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ABSTRACT: Age at first calving (AFC) is char-
acterized as a censored trait due to missing values 
provided by recording mistakes and nonoccur-
rence or delay in calving communication. In this 
context, we aimed to compare several statistical 
methods for genetic evaluation of AFC in Guzerá 
beef cattle under a Bayesian approach. Seven 
different methods were used for this purpose. 
The traditional linear mixed model (LM), which 
considers only uncensored records; the LM with 
simulated records (SM), which is based on data 
augmentation framework; the penalty method, in 
which a constant of 21 d was added to censored 
records; the bivariate threshold-linear method con-
sidering (TLcens) or not (TLmiss) censored infor-
mation; and the piecewise Weibull proportional 

hazards model considering (PWPHcens) or not 
(PWPH) censored records. Heritability estimates 
ranged from 0.19 (TLcens) to 0.28 (SM) in non-
survival approaches; and 0.40 and 0.46 to PWPH 
and PWPHcens methods, respectively. In general, 
breeding values correlations between different 
methods and the percentage of selected bulls in 
common indicated reranking, with these cor-
relation ranging from −0.28 (between SM and 
PWPH) to 0.99 (between TLmiss and LM). The 
traditional LM, which considers only uncensored 
records, should be preferred due to its robustness 
and simplicity. Based on cross-validation analyses, 
we conclude that the TLmiss could be also a suit-
able alternative for breeding value prediction, and 
censored methods did not improve the analysis.
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INTRODUCTION

Age at first calving (AFC) is highly related to 
fertility and reproductive efficiency in cattle (Berry 
and Evans, 2014). Low AFC is typically associ-
ated with heifer precocity and longer lifetime 
productivity (Bormann and Wilson, 2010). Some 

females usually do not have AFC records due to 
nonoccurrence or failure in the calving commu-
nication and to inconsistent records in the data 
editing. These kind of unknown observations are 
often defined as censored records, which can be 
exploited by using appropriate statistical methods 
(Tarrés et al., 2006; Hou et al., 2009; Garcia et al., 
2016). Among these methods, stand out the data 
augmentation (Guo et al., 2001), the penalization 
of censored records (Johnston and Bunter, 1996), 
the bivariate linear-threshold model assuming the 
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censoring status as an extra trait (Varona et  al., 
1999), and the survival analysis techniques 
(Casellas, 2007). In summary, these methods seek 
to increase the amount of information by treating 
the missing records as partial known observations.

The data augmentation replaces the censored 
values by random samples generated from a pos-
itive truncated normal distribution taking into 
account systematic and random estimated effects. 
The penalty method (PM) assumes that censoring 
is due to delayed AFC by adding a constant (num-
ber of days, often 21 d based on the assumption that 
the heifer should be fertile in the subsequent estrous 
cycle) over contemporary data to replace the cen-
sored values. Bivariate analysis uses the censoring 
status (binary trait) as a correlated trait to improve 
the accuracy of genetic evaluation. It assumes that 
a correlation between AFC and the censoring sta-
tus might reduce the problem of nonrandom cen-
soring. Finally, survival analysis assumes a hazard 
function that provides the calving probability to 
estimate missing AFC values. The Weibull distri-
bution is usually preferred because of its flexibil-
ity, but other generalizations based on additional 
time-dependent effects may be desirable to better fit 
the temporal probability changes (Casellas, 2007).

Toward this orientation, we aimed to com-
pare these mentioned methods under a Bayesian 
framework for genetic evaluation of AFC records 
in Guzerá cattle. These comparisons were accessed 
by predictive performance via cross-validation and 
goodness-of-fit measures.

MATERIALS AND METHODS

Data

Guzerá fertility data were provided by the 
Brazilian Association of Zebu Cattle (ABCZ), 
Embrapa Dairy Cattle Research Corporation, 
and Brazilian Center for the Guzerá Genetic 
Improvement. Animal Care and Use Committee 
approval was not necessary for this study because 
analyses were performed on existing field data 
obtained under standard herds management from 
commercial breeders. The animals from these herds 
are raised under pasture conditions (supplemented 
with minerals ad libitum) and seasonal mating sys-
tem (data from embryo transfer or in vitro fertiliza-
tion techniques were not considered).

The trait AFC was defined as the time interval 
(in days) between birth and first calving. Initially, 
the data were composed by 121,352 records, with 
mean of 1,277.27 ± 245 d, ranging from 740 and 

1,860 d. Data from females with AFC out of the 
range of two SD within contemporary groups 
(CG) were considered as missing observations. The 
removal of outliers within CG varying from 2.5 to 
3.5 SD has been used for growth traits in Nellore 
cattle (Silva et al., 2017). However, given the incon-
sistency of AFC trait in Zebu cattle under tropi-
cal conditions, we opted to be more restrictive by 
using 2 SD. After editing, the dataset included 
69,157 AFC records collected between 1991 and 
2012. A total of 230 CG remained for the analysis, 
which were formed as the combination of herd (a 
total of 10), year, and season of birth (dry season, 
from April to September; and rainy season, from 
October to March). The maximum and minimum 
CG sizes were 4 and 2,493 records, respectively.

The dataset consisted of 69,157 AFC pheno-
types (uncensored records) and 7,023 AFC cen-
sored records, totalizing 76,180 records. As a whole, 
230 CG were formed as the combination of herd, 
year, and season of birth. Each CG had at least 
four uncensored records. The pedigree file included 
a total of 104,588 animals.

Statistical Methods

Age at first calving data were analyzed using 
seven different analytical approaches under a 
Bayesian framework.

Linear Mixed Model

The linear mixed model (LM) is restricted to 
uncensored AFC data. Take as starting point the 
following standard animal LM:

	 y = + + +1µ Wd Za e � (1)

where y is the vector of AFC records; µ is the gen-
eral mean; d is the vector of CG (herd-year-season) 
effects; a is the vector of additive genetic effects; e 
is the residual vector; and W and Z are the inci-
dence matrices associated with d and a, respectively. 
It was assumed that d I~ , ,N d0 2σ( )  a A~ , ,N a0 2σ( )  

and e IN e~ ,0 2σ( ) , being A the numerator relation-
ship matrix, σd

2  the CG permanent environmen-
tal variance, σa

2  the additive genetic variance, I an 
identity matrix, and σ e

2  the residual variance.

Imputation Method Via Simulation

The simulation models (SM) also assumed 
equation [1], but included additional records from 
data augmentation framework for heifers with cen-
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yur stored uncensored records and ycr stored aug-
mented values from censored records. Using Gibbs 
sampling approach (Sorensen et  al., 1998; Guo 
et  al., 2001), ycr were sampled from their respec-
tive predictive distributions. It was assumed that 
ycr values followed a Gaussian truncated distribu-
tion whose lower limit was defined by the maxi-
mum values of AFC within the corresponding CG. 
Thus, augmented data ycr were updated within each 
iteration of the Gibbs sampler as an observation 
for each censored record (Korsgaard et  al., 2003; 
Donoghue et al., 2004).

Penalty Method

The PM is equivalent to SM, but censored 
records were replaced by a set of new records by 
adding a constant of 21 d over the highest AFC 
value within each CG (Donoghue et al., 2004; Hou 
et al., 2009).

Threshold-Linear Method

The threshold-linear model (TLmiss) is rep-
resented by a bivariate analysis where one trait is 
continuous (being the censored records treated as 
missing records) and the another one was a thresh-
old binary trait which indicates the censored status. 
Binary records were associated to liability values 
representing latent continuous records (Sorensen 
and Gianola, 2002). At each Markov Chain Monte 
Carlo (MCMC) iteration, the binary records gener-
ate a liability value below or over a given threshold. 
Considering the linear model [1], this model can be 
adapted by considering y yur

’ := [ ]0
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where y is the vector of AFC records; yur represent-
ing uncensored records; l is the vector of liabilities of 
censored status; W, Z, d, a, and e are defined as previ-
ously, but specific to AFC records or liability predis-
position. The following distributions were assumed:
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where G0 and R0 are the additive genetic and resid-
ual (co)variance matrix, respectively, as proposed 
by Varona et al. (1999); and, D0 is the (co)variance 
matrix for CG effects.

Threshold-Linear Censored Method

Represents the same model described in Eq. [2], 
however, despites of missing values, y y yur al

′ = [ ],  
where yal are the censored records added to a con-
stant of 21 d over the highest AFC value within 
each CG.

Piecewise Weibull Proportional Hazards Method

The piecewise Weibull proportional hazards 
model (PWPH) was developed within the survival 
analysis framework. The Weibull distribution was 
assumed as the baseline hazard function for the 
observed value. The data assumed for the animal 
i are (ti, δi), where ti is the vector of uncensored 
records and δi is a censure indicator random vari-
able (Casellas, 2007). The baseline hazard function 
was assumed as:

	 h t t0
1( ) = ( ) −λρ λ ρ � (3)

Considering θ′ ′′ ′=  µ d a, ,  and U W Z′ ′ ′=  , ,  

equation [3] can be rewritten conditionally to θ as 
follows:
	 h t h t U| θ θ( ) = ( ) ( )0 exp � (4)

Where h t | θ( )  is the vector of hazard functions 
which compute the limiting probability of the 
parturition at time t for a heifer given θ; h0 (t) is a 
Weibull baseline hazard function at time t with a 
positive scale parameter λ and a shape parameter ρ.

This Weibull model was modified allowing the 
baseline to assume several unknown change points 
along the parametric space. The number of change 
points was predefined and they are estimated 
simultaneously with the other parameters under 
a Bayesian framework (Yazdi et  al., 2002; Tarrés 
et al., 2005; Casellas, 2007).

The Bayesian inference on PWPH was accessed 
by multiplying the likelihood function by the prior 
distributions of all parameters as follows:

	 p p |a db d a y y b d a, , , , , , , | , , , , ,σ σ ρ λ τ ∝ ρ λ τ2 2( ) ( )

p p p p p p p pd d a ab d a A( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )| | ,σ σ σ σ ρ λ τ2 2 2 2

(5)

where τ is the vector of c change points (c ≥ 2). The 
τ1 was fixed to 0, τc equaled the maximum value in 
the vector y, and τj < τj + 1.

Following Damgaard and Korsgaard (2006), 
bounded uniform priors were assigned to ρ, λ, 
and τj, whereas remaining prior distributions were 
defined as for the other methods. The PWPH 
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method was implemented by assuming an increas-
ing number of change points (0  ≤ c ≤ 4)  and the 
most desirable number of c was selected according 
to Deviance Information Criterion (DIC), defined 
by Spiegelhalter et al. (2002).

Piecewise Weibull Proportional Hazards 
Censored Method

The piecewise Weibull proportional hazards 
censored method (PWPHcens) represents the same 
previously methods, however includes censored 
data by adding prior information, t t tur al

’ = [ ] , 
where tal are the censored records as defined in the 
PM.

Markov Chain Monte Carlo Sampling

Inferences about all unknown parameters 
were done from the marginal posterior distribu-
tions. Gibbs sampler (Gelfand and Smith, 1990) 
with Metropolis-Hastings (Metropolis et al., 1953; 
Hastings, 1970) steps in PWPH method were used 
(Casellas, 2007). For remaining methods, only the 
Gibbs sampling algorithm was used through TM 
software (Legarra et  al., 2008). More specifically, 
a unique MCMC process with 100,000 iterations 
was launched for each analysis, and the first 20,000 
iterations were discarded as burn-in, keeping every 
50th sample for inference of posterior features. 
Convergence was monitored by graphical inspec-
tion and R package boa (Smith, 2007).

Methods Comparisons

Due to a difference in scale between estimated 
breeding values (EBV) of survival analysis and 
other methods, the observed and predicted uncen-
sored phenotypes were used to compare them by 
cross-validation. Training population was com-
posed by censored and uncensored records. A total 
of 30% of uncensored records were set to missing 
and their predicted phenotypes were compared 
with observed phenotypes. These populations were 
randomly redefined 10 times within CG. The pre-
dicted phenotypic vector for AFC was calculated 
as: y Wd Za





= + +1µ .  Pearson correlations, mean 
square errors, and regression analyses between 
observed and predicted uncensored phenotypes 
were estimated to access the predictive ability of the 
compared methods.

Spearman’s rank correlation coefficients 
between EBV from different methods were com-
puted to access possible reranking. In addition, 

the percentage of sires (with at least one daughter) 
selected in common among the methods at differ-
ent percentiles (TOP1% and TOP10%) was also 
calculated.

RESULTS AND DISCUSSION

Methods Comparison

The DIC values for PWPH analysis from 0 
to 4 change points were 1,247,055, 1,251,001, 
1,246,580, 1,248,432, and 1,257,111, respectively. 
For PWPHcens method, the DIC values from 0 to 4 
change points were 1,646,395, 1,659,998, 1,663,677, 
1,659,015, and 1,663,660, respectively. When using 
censored data (PWPHcens approach), the DIC 
values suggested that no additional change points 
in the baseline function were required, only the 
boundaries points (i.e., 0 and 1,860 d). However, for 
PWPH approach without censored records, a more 
parametrized model (two change points) was nec-
essary to properly fit the distribution of AFC data.

The predictive ability was validated by cor-
relation coefficients, mean square error, and bias 
(regression between observed and predicted phe-
notype) using cross-validation approach (Table 1). 
Standard deviations across models suggest precise 
inference for these results.

Higher correlations and lower MSE and bias 
were found to TLmiss method, indicating that this is 
recommended to be used in AFC genetic evaluation 
with censored records in Guzerá cattle. However, 
the traditional LM method presented quite similar 
results with TLmiss, and could be recommended 
as well. The methods (PM and threshold-linear 
censored model [TLcens]) that take into account 
the imputation of censored records (penalization) 
did not improve the analysis and presented similar 
results. The absence of previous information about 
AFC censored records and the genetic correlation 
among AFC data and censored status provide a 
slightly advantage compared to others approaches. 
According to Allison (2010), missing data should be 
influenced by observed values and not depend on 
any prior information, and this relation between real 
and censored values should be done by a censoring 
indicator variable, as well as in threshold analysis.

The survival analysis was not the best choice 
when handling AFC trait in Guzerá cattle, because 
PWPH models had predictive ability worse than 
others methods. However, the literature affirms 
that PWPH model provides a more flexible frame-
work to accommodate both positive and negative 
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asymmetry in the data (Casellas, 2007; Casellas, 
and Bach, 2012).

Within-methods Spearman correlation coeffi-
cients and percentage of selected bulls in common 
(considering different percentiles, TOP1% and 
TOP10%) between-genetic breeding values pre-
dicted from survival and nonsurvival method are 
shown in Table 2.

The use of rank rather Pearson correlation 
solves the scale issue of PWPH models and EBVs 
could be compared. However, the comparison of 
nonsurvival methods with PWPH methods pro-
vided negative correlations estimates, due to the 
inverted interpretation necessary to PWPH meth-
ods as consequence of the relative risk scale pre-
sented by EBV results. Low values of EBV are 
desirable for AFC trait in nonsurvival methods and 
the opposite happens with survival methods.

Despite of observed differences in the predic-
tive abilities, the Spearman correlations among 
nonsurvival methods were similar, indicating that 
no major reranking would be expected across these 
methods. These similarities and another previously 
results suggests that either approaches (PM and 
TLmiss) could be used for genetic evaluations of 
AFC trait. Simulation method appears to be the 
only one among nonsurvival methods that present 
some difference in comparison to others nonsur-
vival methods. The correlations between nonsur-
vival and PWPH models were ranged from −0.70 
to −0.55. Moderate correlations (for example 
−0.55) indicate a reranking of animals in genetic 
evaluation.

Casellas and Bach (2012) working with lamb-
ing interval in ewes found correlations ranging from 
−0.715 to −0.676 between PWPH and LM methods.

Table 1. Average mean square error (MSE), correlation coefficient and bias with respective SD obtained 
from cross-validation analysis

Method1 MSE Correlation Bias

LM 63,087.19 (294.32) 0.43 (0.0033) 0.99 (0.0141)

SM 110,903.6 (961.42) 0.40 (0.0047) 0.43 (0.0047)

PM 65,277.25 (479.21) 0.43 (0.0037) 0.81 (0.0105)

TLmiss 62,987.62 (293.64) 0.44 (0.0034) 1.01 (0.0156)

TLcens 67,816.38 (256.00) 0.39 (0.0047) 0.80 (0.0114)

PWPH2 71,176.51 (293.64) 0.40 (0.0031) 0.92 (0.0562)

PWPH0cens 81,120.18 (479.09) 0.30 (0.0051) 0.55 (0.0067)

1Methods: LM, SM, PM, TLmiss, TLcens, PWPH2, PWPH0cens: linear, simulation, penalty, threshold-linear, threshold-linear censored, piece-
wise Weibull proportional hazard (fixed c = 2), and piecewise Weibull proportional hazard censored (fixed c = 0) methods, respectively.

Table 2. Spearman correlation of all animals (above diagonal) and sires (below diagonal) between predicted 
breeding values of AFC trait and percentage of sires in common between models at 1% (above diagonal) 
and 10% (below diagonal) selection percentages

Method1 LM SM PM TLmiss TLcens PWPH2 PWPH0cens

Spearman correlations

  LM — 0.88 0.98 0.99 0.96 −0.61 −0.59

  SM 0.82 — 0.92 0.90 0.88 −0.55 −0.70

  PM 0.96 0.88 — 0.98 0.94 −0.59 −0.61

  TLmiss 0.99 0.87 0.98 — 0.96 −0.60 −0.63

  TLcens 0.96 0.85 0.93 0.98 — −0.57 −0.58

  PWPH2
2 −0.30 −0.28 −0.29 −0.30 −0.30 — 0.77

  PWPH0cens2 −0.34 −0.35 −0.33 −0.34 −0.36 0.45 —

Percentage of sires in common

  LM — 37.21 86.04 93.02 67.44 2.32 6.98

  SM 65.27 — 39.53 41.86 30.23 0.0 2.32

  PM 89.12 69.91 — 90.70 65.11 2.33 6.98

  TLmiss 94.44 69.68 90.74 — 67.44 2.32 6.98

  TLcens 85.88 62.5 80.79 84.72 — 2.32 9.30

  PWPH2
2 26.62 21.76 27.08 25.93 27.55 — 41.86

  PWPH0cens2 19.44 18.52 19.91 18.98 19.44 45.60 —

1Method: LM, SM, PM, TLmiss, TLcens, PWPH2, PWPH0cens: linear, simulation, penalty, threshold-linear, threshold-linear censored, piece-
wise Weibull proportional hazard (fixed c = 2), and piecewise Weibull proportional hazard censored (fixed c = 0) methods.

2EBV’s on original survival scale.
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Higher correlations were found by Pereira 
et  al. (2007) studying age at first conception in 
Nellore cattle population. These authors reported 
that when considering just the sires the correlation 
was even lower; and lower the number of animals, 
more sensitive is the Spearman correlation to slight 
changes in classification.

The percentages of sires in common were higher 
between LM and PM, LM and TLmiss, and PM and 
TLmiss. On the other hand, lower percentages were 
found among survival (PWPH and PHPHcens) and 
nonsurvival methods. Since LM and TLmiss outper-
formed the other methods based on cross-validation 
prediction analysis (Table  1), the selected animals 
based on survival method would be unsuccessful.

Variance Components and Genetic Parameter 
Estimates

Posterior means, SD, and highest posterior 
density (HPD95%) intervals of variance compo-
nents and genetic parameter for AFC trait under 
different methods of handling censored data are 
presented in Table 3. The LM only considers AFC 
uncensored values and its results should be used as 
reference (simplest model).

Among nonsurvival approaches (LM, SM, 
PM, TLmiss, and TLcens), posterior means of 
the additive variance under LM, PM, and TLmiss 
were similar, because estimates were within the 
highest posterior density interval of  the other 
method. The corresponding estimate for SM and 

TLcens methods, however, was significantly higher 
and lower than these estimates, respectively, and 
was outside the HPD95% interval for both LM, 
PM, and TLmiss methods. Since the SM method 
is based on random numbers generated through 
truncated normal distribution, which can be 
seen as an important source of  variation, it is 
expected that this method provides higher vari-
ance. Although the PM outperformed the SM in 
the present study, Donoghue et al. (2004) working 
with data simulation, reported that the lack of  sig-
nificant differences in the genetic ranking of  sires 
between these two methods suggests that either 
can be used. However, these same authors recom-
mended further research comparing both meth-
ods on genetic evaluation of  beef  cattle field data. 
Posterior means of  the residual variance for LM 
and TLmiss were the smallest, whereas the esti-
mate under SM was the highest value. These results 
imply that LM and TLmiss methods provide a 
better fit to the data than the other nonsurvival 
methods when censored records are presented. For 
all parameters presented, LM and TLmiss were 
similar, representing the correspondence among 
the simplest method and threshold analysis. The 
TLmiss and TLcens model had genetic correlation 
of  0.42 ± 0.10 and 0.42 ± 0.03, between the trait 
representing in linear or threshold way. Genetic 
correlation considered between data and censored 
status could be influencing the results, providing 
low estimates of  additive genetic variance in the 
TLcens model.

Table 3. Posterior means, SD, and highest posterior density interval (HPD95%) of variance components 
and genetic parameter estimates for the trait age at first calving (AFC, in days)

Method1 h2 2 σa
2 σd

2 σ e
2

LM 0.26 (0.01) 19,617.46 (568.70) 6,277.02 (644.16) 48,900.01 (435.65)

[0.25, 0.28] [18,578.95, 20,790.14] [5,067.28, 7,604.48] [48,041.00, 49,712.81]

SM 0.28 (0.01) 49,370.57 (1,108.85) 32,233.76 (2,601.06) 91,999.26 (830.59)

[0.27, 0.30] [47,195.50, 51,540.91] [27,527.90, 37,615.27] [90,288.76, 93,588.29]

PM 0.25 (0.01) 21,299.24 (563.69) 12,102.18 (1,140.93) 53,370.49 (459.02)

[0.23, 0.26] [20,119.11, 22,337.36] [11,024.03, 15,420.95] [52,491.59, 54,321.55]

TLmiss 0.25 (0.01) 18,720.01 (567.00) 6,019.29 (630.42) 49,488.00 (463.42)

[0.24, 0.27] [17,662.69, 19,872.40] [4,809.97, 7,332.29] [48,536.51, 50,428.08]

TLcens 0.19 (0.01) 15,999.64 (410.55) 13,800.89 (1,131.05) 54,000.91 (371.43)

[0.18, 0.20] [14,145.28, 16,757.71] [11,431.68, 15,777.33] [53,618.95, 55,086.87]

PWPH2 0.40* (0.01) 1.38 (0.04) 0.26 (0.03) —

[0.38, 0.42] [1.28, 1.43] [0.22, 0.32]

PWPH0cens 0.46* (0.01) 2.30 (0.06) 1.1 (0.11) —

[0.47, 0.52] [2.17, 2.42] [0.91, 1.30]

1Methods: LM, SM, PM, TLmiss, TLcens, PWPH2, PWPH0cens: linear, simulation, penalty, threshold-linear, threshold-linear censored, piece-
wise Weibull proportional hazard (fixed c = 2), and piecewise Weibull proportional hazard censored (fixed c = 0) methods.

2Heritability on the original scale calculated as proposed by Korsgaard et al. (1999) as h a a d
2 2 2 2 2 6= + + ( )





σ σ σ/ /π ; h2 = heritability, σa
2 , σd

2 ,  
and σe

2  = additive genetic, contemporary group, and residual variance, respectively.
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The nonsurvival approaches showed similar 
estimates of heritability, except for TLcens method. 
Heritability estimates for AFC trait from field data 
reported in the literature also oscillate as observed 
in the present study, ranging from 0.10 to 0.37 in 
Brazilian Zebu cattle (Boligon and Albuquerque, 
2011; Barrozo et al., 2012). Van Melis et al. (2010) 
indicate that the high genetic variability observed 
appears to be a characteristic of Bos indicus cat-
tle population, because the breed has rarely been 
selected for sexual precocity.

Although some authors (Johnston and Bunter, 
1996; Morris et al., 2000; Phocas and Sapa, 2004) 
recommended TLmiss to estimate genetic parame-
ters for reproductive traits in beef cattle, we under-
stand that the inclusion of the other trait (censored 
status) would modify the results. Thus, comparisons 
based on the direct interpretation of heritability 
estimated from threshold-linear and linear models 
are not suitable in context of the present work.

The interpretation of  heritability in the case 
of  survival analysis has been in discussion (Yazdi 
et al., 2002; Pereira et al., 2007), because there is no 
linear decomposition of  phenotypic variance in the 
survival model (Guo et al., 2001). It must be noted 
that heritability on the original scale for PWPH 
models proposed by Korsgaard et al. (1999) were 
incorrect, as they were unreasonably high, mainly 
to a reproductive trait. Pereira et al. (2007) using 
a sire model, also find high values of  heritability 
while using survival approach for Nellore cattle 
in the same trait (0.51). Among PWPH meth-
ods, highest value of  heritability was observed in 
PWPH0cens method. Pereira et  al. (2006) affirms 
that this is a result of  using additional information 
for censored data.

CONCLUSIONS

The traditional LM, which considers only 
uncensored records, should be preferred due to its 
robustness and simplicity. Based on cross-valida-
tion analyses, we conclude that the TLmiss could 
be also a suitable alternative for breeding value pre-
diction, and censored methods did not improve the 
analysis.
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