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ABSTRACT: Feed costs comprise the majority
of variable expenses in beef cattle systems mak-
ing feed efficiency an important economic con-
sideration within the beef industry. Due to the
expense of recording individual feed-intake phe-
notypes, a genomic-enabled approach could be
advantageous toward improving this economic-
ally relevant trait complex. A genome-wide asso-
ciation study (GWAS) was performed using 748
crossbred steers and heifers representing seven
sire breeds with phenotypes for ADG and ADFI.
Animals were genotyped with the BovineSNP50v2
BeadChip containing approximately 54,000 SNP.
Both traits were analyzed using univariate SNP-
based (BayesC) and haplotype-based (BayesIM)
models and jointly using BayesIM to perform a
bivariate GWAS. For BayesIM, a hidden Markov
model (HMM) of haplotype segments of variable
length was built where haplotypes were mapped
to clusters based on local similarity. The esti-
mated HMM was then used to assign haplotype
cluster genotypes, instead of SNP genotypes, as
latent covariates in a Bayesian mixture model.

The number of haplotype clusters at each loca-
tion was assumed to be either 8 (BayesIM8) or 16
(BayesIM16). A total of three univariate analyses
for each trait and two bivariate analyses were per-
formed. Posterior SD (PSD) for ADG were 0.28
(0.08), 0.37 (0.11), 0.37 (0.11), 0.35 (0.11), and
0.35 (0.12) for BayesC, BayesIMS8, BayesIMI16,
BayesIMS8 bivariate, and BayesIM16 bivariate,
respectively. ADFI PSD were 0.30 (0.07), 0.44
(0.13), 0.42 (0.12), 0.38 (0.10), and 0.38 (0.10) for
the same models. The top 1% of 1-Mb windows
that explained the largest fraction of genetic varia-
tion in common between univariate SNP and hap-
lotype models ranged from 24% to 40% and from
20% to 32% for ADG and ADFI, respectively.
Spearmen rank correlations between molecular
breeding values from SNP and haplotype-based
models in the training data were similar for both
traits (>0.96) suggesting that either model would
lead to similar rankings of animals, although res-
olution of potential QTL appeared to be greater
for BayesIM.
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INTRODUCTION

The majority of variable expenses in beef
cattle systems are due to feed costs making feed
efficiency an important economic consideration
(Koch et al., 1963; Dickerson et al., 1974). It is esti-
mated that a 10% increase in daily gain would lead
to an 18% advantage in profit, but a 10% increase
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in feed efficiency would increase profit by 43% (Fox
et al., 2001). Aside from the economic consider-
ations, improved feed efficiency also has an envir-
onmental impact as more efficient cattle have fewer
days to finish and produce less methane throughout
their lifetime (Freetly and Brown-Brandl, 2013).
Moderate-to-high heritability estimates for feed effi-
ciency traits (Arthur et al., 2001a, 2001b; Nkrumah
et al., 2007) suggest feed efficiency would respond
favorably to selection. Still, individual feed intake
is difficult to obtain and expensive to measure.
Therefore, a genomics approach seems warranted.
Although genome-wide association studies (GWAS)
have identified several QTL associated with feed
efficiency traits (Snelling et al., 2011; Saatchi et al.,
2014), none have compared a SNP-based approach
with a haplotype-based approach. The objective of
this study was to identify genomic regions associated
with ADG and ADFI in an admixed population of
beef cattle using univariate SNP and univariate and
bivariate haplotype models.

MATERIALS AND METHODS

Description of Population

The experimental protocol at USMARC was
approved by the USMARC IAACUC and followed
FASS guidelines (FASS, 1999). Feedlot ADG and
ADFI (on a DM basis) were recorded from cross-
bred steers and heifers (n = 777) at the U.S. Meat
Animal Research Center (USMARC) in Clay
Center, Nebraska, and the University of Missouri
(MU) in Columbia, Missouri. Commercial dams
were mated to seven purebred sire breeds includ-
ing Angus, Red Angus, Charolais, Simmental,
Hereford, Gelbvieh, and Limousin, and one com-
mercial sire group comprised of Y2 Angus, Y
Simmental, and % South Devon. The number of
offspring by breed of sire is presented in Table 1.

Animals used in the current study were the prod-
uct of three matings across 2 yr and two locations.
The first calf crop (n = 213) was born in May 2012 at
a commercial ranch near Ashby, Nebraska. Calves
were weaned in August of the same year and placed
in a dry lot for backgrounding before entering indi-
vidual feed-intake facilities. These steer calves were
placed in GrowSafe facilities at MU with the 70-d
feeding period beginning on March 20, 2013 and
ending on May 30, 2013. Weights were recorded
for two consecutive days at the start and end of the
feeding period. Initial and final weights were deter-
mined as the mean of the two consecutive weights.
While in the individual feeding facilities, the ration
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Table 1. Number of calves by sire breed

Sire breed? No. Progeny

AN 204

AR 67

CH 64

COM 54

GV 148

HH 23

LM 73

SM 115
“AN = Angus, AR = Red Angus, CH = Charolais,

COM = Commercial, GV = Gelbvieh, HH = Hereford, LM = Limousin,
SM = Simmental.

consisted of 8.9% corn silage, 52.1% whole corn,
26.4% DDGS, and 12.6% premix on a DM basis.

The second calf crop (n = 309) was born in
August of 2012 at USMARC and weaned in January
of 2013 into a feedlot. They were fed a background-
ing diet and entered Calan Gate feeding facilities at
USMARC on July 9, 2013, and were removed on
October 1, 2013, for a total of 83 days in the facil-
ity. Initial and final weights were estimated from the
regression of BW on time across the entire feeding
period. The on-test finishing ration consisted of 8%
ground alfalfa, 67.75% rolled corn, 20% wet distill-
ers grains with soluables, and 4.25% supplement
containing rumensin at 700 g/ton on a DM basis.
Steers were implanted with Revalor XS, and heif-
ers were implanted with Revalor IH. Forty steers
were used in a metabolism study prior to the feed-
ing period, and therefore were treated as a separate
contemporary group.

The final group of calves (n = 255) were born
between April and May of 2013 at USMARC and
weaned into the feedlot in September. They entered
Calan Gate feeding facilities on February 11, 2014,
and were removed from the facilitiecs on May 6,
2014, for an 84-d feeding period. Initial and final
weights were estimated from the regression of BW
on time across the entire feeding period. The fin-
ishing ration and implant regimen were consistent
with the 2012-born USMARC cattle.

Animals were genotyped with Illumina
BovineSNP50v2 Beadchip (Illumina, San Diego,
CA) that contained approximately 54,000 SNP.

Data Editing

Animals with unidentified sires or sire breeds
(n = 6), those with missing birth dates (n = 19), miss-
ing genotypic data (n = 1) or late castrated steers
(n = 3) were removed from the analysis. A total of
748 animals remained after data editing. Phenotypic
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means (SD) for ADG and ADFT after correcting for
breed of sire, contemporary group (concatenation
of location, year, and sex), and initial weight when
entering the feeding facilities are presented in Table 2.

Quality scores (GenCall) for each genotype
were assigned through Illumina data analysis soft-
ware. Missing genotypes or genotypes with GenCall
scores less than 0.20 were replaced with the mean
genotype score at that marker calculated within
subgroups based on location and birth year. No
preanalysis filtering was performed based on minor
allele frequency. Unmapped and sex chromosome
SNP were removed leaving 52,890 SNP for analysis.

Statistical Analyses

Both traits were analyzed independently through
SNP (BayesC; Habier et al., 2011) and haplotype
(BayesIM; Kachman, 2016) models and together
using BayesIM to perform a bivariate GWAS.
Contemporary group and breed of sire, with the
composite sire group treated as its own breed, were
fitted as a classification effects with initial weight,
calculated as the average of the two consecutive
weights at the start of the feeding period, fitted as a
fixed covariate. BayesC was implemented via GenSel
(version 0.9.2.045; Fernando and Garrick, 2009).
The proportion of SNP assumed to have a null
effect on the trait, 7, was assumed to be 0.99 which
corresponded to fitting approximately 500 markers
in each Markov chain Monte Carlo (MCMC) iter-
ation. A chain length of 41,000 iterations was run
with the first 1,000 discarded as burn-in. Prior vari-
ance component estimates were selected by starting
with low and high a priori heritability estimates until
the posterior heritability estimates were trending up
and down, respectively, and a value in the middle
was chosen as the final a priori heritability estimate
used to determine prior variance component esti-
mates. The genome was separated into 1-Mb non-
overlapping windows (n = 2,536) with the additive
genetic variance calculated within each window.

Haplotype association analyses were per-
formed wusing a Bayesian mixture model

Table 2. Number of observations (N) and mean

(SD) for ADG and ADFI

Trait N Mean
ADG, kg/d 748 1.81(0.22)
ADFI, kg/d 748 10.00 (1.13)

“ADG and ADFTI adjusted for contemporary group (concatenation
of year, location, and sex), breed of sire, and initial weight at the start
of the feeding period.

Schweer et al.

fitting haplotype effects as covariates (BayesIM;
Wilson-Wells and Kachman, 2016). A major lim-
itation of current GWAS models is that they rely
on information at the individual SNP locations.
This is problematic because QTL are unlikely to
be at the SNP location and it ignores informa-
tion that could be garnered from using neigh-
boring SNP loci. In brief, the haplotype-based
model (BayesIM) partitions the genome into var-
iable length segments. Haplotypes are clustered
together based on similarity, and clusters are
defined based on the frequency of the A allele
at each locus. BayesIM models the haplotypes
using a hidden Markov model where the hidden
states are the unobserved haplotype cluster gen-
otype, the transition probabilities are a function
of the map distance between adjacent loci, and
the emission probabilities are the frequency of
the A allele at each locus. The number of haplo-
type clusters is considered fixed. Emission and
transition probabilities for the hidden Markov
model are estimated using maximum likelihood.
Haplotype cluster segments are sampled using
a Metropolis-Hastings algorithm. The sampled
cluster genotype, instead of SNP genotype, are
then used as covariates in the model. BayesIM is
similar to well-known Bayesian mixture models
used for GWAS such as BayesC (Habier et al.,
2011) in that the probability of a nonzero haplo-
type effect at a given locus is given by 1- where
ot is the probability that a haplotype (BayesIM)
or SNP (BayesC) does not have an effect on the
trait of interest. The same prior distributions
for the fixed effects (flat), random effects (mul-
tivariate normal), and variances (inverse scaled
chi-square) were assumed for both BayesIM and
BayesC. Uniquely, BayesIM does not require that
missing SNP be imputed, although in the present
study we elected to do so to allow commonal-
ity of SNP genotypes between haplotype- and
SNP-based models. The number of haplotype
clusters at each location was assumed a priori
to be cither 8 (BayesIMS8) or 16 (BayesIM16).
A pooled-within sire breed genetic variance was
calculated. To keep approximately equal number
of covariates in the SNP and haplotype model,
1t was assumed to be 0.98 for both the univari-
ate and bivariate haplotype analyses. The aver-
age haplotype length was estimated, and QTL
were assumed to be evenly spaced every 100 kb.
A total MCMC chain length of 100,000 itera-
tions was used with the first 10,000 iterations
discarded as burn-in. A prior heritability esti-
mate was again selected by starting with low



Feed efficiency GWAS in beef cattle

and high a priori heritability estimates until the
posterior heritability estimates were trending up
and down, respectively. A middle value was then
chosen as the final a priori heritability estimate.
Overlapping 1-Mb QTL regions (n = 25,200)
were built in a stair-step fashion by offsetting the
region starting position by 100 kb. From these
QTL regions, 1-Mb nonoverlapping windows (n
=2 ,536) were extracted for a direct comparison
to the SNP-based model.

Calculation of Genetic and Residual Correlations

Bivariate haplotype analyses estimate the
genetic and residual (co)variances for both traits
in the model at each iteration. Given the additive
genetic merit of the jth animal from j = 1,..., 748 is:

A Z 25, 200

where H, is the effect of the ith haplotype from
i=1,...,25 200 and G, is the unobserved haplotype
genotype of the ith haplotype for the jth animal,
the additive genetic covariance between ADG and
ADFT is derived as:

2718 (AADG, - %) (AADFIj

j=1

O-AADG‘ ADFI 748

- AADFI )

where 4,pg, is the additive genetic merit of
each animal from j = 1,..., 748 for ADG, A4pc is
the mean additive genetic merit for ADG, AADFI]»
is the additive genetic merit of_each animal from
j=1,.., 748 for ADFI, and Aspr is the mean
additive genetic merit for ADFI.

The genetic correlation was calculated as:

AADG,ADFI

rAADG ADFI
GAA DG XGAA DFI
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where G, o is the additive genetic covari-
ance between ADG and ADFI, 0, is the addi-
tive genetic SD of ADG, and Oy,,,, is the additive
genetic SD of ADFI.

The residual correlation was calculated as:

EADGTADFI

GEADG XGEADFI

where Ok,,; . 1S the residual covariance be-
tween ADG and ADFI, O, is the residual SD of
ADG, and O 4pgr is the residual SD of ADFI.

Calculation of Rank Correlations

A molecular breeding value (MBYV) for each
animal was estimated as the total genetic value
of that individual based on the summation of the
product of the marker effect and animal’s genotype
across all loci. Pearson rank correlations were cal-
culated based on MBV within trait for ADG and
ADFI between all possible univariate analyses.

Gene Ontology

Top windows of interest were extended by
0.5 Mb in each direction to determine candidate
genes associated with feed efficiency traits using
the Bos taurus build UMD_3.1 assembly (Zimin
et al., 2009). The BioMart data mining tool avail-
able through Ensembl (Ensembl Genes 84) was
used to determine gene ontology terms of candi-
date genes.

RESULTS AND DISCUSSION

Posterior Mean Genomic Heritability Estimates

The posterior means of genomic heritability,
additive genetic, and residual variances for ADG

Table 3. Genomic heritability (h?), additive genetic variance (V,), and residual variance (V) for ADG and

ADFI*

BayesC BayesIM8°

BayesIM 16°

BayesIMS8 bivariate® BayesIM 16 bivariate®

Trait h? \% A% h? \' v h?

A E A E

\ \Y% h? \ \Y% h? \ \Y%

A E A E A E

ADG, 028 002 005 037 002 004 037
keg/d  (0.08) (0.01) (0.01) (0.11) (0.01) (0.01)

DMI, 030 028 067 044 040 051 042
kg/d  (0.07) (0.07) (0.07) (0.13) (0.12) (0.12)

(0.11)

(0.12)

002 004 035 002 004 035 002 004
(0.01)

0.39 0.53 0.38 0.36 0.59 0.38 0.36 0.59

0.01) (0.11) (0.01) (0.01) (0.12) (0.01) (0.01)

(0.11) (0.11) (0.10) (0.12) (0.09) (0.10) (0.12) (0.09)

“Estimates are posterior means. Posterior SDs in parentheses.
"BayesIM8 = BayesIM 8 clusters.
‘BayesIM 16 = BayesIM 16 clusters.
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and ADFT are presented in Table 3. Posterior mean
genomic heritability estimates for ADG ranged
from 0.28 to 0.37 for the three univariate and two
bivariate analyses with the SNP model produc-
ing the lowest estimate and the haplotype analy-
ses being similar despite the number of haplotype
clusters assumed. A similar trend was observed
with ADFTI as posterior mean genomic heritability
estimates ranged from 0.30 to 0.44 with the SNP
model again producing the lowest estimate.

Saatchi et al. (2014) reported genomic heritabil-
ity estimates of 0.30 for ADG and 0.35 for ADFI
from a BayesB model from an admixed population
while Abo-Ismail et al. (2014) reported slightly
higher estimates of 0.35 and 0.42 for ADG and
ADFI, respectively. Pedigree-based estimates of
heritability range from 0.23 to 0.41 for ADG and
0.27 to 0.54 for ADFI (Arthur et al., 2001a; Arthur
et al., 2001b; Schenkel et al., 2004; Robinson and
Oddy, 2004; Nkrumah et al., 2007). These results
are in agreement with the findings of the current
study. Differences between the haplotype- and
SNP-based models may be due to the breed admix-
ture of the population as BayesIM has the potential
to be more sensitive to breed admixture with the
HMM possibly building haplotype clusters that are
breed specific.

Genetic and Residual Correlations From Bivariate
Analyses

The posterior mean genetic correlations
between ADG and ADFI were 0.59 (0.11) and
0.59 (0.10) for BayesIMS8 bivariate and BayesIM 16
bivariate, respectively. Previous estimates of genetic
correlations between ADG and ADFI range from
0.50 to 0.87 (Arthur et al., 2001a; Schenkel et al.,
2004; Nkrumabh et al., 2007).

The posterior mean residual correlations
between ADG and ADFI were 0.55 (0.06) and 0.55
(0.06) from BayesIMS8 bivariate and BayesIM16
bivariate, respectively. Robinson and Oddy (2004)
reported a higher residual correlation of 0.68
between feed intake and weight gain.

Rank Correlations of Molecular Breeding Values

Animals ranked similarly across SNP- and hap-
lotype-based models for ADG with correlations
>0.97. Rank correlations were similar for ADFI
(>0.96). High rank correlation estimates between
SNP and haplotype models indicated that both
models would lead to similar animals being selected
based on MBV.

Schweer et al.

Comparison of Genomic Regions Across Univariate
SNP and Haplotype Models

The chromosomes and positions of top 1% of
1-Mb windows (n# = 25) based on the percentage of
genetic variance explained from univariate analyses
are detailed in Table 4. The top 1% of 1-Mb win-
dows (n = 25) from the bivariate analyses were deter-
mined by the top joint model frequency when both
traits have a nonzero effect (Table 5). Commonality
between top genomic regions across univariate
SNP and haplotype models was described as the
proportion of top 1% 1-Mb windows in common
(Table 6).

Within the top 1% of 1-Mb windows, BayesC
and BayesIMS shared 40% of 1-Mb windows for
ADG and 24% for ADFI. As the number of haplo-
type clusters assumed increased, the commonality
between models decreased as the genetic variance
was partitioned across more haplotype effects with
24% of 1-Mb windows shared between BayesC and
BayesIM 16 for ADG and 20% for ADFI.

Genomic Regions Associated With ADG

Metropolis plots of the model frequency of
each SNP or haplotype loci across the genome
for BayesC, BayesIM8, and BayesIM16 for ADG
are in Figures 1 and 2, respectively. The model
frequency of the SNP model begins at zero due
to monomorphic SNP being included in the ana-
lysis but being excluded from models selected by
BayesC. The magnitude of the model frequencies
differed between models. As the number of covar-
iates fitted at a given loci increased, the magnitude
of the model frequency decreased resulting in the
SNP analysis having higher model frequencies
than BayesIM8 and BayesIM16. BayesIMS8 also
has higher model frequencies than BayesIM16
again due to half as many covariates being fitted
at a given locus.

For ADG, a peak on BTA 22 is seen across all
univariate analyses based on model and window
frequency (Figure 3). The top SNP on BTA 22
was BTA-54550-no-rs at 44.94 Mb identified
through the BayesC analysis. A second SNP with
high model frequency, ARS-BFGL-NGS-81286,
was nearby at 45.12 Mb. The maximum point of
the QTL peak was at 45.0 Mb for both BayesIM§
and BayesIM16. The width of the QTL peak was
defined as the position when the model frequency
was greater than the mean model frequency of the
chromosome and ends when the model frequency
returns to the mean. The peak surrounding the top
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Table 4. Chromosome and position of the top 1% 1-Mb windows for ADG and ADFI from each univariate

analysis*
ADG ADFI
Chromosome BayesC BayesIM8® BayesIM 16° BayesC BayesIM8® BayesIM 16°
1 150-151 4-5,150-151,  151-152, 155-156,  155-156, 157158
151-152 157-158
2 14-15, 68-69 65-66
3 119-120 119-120 96-97 98-99 79-80 61-62
4 5-6 100-101 36-37
5 73-74
6 38-39 76-77 14-15 4-5,14-15,15-16,  14-15,16-17,17-18
16-17,24-25
7 57-58, 67-68 64-65 102-103 26-27 14-15
8 1-2,72-73 1-2,6-7,72-73 72-73,92-93 82-83 107-108
101-102 20-21, 64-65
10 27-28, 45-46, 101-102 20-21 41-42, 53-54
68-69,
101-102
11 7-8 4-5 4-5 65-66
13 75-76, 81-82, 83-84 83-84 79-80, 82-83 25-26
83-84
14 13-14, 24-25 13-14, 24-25 23-24,24-25,26-27 9-10
15 81-82 26-27 20-21,44-45,  44-45,64-65,71-72 44-45, 45-46, 64-65,
82-83 67-68, 82-83
16 24-25 21-22
17 65-66, 67-68 9-10
18 63-64 45-46 65-66
19 25-26 21-22 21-22 17-18, 30-31
20 6-7 2-3,3-4,6-7,7-8 6-7,7-8 16-17 16-17
21 25-26,27-28 21-22, 27-28, 30-31 27-28
22 9-10, 4445, 17-18, 32-33,44-45,  15-16, 29-30, 43-44, 29-30
45-46, 55-56 45-46 45-46, 46-47
23 7-8
24 18-19 7-8 7-8
25 6-7 6-7
26 19-20
27 15-16 31-32 10-11, 11-12, 31-32,
32-33
29 34-35 44-45

“Position refers to the location in megabases (Mb) for a particular chromosome derived from the Bos taurus build UMD_3.1 assembly (Zimin

et al., 2009).
"BayesIM8 = BayesIM 8 clusters.
‘BayesIM 16 = BayesIM 16 clusters.

QTL on BTA 22 ranged from 40.54 to 46.68 Mb and
42.31 to 47.65 Mb for BayesIM8 and BayesIM16,
respectively.

Gene ontology results for the extended 1-Mb
window on BTA 22 include positive regulation
of lipid formation (ABHDG6), skeletal muscle tis-
sue development (EI/BKX7), muscle contraction
(SLMAP), metabolic processes (LOCI00847355),
and regulation of glucose (APPLI). Snelling et al.
(2011) discovered one significant SNP associated
with ADG and two significant SNP associated
with midtest metabolic weight (MMBW) in the
adjacent region from 45 to 46 Mb on BTA 22.

Within the same 1-Mb region, Bolormaa et al.
(2011) found two additional SNP associated
with MMBW.

The QTL peak within the chromosomal region
on BTA 13 from 83 to 84 Mb was common among
the top 1% of 1-Mb windows across all univari-
ate ADG analyses (Figure 4). While the top SNP
based on model frequency on BTA 13 was at
75.27 Mb, two SNP within the region of inter-
est, ARS-BFGL-NGS-114977 and ARS-BFGL-
NGS-87042, were located at 83.80 and 83.76 Mb,
respectively. The maximum of the QTL peak was
at 83.7 Mb from BayesIMS while it shifted slightly
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to 83.8 Mb for BayesIM16. The QTL region
spanned from 81.93 Mb to the end of BTA 13 and
from 79.21 Mb to the end of the chromosome for
BayesIMS8 and BayesIM 16, respectively. Within this
region are genes associated with the perception of
smell (LOC532472) and nervous system develop-
ment (DOK5). Lu et al. (2013) found ARS-BFGL-
NGS-87042 to have a significant allelic substitution
effect on DMI. An additional SNP in the same
region, ARS-BFGL-NGS-89423, had a significant
effect on birth weight (Lu et al., 2013).

Also, common across univariate analy-
ses for ADG was BTA 3 from 119 to 120 Mb
(Figure 5). The top SNP based on model frequency,

Table 5. Chromosome and position of the top
1% 1-Mb windows for ADG and ADFI from the
bivariate haplotype model“

Chromosome BayesIMS8 bivariate® BayesIM 16 bivariate®
1 155-156

3 119-120 119-120

4 100-101

5 107-208

6 4-5,24-25,52-53 16-17, 52-53
7 67-68

8 72-73, 86-87 72-73

10 53-54, 56-57 41-42, 50-51
11 4-5, 65-66 4-5

13 83-84 80-81, 83-84
14 26-27 24-25,26-27
15 71-72, 82-83

16 24-25 24-25

17 67-68

18 40-41 89

19 21-22

20 3-4,6-7 3-4

21 21-22,28-29

22 44-45,46-47  29-30,43-44, 44-45, 45-46, 46-47
23 4-5

28 29-30

29 44-45

“Position refers to the location in megabases (Mb) for a particular
chromosome derived from the Bos taurus build UMD_3.1 assembly
(Zimin et al., 2009).

"BayesIM8 = BayesIM 8 clusters.

‘BayesIM 16 = BayesIM 16 clusters.

Schweer et al.

ARS-BFGL-NGS-57851, was located at 119.55 Mb.
The maximum point of the QTL peak was observed
at 119.7 Mb from BayesIM8 and spanned from
118.62 to 121.94 Mb. When 16 haplotype clusters
were assumed, the maximum point remained at
119.7 Mb and the width of the QTL peak decreased,
118.42 to 120.91 Mb. This region contains genes that
are involved in cell proliferation (HDAC4), skeletal
system development (HDAC4), metabolic processes
(LOC782114), regulation of insulin and glucose
(CAPNI10), and positive regulation of skeletal muscle
differentiation (GCPI). Serao et al. (2013) identified
one SNP associated with residual ADG at 120.79 Mb.

Genomic Regions Associated With ADFI

Metropolis plots for ADFI for BayesC,
BayesIMS8, and BayesIM16 are presented in
Figures 6 and 7, respectively. The region from 151
to 152 Mb on BTA 1 was common across univari-
ate analyses for ADFI based on model and window
frequency (Figure 8). Three SNP with top model
frequencies were within this window, ARS-BFGL-
NGS-14751, ARS-BFGL-NGS-57499, and ARS-
BFGL-NGS-70523, located at 151.00, 151.15, and
151.13 Mb, respectively. The haplotype analyses
agreed with the maximum of the QTL peak located
at 151.1 Mb from BayesIM8 and BayesIMI6.
Within this region, there were two peaks; a sharp,
narrow QTL region followed by a broader area that
began approximately 1 Mb following the tail of the
first peak. For BayesIMS8, the first peak ranged from
149.96 to 151.54 Mb with the subsequent interval
starting at 152.48 Mb and extending to 156.04 Mb.
When the number of haplotype clusters assumed
increased, the range of the first peak was consistent
(149.92 to 151.53 Mb), while the second QTL inter-
val spanned nearly 8 Mb from 152.53 to 160.08 Mb.
The region from 150.5 to 158.5 Mb spans across the
two pronounced peaks on BTA 1.

At the frontend of this region, Lu et al. (2013)
found a SNP located at 149.55 Mb to have a signif-
icant allelic substitution effect on ADG. At the end
of the QTL peak at 157.50 Mb, the same authors
found BTB-01633159 to be associated with residual

Table 6. Proportion of the top 1% 1-Mb windows shared between univariate analyses for ADG and ADFI

ADG ADFI
BayesIM8® BayesIM 16° BayesIM8* BayesIM 16°
BayesC 0.40 0.24 0.24 0.20
BayesIMS§- — 0.36 — 0.32

“BayesIM8 = BayesIM 8 clusters.
*BayesIM 16 = BayesIM 16 clusters.
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Figure 1. Genome-wide association analysis between SNP genotypes and ADG from BayesC. The Y-axis represents the model frequency of
each marker. On the X-axis, alternate gray scales represent different chromosomes from BTA 1 to BTA 29.
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Figure 2. Genome-wide association analysis between haplotype genotypes and ADG from BayesIM 8 (left) and BayesIM 16 clusters (right).
The Y-axis represents the model frequency of each haplotype loci. On the X-axis, alternate gray scales represent different chromosomes from BTA

1 to BTA 29.

feed intake (RFI). Gene ontology results for the
extended window on BTA 1 include nervous sys-
tem development (SIM?2), cell proliferation (HLCS,
RIPPLY3), and cell differentiation (ERG).

On BTA 21, the window from 27 to 28 Mb
was associated with ADFI (Figure 9). Three SNP,
Hapmap53212-rs29015272, BTB-01168615, and
Hapmap49382-BTA-9378, were located at 25.70,
26.12 and 27.89 Mb, respectively. These top SNP
were potentially in LD with the same QTL as the
QTL window ranged from 25.19 to 29.23 Mb from
BayesIMS8 and 25.32 to 28.84 Mb from BayesIM 16.
Within this region, gene ontology results include
positive regulation of cell proliferation (CTSH,
RASGRF1) and metabolic processes (FAH,
ABHDI17C). Abo-Ismail et al. (2014) found two
SNP with significant associations with RFI and one

SNP significantly associated with DMI on BTA 21
near 29 Mb.

Potential Pleiotropic Genomic Regions Associated
With ADG and ADFI

In the bivariate analyses, top regions identified
have the potential toinfluence both traits. Metropolis
plots of BayesIM8 bivariate and BayesIM 16 bivari-
ate are in Figure 10. It was expected that top regions
in common across traits from the univariate analy-
ses would also be apparent in the bivariate associ-
ations. The previously discussed region on BTA 13
was also identified in the top 1% of 1-Mb windows
from haplotype bivariate associations. Comparison
of QTL peaks from BayesIMS for ADG, ADFI, and
bivariate associations for BTA 13 are in Figure 11.
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(bottom). The Y-axis represents the model frequency of each marker or haplotype loci. The X-axis is position in megabases (Mb) on BTA 22.
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Figure 4. BTA 13 from genome-wide association analyses for ADG from BayesC (top), BayesIM 8§ clusters (middle), and BayesIM 16 clusters
(bottom). The Y-axis represents the model frequency of each marker or haplotype loci. The X-axis is position in megabases (Mb) on BTA 13.

Both univariate analyses and the bivariate analyses
performed similar with all QTL intervals beginning
at approximately 80 Mb and extending to the end
of BTA 13.

The regions on BTA 20 from 4 to 5 Mb and 6
to 7 Mb were observed in the majority of bivari-
ate analyses. Two QTL peaks spanned across these
for both bivariate analyses with the first inter-
val stretching from 0.40 to 4.84 Mb and the sec-
ond interval spanning from 5.44 to 8.40 Mb from
BayesIMS. When 16 clusters were assumed, a simi-
lar pattern was observed with the first interval rang-
ing from 1.32 to 4.71 Mb and the second spanning
from 5.98 to 7.64 Mb. This peak was observed in the

univariate haplotype analysis for ADG. The inter-
val locations were similar to the bivariate analyses
ranging from 1.14 to 4.94 Mb and 5.22 to 8.05 Mb
for BayesIM8 and 2.10 to 12.02 Mb for BayesIM 16
for ADG. Comparison of genomic regions across
univariate and bivariate haplotype analyses on
BTA 20 are illustrated in Figure 12.

This region is flanked by two large-effect pleio-
tropic QTL discovered by Saatchi et al. (2014).
A QTL associated with RFI and MMBW in a
Hereford population was identified in the 1-Mb
window from 4 to 5 Mb on BTA 20. The same study
identified a significant window on BTA 20 from § to
9Mbassociated with ADGinanadmixed population
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Figure 6. Genome-wide association analysis between SNP genotypes and ADFI from BayesC. The Y-axis represents the model frequency of
each marker. On the X-axis, alternate gray scales represent different chromosomes from BTA 1 to BTA 29.

of beef cattle and MMBW in a Simmental X Angus
population. Genes within this region are involved
in metabolic processes (ENSBTAG00000015512,
ENSBTAG00000034138) and fat cell differenti-
ation (MSX2).

Although bivariate analyses detect genomic
regions that are potentially associated with two
traits, it is unknown if these regions are pleiotropic.
Caution must be taken when interpreting genetic
correlations between complex traits when conduct-
ing associations with molecular markers as linkage

between markers can create phantom correlations
between traits (Gianola et al., 2015).

CONCLUSIONS

Moving toward the use of haplotype models
for genomic association studies has the ability to
define the QTL locations more precisely. The tra-
ditional method of fitting SNP genotypes as covar-
iates relies on LD between the marker and QTL.
The corresponding location is that of the marker
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Figure 7. Genome-wide association analysis between haplotype genotypes and ADFI from BayesIM 8 (left) and BayesIM 16 (right) clusters.
The Y-axis represents the model frequency of each haplotype loci. On the X-axis, alternate gray scales represent different chromosomes from BTA
1 to BTA 29.
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Figure 9. BTA 21 from genome-wide association analyses for ADFI from BayesC (top), BayesIM 8 clusters (middle), and BayesIM 16 clusters
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Figure 10. Genome-wide association analysis between haplotype genotypes and ADG and ADFI from BayesIM bivariate 8 (left) and BayesIM
bivariate 16 clusters (right). The Y-axis represents the joint model frequency of each haplotype loci when both traits are included in the model. On
the X-axis, alternate gray scales represent different chromosomes from BTA 1 to BTA 29.
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instead of the actual QTL of interest. Haplotype
models allow for a QTL interval to be established
with more resolution, which may help identify the
casual variant when studies are advanced for fine
mapping although the rank of MBYV appears to be
unaffected.

Multitrait GWAS is currently unexplored in
the beef cattle industry. The deployment of such
association studies would not only allow for the
identification of potential pleiotropic regions, but
offer a more comprehensive biological investiga-
tion into genetic variants affecting feed efficiency.
Although not the case in this study, animals with
missing phenotypic records can be included in the
analysis. In beef cattle systems, gain is recorded fre-
quently while feed intake is an expensive phenotype
to collect. Since a moderate-to-strong genetic cor-
relation exists between ADG and ADFI, it is logi-
cal to exploit the knowledge of one trait to inform
the other.
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