gourdine, and R. J. Collier. 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6:707–728. doi:10.1017/S1751731111002448
- Renaudeau, D., M. Leclercq-Smekens, and M. Herin. 2006. Differences in skin characteristics in European (Large White) and Caribbean (Creole) growing pigs with reference to thermoregulation. Anim. Res. 55:209–217. doi:10.1051/animres: 2006012
- Renaudeau, D., and J. Noblet. 2001. Effects of exposure to high ambient temperature and dietary protein level on sow milk production and performance of piglets. J. Anim. Sci. 79:1540–1548. doi:/2001.7961540x
- Renaudeau, D., J. Noblet, and J. Y. Dourmad. 2003. Effect of ambient temperature on mammary gland metabolism in lactating sows. J. Anim. Sci. 81:217–231.doi:/2003.811217x
- Rhoads, M. L., J. W. Kim, R. J. Collier, B. A. Crooker, Y. R. Boisclair, L. H. Baumgard, and R. P. Rhoads. 2010. Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J. Dairy Sci. 93:170–179. doi:10.3168/jds.2009-2469
- Rhoads, M. L., R. P. Rhoads, M. J. VanBaale, R. J. Collier, S. R. Sanders, W. J. Weber, B. A. Crooker, and L. H. Baumgard. 2009. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 92:1986–1997. doi:10.3168/jds.2008-1641
- Ripoll, V. M., N. A. Meadows, M. Bangert, A. W. Lee, A. Kadioglu, and R. D. Cox. 2012. Nicotinamide

nucleotide transhydrogenase (NNT) acts as a novel modulator of macrophage inflammatory responses. FASEB J. 26:3550–3562. doi:10.1096/fj.11-199935

- Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M., Adur, M. K., Keating, A. F., and L. H. Baumgard. 2017. Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol. Reprod. Dev. 84:934–945. doi:10.1002/mrd.22859
- Segura, V., B. J. Vilhjálmsson, A. Platt, A. Korte, Ü. Seren, Q. Long, and M. Nordborg. 2012. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44:825–830. doi:10.1038/ng.2314
- Seibert, J. T., K. L. Graves, B. J. Hale, A. F. Keating, L. H. Baumgard, and J. W. Ross. 2018. Characterizing the acute heat stress response in gilts: I. Thermoregulatory and production variables. J. Anim. Sci. 96:941–949. doi:10.1093/jas/skx036
- Setroikromo, R., P. K. Wierenga, M. A. van Waarde, J. F. Brunsting, E. Vellenga, and H. H. Kampinga. 2007. Heat shock proteins and Bcl-2 expression and function in relation to the differential hyperthermic sensitivity between leukemic and normal hematopoietic cells. Cell Stress Chaperones 12:320–330. doi:10.1379/CSC-279.1
- Simonson, T. S., Y. Yang, C. D. Huff, H. Yun, G. Qin, D. J. Witherspoon, Z. Bai, F. R. Lorenzo, J. Xing, L. B. Jorde, et al. 2010. Genetic evidence for high-altitude adaptation

in Tibet. Science 329:72–75. doi:10.1126/science.1189406

- Spencer, C. C., Z. Su, P. Donnelly, and J. Marchini. 2009. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. Plos Genet. 5:e1000477. doi:10.1371/journal. pgen.1000477
- St-Pierre, N., B. Cobanov, and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52–E77. doi:10.3168/jds.S0022-0302 (03)74040–5
- Taouis, M., V. De Basilio, S. Mignon-Grasteau, S. Crochet, C. Bouchot, K. Bigot, A. Collin, and M. Picard. 2002. Early-age thermal conditioning reduces uncoupling protein messenger RNA expression in pectoral muscle of broiler chicks at seven days of age. Poult. Sci. 81:1640– 1643. doi:10.1093/ps/81.11.1640
- Tian, Y. G., M. Yue, Y. Gu, W. W. Gu, and Y. J. Wang. 2014. Single-nucleotide polymorphism analysis of *GH*, *GHR*, and *IGF-1* genes in minipigs. Braz. J. Med. Biol. Res. 47:753–758. doi: 10.1590/1414-431X20143945
- Volloch, V., V. L. Gabai, S. Rits, and M. Y. Sherman. 1999. ATpase activity of the heat shock protein hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis. FEBS Lett. 461:73–76. doi:10.1016/S0014-5793(99)01428-3
- Wettemann, R. P., and F. W. Bazer. 1985. Influence of environmental temperature on prolificacy of pigs. J. Reprod. Fertil. Suppl. 33:199–208.