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Abstract

The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or 

reverse the progression of β-cell failure in type 2 diabetes (T2D). To design RISE, we undertook 

an evaluation of methods for measurement of β-cell function and changes in β-cell function in 

response to interventions. Here we present a review of approaches for measurement of β-cell 

function, focusing on methodologic and feasibility considerations. Methodologic considerations 

included 1) the utility of each technique for evaluating key aspects of ß-cell function (first- and 

second-phase insulin secretion, maximal insulin secretion, glucose sensitivity, incretin effects); 

and 2) tactics for incorporating a measurement of insulin sensitivity in order to appropriately 

adjust insulin secretion measures for insulin sensitivity. Of particular concern were the capacity to 

accurately measure β-cell function in those with poor function, as is seen in established T2D, and 

the capacity of each method for demonstrating treatment-induced changes in β-cell function. 

Feasibility considerations included staff burden including time and required methodological 

expertise; participant burden including time and number of study visits; and the ease of 
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standardizing methods across a multi-center consortium. Following this evaluation, we selected a 

2-day measurement procedure, combining a 3-hour 75g OGTT and a 2-stage hyperglycemic clamp 

procedure augmented with arginine.

Introduction

The study of progressive metabolic dysfunction in prediabetes and type 2 diabetes (T2D) has 

focused on the pancreatic islet ß-cell. [1] Cross-sectional studies in adult and adolescent 

populations have shown inferior ß-cell function in individuals with impaired glucose 

tolerance (IGT) and even poorer function in those with T2D. [2–5] Longitudinal assessments 

to-date demonstrate progressive worsening of β-cell function among individuals with 

genetic and metabolic risk factors for T2D, and in patients with increasing hyperglycemia. 

[6–8] Methodologies for measuring β-cell function range in complexity from fasting 

measures, to protocols involving intravenous infusion of multiple stimulators of insulin 

release [9–16]. Each method brings strengths and weaknesses, and selection of the optimal 

approach must not only reflect pertinent physiology, but also factors such as cost and 

participant burden.

The Restoring Insulin Secretion (RISE) study was designed to test interventions to slow or 

reverse the progression of β-cell failure in individuals at high risk of T2D, or with recent 

onset T2D. [17] Here we present a review of available techniques for measurement of β-cell 

function, focusing on the methodologic and feasibility considerations that informed the 

selection of approaches utilized in RISE.

Physiologic Considerations for the Measurement of β-cell Function

β-cell function can be defined as the ability of pancreatic β-cells to produce, store and 

release insulin in concentrations sufficient to maintain euglycemia. Under normal 

physiologic conditions, circulating insulin concentrations are reciprocally related to insulin 

sensitivity, expressed as the body’s capacity for glucose disposal and ability to suppress 

hepatic glucose production in response to insulin. [10] When insulin sensitivity declines, the 

appropriate physiologic response is for insulin secretion to increase in a compensatory 

manner. The calculated line linking these factors, which exhibit a square hyperbolic 

relationship, is commonly expressed as the ‘disposition index’ (DI, insulin sensitivity * first-

phase insulin secretion; Figure 1). [10, 14] The need to incorporate a measurement of insulin 

sensitivity into assessments of β-cell responses is widely accepted. With this in mind we will 

briefly review alternatives for measuring insulin sensitivity before turning to methods for 

assessing β-cell responses.

Measuring Insulin Sensitivity

In order to appropriately adjust the β-cell reponse for the prevailing insulin sensitivity, a 

concurrent measure of insulin sensitivity is required. Robust discussions of different 

approaches to measuring insulin sensitivity have been previously published. [18–20] Here 

we present a brief exposition of available methods with a focus on the technical limitations 

and participant burden.
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Hyperinsulinemic-Euglycemic Clamp –

This technique allows measurement of whole-body and tissue sensitivity to a steady-state 

concentration of insulin while the plasma glucose concentration is held constant (clamped), 

generally at physiologically normal (euglycemic) levels. [21] Performing the procedure in 

the euglycemic state obviates the need to correct for the impact of hyperglycemia on glucose 

disposal. This method produces measures of insulin-stimulated glucose disposal (M), and 

insulin sensitivity (M /I, where I denotes steady state plasma insulin concentration). Because 

this technique imposes plasma insulin and plasma glucose concentrations at defined 

experimental levels, independent of insulin production or release, it provides reliable 

measurements of insulin sensitivity in subjects across the full range of β-cell function.

The limitations of this technique include the need for two intravenous lines (one for infusion 

of insulin and glucose, and the other for blood sampling), high-precision glucose measures 

every 5 minutes, and personnel with expertise to make adjustments in the glucose infusion 

rate in order to maintain the target level of glycemia. The participant considerations include 

the need for two intravenous lines, and the duration of the procedure. Overall, this method is 

relatively resource-intensive (requiring nursing and investigator time and expertise), and it 

provides a measurement of insulin sensitivity without a simultaneous measure of β-cell 

function (as is provided in some methods discussed below).

Hyperglycemic Clamp-Derived Insulin Sensitivity –

The hyperglycemic clamp technique is discussed in detail below as a method for 

measurement of β-cell function. It also provides an indirect measure of insulin sensitivity, 

using the rate of glucose disposal under imposed steady-state hyperglycemic conditions, 

adjusted for the achieved endogenous insulin (or C-peptide) concentrations. [12, 22] 

Adjustments are needed for variations in achieved steady state glucose concentrations, and 

for urinary glucose losses. Typically, insulin sensitivity is calculated by dividing the glucose 

disposal rate by the plasma insulin (or C-peptide) concentration at steady state during the 

last 30 or 60 minutes of a 2-hr hyperglycemic clamp.

The principal limitation of measuring insulin sensitivity with this method is the dependence 

of the insulin sensitivity measure on the endogenous late-phase β-cell response. This is 

primarily an issue where poor late-phase insulin release provides an insufficient stimulus to 

drive glucose disposal in the face of poor insulin sensitivity, limiting accuracy of 

measurement of insulin sensitivity.

IVGTT - Minimal Model-Derived Insulin Sensitivity-

The minimal model of glucose kinetics developed by Bergman and colleagues allows 

insulin-mediated glucose disposal to be calculated from intravenous glucose tolerance test 

(IVGTT) data, with derivations of a model-derived measure of insulin sensitivity (SI). [23, 

24] The minimal model has been extensively evaluated and widely adopted. In a 

modification of the original methodology, exogenous tolbutamide or (more commonly) 

insulin is administered after assessing the first-phase insulin response, to better characterize 

insulin dependent glucose disappearance where endogenous production is insufficient. [25, 
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26] However, in more severe insulin resistance, the standardized exogenous insulin bolus 

may be insufficient to produce data adequate for modeling.

Surrogate Measures of Insulin Sensitivity –

Indices of insulin sensitivity have been developed using fasting blood samples (e.g. inverse 

fasting insulin, homeostasis model assessment (HOMA) [27], quantitative insulin sensitivity 

check index (QUICKI)) [28], or the combined glucose and insulin excursions of the OGTT 

(e.g. Matsuda index) [19]). In cross-sectional evaluations, these fasting and OGTT-derived 

measures correlate reasonably well with hyperinsulinemic-euglycemic clamp or minimal 

model-derived measures (r=0.6-0.7) [29]. The utility of surrogate indices for longitudinal 

use has not been extensively evaluated. Some reports have described concurrent changes in 

multiple indices over time [30, 31], but to date correlations between longitudinal changes in 

surrogate indices of insulin resistance and more direct measures have only been formally 

evaluated in one publication. [20] This paper evaluated a cohort of Mexican-American 

women followed after gestational diabetes, and found changes in the surrogate indices to be 

less strongly correlated to changes in IVGTT-derived SI than is observed in cross-sectional 

settings.

Measuring β-cell Function

Glucose is the principal regulator of insulin secretion, via a well-described pathway linking 

β-cell glucose uptake to changes in ADP/ATP ratios and ultimately to changes in membrane 

potassium conductance and movement of insulin granules, producing a pulsatile and 

oscillatory pattern of insulin secretion in health. [32, 33]. Non-glucose β-cell stimuli include 

incretin hormones, acting through a cAMP system to potentiate the response to glucose [34, 

35], and monobasic amino acids, fatty acids, and β-adrenergic agonists, which also act 

independent of the glucose sensing systems but converge on the same insulin secretion 

pathways. [36] These features are exploited in the many methods that have been developed 

for the measurement of β-cell function.

Hyperglycemic clamp -

Under this method, an exogenous glucose infusion is applied to raise blood glucose to a 

specified target concentration, or to achieve an increment above the individual’s fasting 

glucose. Both the magnitude and timing of the hyperglycemic stimulus are controlled, 

allowing for a precise and repeatable stimulus to insulin/C-peptide secretion and for clear 

separation of first- and second-phase responses to intravenous glucose (Figure 2). [21, 22]

The first-phase insulin/C-peptide response primarily consists of release of stored insulin and 

occurs in the first few minutes after circulating glucose concentrations increase, subsiding 

within 10 minutes. [37] The first-phase response is measurably diminished in individuals 

with only modest elevations in fasting glucose and/or IGT, more severely diminished in 

individuals with fasting glucose concentrations >115 mg/dL (6.4 mmol/L), and absent in 

T2D. [38–40]

The second-phase insulin/C-peptide response begins concurrent with the first-phase 

response, and consists of a slow and sustained increase in insulin/C-peptide concentrations, 
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reflecting pools of insulin granules with varying kinetic properties. [37, 41, 42] The second-

phase response is not lost early in T2D, but declines over time with progressive reduction in 

β-cell function. [43, 44]

A DI can be calculated from data derived from the hyperglycemic clamp alone as long as a 

hyperbolic relationship exists between the measures of insulin/C-peptide secretion and 

insulin sensitivity. The DI is calculated using the measured insulin/C-peptide response and 

the indirect measure of insulin sensitivity (M/I) as explained above. [11]

Examples of application of the hyperglycemic clamp include understanding the progressive 

pathophysiology of β-cell dysfunction [12, 13, 30], and assessing the effects of 

pharmacologic interventions, weight loss and bariatric surgery on β-cell function. [44–46]

The ability to measure insulin/C-peptide secretion and insulin sensitivity in a single day is an 

advantage of the hyperglycemic clamp. Another advantage is that measures of β-cell 

function are accurate along the entire spectrum of NGT to prediabetes to diabetes, with 

reliable measures even in the low-response range seen in individuals with prediabetes and 

T2D. Despite impaired β-cell function, such individuals generally mount a sufficient second-

phase response to provide a reliable measure of insulin-mediated glucose disposal. The 

principal technical limitations of the hyperglycemic clamp include the need for two 

intravenous lines (one for infusion of glucose and the other for blood sampling), rapid early 

sampling after the initial glucose bolus, high-precision glucose measures every 5-10 

minutes, and personnel with expertise to make adjustments in the glucose infusion rate in 

order to maintain the target level of glycemia. The participant considerations include the 

need for two intravenous lines, and the 3-4 hour duration of the procedure (Table 1).

Intravenous glucose tolerance test (IVGTT) -

During the IVGTT, an intravenous bolus of dextrose is given and rapid sampling for 

measurement of glucose and insulin concentrations is performed during the first 10 minutes 

of the test to measure the acute (first-phase) insulin and C-peptide responses. Subsequent 

measurements across the remainder of the test are used to derive the late- (second) phase 

responses. As noted above, under current usage a bolus of exogenous insulin is generally 

applied in order to successfully model insulin sensitivity (SI).

Investigators have utilized the IVGTT minimal model to describe progressive loss of β-cell 

function in the development of diabetes [47–49], to describe the physiology of individuals at 

risk for diabetes [12, 47, 50–52], and to follow response to treatment. [53–55]

As with the hyperglycemic clamp, the IVGTT allows for derivation of measures of β-cell 

function and insulin sensitivity from a single testing day. This method works well when the 

endogenous β-cell response is sufficient to provide timely and effective control of the 

glucose excursion. However, important degrees of β-cell dysfunction are present earlier in 

the pathogenesis of diabetes than might be expected: In screen-detected T2D and in 

individuals with fasting glucose levels ≥115 mg/dL (6.4 mmol/L), the first-phase insulin 

response is characteristically low or unmeasureable. [38, 44] The insulin-modified protocol 

is intended to overcome this limitation, as discussed above, with its own pros and cons. This 
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added insulin prevents assessment of the late-phase insulin secretion responses, as the 

exogenous insulin is measured together with the endogenous insulin. Because the test does 

not control for achieved levels of glycemia, the magnitude of the stimulus to β-cell secretion 

can differ between or within individuals. Overall, in the settings of low insulin release and/or 

low insulin sensitivity, the IVGTT methodology is less reliably able to provide accurate 

measures of β-cell function and insulin sensitivity than the hyperglycemic clamp.

The principal technical limitations of the IVGTT are the need for two intravenous lines, the 

need for rapid early sampling following the intravenous glucose bolus, the need for software 

and expertise to undertake the modeling analyses for each individual IVGTT to derive the 

SI . The participant considerations include the need for two intravenous lines, the 3-4 hour 

duration of the procedure, and the risks associated with insulin infusion (Table 1).

Graded glucose infusion –

With this method, the insulin/C-peptide response to a prolonged intravenous infusion of 

glucose is measured. Rather than targeting a particular level of glycemia, the graded glucose 

infusion imposes a series of pre-set glucose infusion rates. This produces acute, stepwise 

increments in blood glucose, engendering stepped insulin secretory responses. [56–58] The 

initial bolus generally differs from that used in the hyperglycemic clamp, and therefore first-

phase insulin/C-peptide response measurements are not directly comparable between 

hyperglycemic clamps and graded glucose infusion tests. [59]

The graded glucose infusion has been used across the spectrum of glucose tolerance, and has 

the advantage of allowing derivation of a slope reflecting the β-cell sensitivity to glucose. 

[58] An indirect measure of insulin sensitivity can be obtained by extending the 

methodology, using an up and down graded glucose procedure together with minimal 

modeling. [58] Unless this approach is used, a separate measure of insulin sensitivity is 

required to calculate a DI. Due to differences in the achieved glucose concentrations, this 

measurement incorporates degrees of glucose mass action (glucose-mediated glucose 

disposal) that are different from the other methods. Thus, the results are parallel but not 

strictly comparable to other approaches to measure insulin sensitivity. [60]

The graded glucose infusion has been used principally in exploring the pathophysiologic 

progression of β-cell dysfunction [57], and in assessing the effects of treatment interventions 

on β-cell function [61].

The principal technical limitations of the graded glucose infusion are the need for two 

intravenous lines, and expertise with the mathematical approaches needed for data 

extraction. The personnel burden is comparable in terms of time but this method requires 

less methodologic expertise than the hyperglycemic clamp, and the graded glucose infusion 

requires less frequent blood sampling overall. Participant considerations include the need for 

two intravenous lines, and a time commitment of 3-4 hours (Table 1).

Glucose-potentiated arginine stimulation test -

L-arginine infused as a bolus while the participant is hyperglycemic at a level of 450 mg/dL 

(25 mmol/L) or greater produces a maximal insulin response considered to reflect the 
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functional secretory capacity of β-cells. [36, 62–64] Individuals with blunted or absent first-

phase insulin/C-peptide response to intravenous glucose maintain a brisk, although reduced 

response to arginine (Figure 3). [11]

Historically, stimulation with isoproterenol or glucagon was used to measure augmented 

insulin release, but resulted in unacceptable side effects. [63] Lower variability is observed 

in the insulin/C-peptide response with arginine versus glucagon; moreover, arginine 

stimulates glucagon release, allowing for a concurrent measure of α-cell function. [65] 

Recently, combinations of glucose with glucagon-like peptide 1 (GLP-1) or GLP-1 mimetics 

have also been used. [11, 34, 35] It is not clear whether these combination approaches offer 

an advantage in cost, safety, or measurement variability that may overcome the established 

experience with arginine.

A variation of the glucose-potentiated arginine stimulation test involves repeated 

applications of arginine under two or more achieved glucose concentrations. [66, 67] This 

approach measures stimulated responses at multiple levels of glycemia, allowing for 

derivation of slopes of glucose and arginine responsiveness. This provides complementary 

measures of β-cell function with more physiologic glucose exposures, and provides the 

statistical advantage of repeated within-subject measurements. It is feasible to undertake a 

glucose-potentiated arginine response immediately after completing a hyperglycemic clamp 

procedure, functionally performing one procedure but measuring multiple aspects of β-cell 

function.

The glucose-potentiated arginine response has been applied in assessing the function of a 

pancreas or islet cell transplant [67], and in assessing pharmacologic effects on β-cell 

function in T2D [68, 69]

The principal technical limitations of the glucose-potentiated arginine response are the same 

as for the hyperglycemic clamp, with the addition of the clinical supplies needed for the L-

arginine infusion. Participant considerations include lengthening the hyperglycemic clamp 

procedure, and approximately 40% of participants experience mild side-effects (brief 

flushing or metallic taste) when L-arginine is administered. [65]

Oral Glucose Tolerance Test (OGTT) -

The OGTT can be employed to assess β-cell function. The relatively delayed appearance of 

glucose in the circulation prevents strict separation of first- and second-phase insulin 

responses; these components are therefore traditionally described as early and late insulin 

responses. The early response can be evaluated simply as the rise in insulin/C-peptide above 

basal at any time interval up to 30 minutes after commencing glucose ingestion, or as the 

“insulinogenic index” (the increment above basal insulin/C-peptide divided by the increment 

in glucose in the same time interval). [70] The early insulin response and the insulinogenic 

index are reduced in IGT and T2D. [71, 72] The late insulin or C-peptide response is 

generally evaluated as the integrated response over the entire sampled duration; this measure 

has been less widely used. [44, 71] The use of OGTT parameters to derive a DI is 

increasingly applied [72, 73], supported by mathematical evidence for an underlying 
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hyperbolic relationship between specific measures of insulin secretion and insulin sensitivity 

from the OGTT. [74, 75]

The OGTT has been widely applied in the evaluation of the pathophysiologic progression of 

β-cell dysfunction [75, 76], and in assessing the effects of treatment interventions on β-cell 

function. [77]

A core advantage of the OGTT is that it incorporates the physiologic contributions of the 

gut-pancreas axis in the measure of ß-cell responses. When an OGTT is combined with an 

intravenous test (IVGTT or hyperglycemic clamp), this allows for comparisons of responses 

to parenteral versus enteral stimulation, enabling assessment of the contributions of the 

incretin effect to the overall response to ingested glucose. [78] OGTT-derived measures of 

insulin response can be adjusted for insulin sensitivity using a surrogate measure such as 

fasting insulin concentration or HOMA%S, or using a separate direct measurement. Minimal 

model methodologies have been developed that allow insulin response and insulin sensitivity 

to be simultaneously assessed with a multiple-sample, extended OGTT. [79–81] These 

models have been utilized to assess β-cell function during physiologic testing in subjects 

with NGT, prediabetes, and T2D.

A disadvantage of OGTT methodology is that differences in the rate of glucose absorption 

can modify the observed response. Due to the involvement of more biological systems and 

less direct control of the glycemic stimulus to insulin secretion, the variability in measures 

of β-cell function is high compared to that seen with intravenous testing. [13, 82–84]

Mixed meal tolerance test (MMTT) -

Analogous to the OGTT, a liquid or solid enteral stimulus consisting of a mixture of 

carbohydrate with other macronutrients can be delivered orally with subsequent sampling of 

blood glucose and insulin. As with OGTT, this method can be applied to assess contributions 

of the incretin effect to the overall mixed meal response. [85] The mixed nutrient load 

provides a more physiologically relevant comparison to human meal consumption than an 

isolated glucose load. [86] The same directly calculated and model-derived measures of β-

cell responses can be derived from the MMTT dataset, with parallel advantages and 

disadvantages. [79, 87, 88] Despite the improved physiologic relevance of this method, the 

delivery of multiple nutrients involved in stimulation of gut hormones and in β-cell 

stimulation contributes to relatively high variability for this method as with the OGTT [9, 

13]. Differences in size and composition of the enteral load lead to differences in insulin and 

incretin responses [86, 89], although there are recent efforts to standardize the test meal. [9]

The MMTT is widely utilized at present to assess β-cell function in therapeutic trials in type 

1 diabetes. In contrast to high variability observed in other populations, results in this 

population have been highly reproducible.[90]

Simple indices and model-based estimates of β-cell function have been reported to be 

quantitatively higher when measured via MMTT as compared with OGTT with equal 

carbohydrate quantity among dysglycemic subjects. [13, 87, 88] (Figure 4) To date, no 

published data have formally demonstrated a hyperbolic relationship between MMTT 

Hannon et al. Page 8

Diabetes Obes Metab. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



derived β-cell function and insulin sensitivity to fully support their combination into a DI. 

Importantly, the MMTT glucose data cannot be interpreted using OGTT-based diagnostic 

criteria that define IFG, IGT and DM.

Both the OGTT and MMTT require the placement of a single peripheral intravenous line for 

repeated blood sampling. Blood sampling frequency and timing is parallel to that for OGTT, 

reduced compared to glucose infusion based protocols, and there is no requirement for 

specific expertise in making adjustments to glucose infusions. Modeling methods require 

software and expertise. Participant considerations include the need for one intravenous line, 

and a time commitment of 3-4 hours.

Fasting proinsulin to insulin (or C-peptide) ratio

In subjects without diabetes, the molar proportion of circulating proinsulin to insulin is 

approximately 15% in the fasting state. [91, 92] As β-cell failure ensues, processing of 

proinsulin to insulin and C-peptide is impaired, and the fasting proinsulin to insulin ratio 

increases two- to three-fold in T2D. [91, 92] Interestingly, the ratio is not significantly 

increased in all individulas with IGT [93], possibly suggesting that an elevated ratio is an 

indicator of more established β-cell dysfunction or of increased β-cell demand.

Homeostatic model assessment (HOMA) –

The HOMA provides estimates of basal β-cell function and insulin sensitivity. [27] Updates 

to the model take into account variations in hepatic and peripheral glucose resistance, and 

other whole-body determinants of metabolic physiology.[94] The original linear equations 

are simplified approximations of the original nonlinear solution. [27] With modern 

computing the direct calculation is widely accessible, particularly with the availability of an 

online calculator (https://www.dtu.ox.ac.uk/homacalculator/). The use of the online 

methodology is preferred. [27, 95]

Because the model requires only basal glucose and insulin/C-peptide concentrations, it has 

obvious advantages in terms of cost and ease of application, and has been widely utilized in 

large epidemiologic studies, longitudinal cohort studies, and clinical trials. The HOMA%B 

is correlated (r=0.6-0.9) with direct measures of β-cell function in cross-sectional studies of 

healthy populations with NGT, but may be less reliably related in progressive dysglycemia 

and diabetes. [27, 83, 96]. Correlations with direct measures are weaker in longitudinal 

studies, even after accounting for increased variability of the measurements. [20]

These surrogate measures have been used primarily in epidemiologic studies, although in 

some instances they have been used to assess treatment effects on β-cell function in 

pharmacologic or surgical studies. [46, 77, 97]

These measures have advantages for cost and personnel burden, and require much less of 

individual participants. However, the compromises entailed make it an imperfect choice for 

studies primarily assessing β-cell function and response to interventions that may also 

improve insulin sensitivity.
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A Case Study in Method Selection - The RISE Approach to Measuring ß-Cell 

Function

The Restoring Insulin Secretion (RISE) Consortium includes three studies assessing the 

hypothesis that glucose lowering will lead to sustained improvement in β-cell function in 

prediabetes and early T2D [17] :

1. RISE Adult Medication Study: Adult participants (ages 20-65) are randomized to 

one of the following treatment arms: (1) metformin alone, (2) early treatment 

with insulin glargine followed by metformin, (3) liraglutide plus metformin, or 

(4) placebo.

2. RISE Pediatric Medication Study: Pediatric participants (ages 10-19) are 

randomized to: 1) metformin alone, or 2) early treatment with insulin glargine 

followed by metformin.

3. RISE Adult Surgical Study (BetaFat Study): Adult participants (ages 20-65) are 

randomized to gastric banding or metformin.

The RISE Medication Studies will assess whether improvements in ß-cell function following 

12 months of active treatment are maintained for 3 months following the withdrawal of 

therapy. The BetaFat trial will assess the same outcome variables after 12- and 24-months of 

active treatment with metformin or following gastic banding surgery.

The RISE studies use a shared set of measurements. The selection of methods to be applied 

in RISE incorporated the need to carefully assess β-cell function at repeated intervals, while 

balancing considerations for participant burden and resource constraints. Also of importance 

was the capacity to demonstrate change on repeated testing performed longitudinally. 

Incorporating the considerations and comparisons of methodologies outlined above, the 

RISE Consortium elected to undertake, as the primary method for measurement of ß-cell 

function, a two-stage hyperglycemic clamp including arginine stimulation. The first stage 

uses an initial weight-based glucose bolus followed by a 2-hour continuous glucose infusion 

targeting a sustained plasma glucose concentration of 200 mg/dL (11.1 mmol/L), to allow 

derivation of first- and second-phase insulin/C-peptide responses to intravenous glucose and 

the measurement of insulin sensitivity at the end of this 2-hour clamp. The second stage 

incorporates a 30-45 minute increase in plasma glucose concentration to at least 450 mg/dL 

(25 mmol/L) followed by a bolus of 5g of L-arginine, to allow measurement of maximal β-

cell secretory capacity.

RISE also chose to perform, a separate 3-hour OGTT with rapid early sampling (10/20/30 

minutes following ingestion) to evaluate glucose tolerance and ß-cell responses in the 

context of an enterally delivered stimulus. This increases the subject burden by adding an 

additional testing day, but provides information on glycemic control and responses that 

incorporate the incretin contributions to ß-cell function. The incretins were of interest as 

both the gastric-banding surgery and GLP-1 receptor agonist therapies could have treatment-

specific effects to modify responses to enterally delivered nutrients that may not be 

adequately assessed using the hyperglycemic clamp. Comparisons of clamp versus OGTT 

responses will be used to evaluate whether changes in incretin response contribute to any 
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observed effects of the RISE interventions. The OGTT was chosen over the MMTT to 

maximize standardization, and to allow a measure of glucose tolerance that can be evaluated 

against established clinical criteria.

The hyperglycemic clamp was chosen over the other methods described for the following 

reasons: 1) it allows for a controlled and repeatable hyperglycemic stimulus to the β-cell 

(minimizing variability), and allows the addition of arginine stimulation to measure β-cell 

secretory capacity; 2) the methodology is reproducible and amenable to standardization 

across study sites [21]; and 3) it simultaneously provides an indirect measure of insulin 

sensitivity. Including a hyperinsulinemic-euglycemic clamp would add considerable 

participant and staff burden over the course of a longitudinal study. We instead chose to 

evaluate insulin sensitivity using the insulin sensitivity index derived during the 200 mg/dL 

(11.1 mmol/L) steady-state period of the hyperglycemic clamp. Doing so allowed the 

inclusion of a second, less-intensive day of testing with an OGTT. Arginine-stimulated 

insulin secretion was included as a measure of the maximal ß-cell response, which could 

potentially show a different response to the various treatment approaches. Arginine was 

chosen as opposed to other available stimuli because it is an established method for this 

purpose, and it has superior technical performance.[65] Further, use of arginine would allow 

the evaluation of the glucagon response as a measure of α-cell function.

The IVGTT was ultimately not chosen because we anticipated very poor or absent first-

phase insulin responses in the population to be evaluated, with attendant difficulties in 

modeling first-phase responses and missing data. We also considered graded-glucose 

infusion tests, given the unique advantage of directly quantifying β-cell glucose sensitivity, 

and the advantage of precise regulation of the glucose stimulus. However this method does 

not produce traditional measures of first- and second- phase insulin responses. In order to 

have a measure of insulin sensitivity, we also would have needed to use the model-derived 

measure from the up-down graded procedure, or perform a hyperinsulinemic clamp on a 

separate day. [58] Here again, there was a concern that modeling for individuals with poor β-

cell function and poor insulin sensitivity would prove difficult, with loss of data and 

incomplete datasets even with this detailed method of measuring ß-cell glucose responses.

Conclusion

Many different methods have been developed for in vivo measurement of human β-cell 

function, each with strengths and weaknesses. The optimal selection of methods will be 

determined by the particular focus of study. Table 1 provides an overview of the main 

strengths and weaknesses of the methods discussed.

The RISE study is evaluating the effects of interventions including pharmacotherapeutics 

and metabolic surgery on β-cell function, in populations spanning from pediatrics to adults. 

We elected to measure our β-cell outcomes using a 2-day measurement procedure, namely a 

3-hour 75g OGTT and a 2-stage hyperglycemic clamp with arginine. This combination of 

methods provides an assessment of: 1) first- and second-phase insulin/C-peptide responses; 

2) insulin sensitivity; 3) maximal β-cell secretory capacity; 4) early and late insulin response 

to an enteral glucose stimulus. This protocol has been successfully implemented in a multi-
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center consortium, highlighting the feasibility of using these methods in treatment studies 

with multiple participating study sites.
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Figure 1. 
The hyperbolic relationship between insulin sensitivity (SI) and the first phase (acute) 

insulin response to glucose (AIRglucose) (a) and the maximal acute insulin response to 

arginine (AIRmax) (b) in a cohort of healthy individuals. The solid line depicts the best-fit 

relationship (50th percentile), while the broken lines represent the 5th, 25th, 75th, and 95th 

percentiles. A reduction in insulin sensitivity, as measured by a decrease in Si, results in a 

compensatory reciprocal and proportionate increase in glucose-stimulated insulin secretion 

and an increase in maximal acute insulin response to arginine, the latter a measure of β-cell 
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secretory capacity. (Copyright 1993 American Diabetes Association. From Reference [10] 

Reprinted with permission from The American Diabetes Association)
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Figure 2. 
Plasma insulin response to a 20g intravenous glucose bolus in NGT (a) and T2D (b). The 

first-phase insulin response is absent in the subjects with diabetes while the second-phase 

response is relatively preserved, with a delayed maximal insulin response. (Reprinted from 

Reference [98], with permission from Excerpta Medica Inc.)
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Figure 3. 
Comparison of the acute insulin response to a 5g intravenous L-arginine injection at 

different glucose levels in NGT participants compared with participants with T2D, with 

simiar age and body weight. (Reprinted with permission from Reference [39]).
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Figure 4: 
(A) DI in obese adolescents across the spectrum of glycemia. Letters indicate significant 

post hoc analyses (a: T2D vs. NGT; b: T2D vs. IFG; c: T2D vs. IGT; e: NGT vs. IFG/IGT; f: 

NGT vs. IGT). Adapted with permission from reference [99]. (B) Incretin effect in obese 

youth. Letters indicate significant post hoc analyses (a: NGT vs. IGT; b: NGT vs. T2D). 

Adapted with permission from reference [78].

Hannon et al. Page 22

Diabetes Obes Metab. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hannon et al. Page 23

Ta
b

le
 1

.

M
et

ho
ds

 o
f 

A
ss

es
si

ng
 H

um
an

 β
-C

el
l F

un
ct

io
n 

In
 V

iv
o

M
et

ho
d

T
im

e*
 (

hr
)

St
af

f 
&

 
P

ar
ti

ci
pa

nt
 

B
ur

de
n

D
ir

ec
tl

y 
M

ea
su

re
s 

F
ir

st
- 

an
d 

Se
co

nd
-

ph
as

e 
In

su
lin

C
on

cu
rr

en
t 

M
ea

su
re

 o
f 

In
su

lin
 

Se
ns

it
iv

it
y

F
ea

tu
re

s 
of

 N
ot

e

H
yp

er
gl

yc
em

ic
 C

la
m

p
2-

3
+

+
+

Y
es

Y
es

D
ir

ec
t m

ea
su

re
m

en
t o

f 
tr

ad
iti

on
al

 b
et

a-
ce

ll 
fu

nc
tio

n 
pl

us
 a

 m
ea

su
re

 
of

 in
su

lin
 s

en
si

tiv
ity

IV
G

T
T

3-
4

+
+

+
Y

es
Y

es
Si

m
pl

er
 p

ro
ce

du
re

 f
or

 c
om

bi
ne

d 
m

ea
su

re
m

en
t o

f 
be

ta
-c

el
l a

nd
 

in
su

lin
 s

en
si

tv
ity

G
ra

de
d 

G
lu

co
se

 I
nf

us
io

n
2-

4
+

+
N

o
N

o
D

ir
ec

t m
ea

su
re

m
en

t o
f 

be
ta

-c
el

l g
lu

co
se

 s
en

si
tiv

ity

G
lu

co
se

-P
ot

en
tia

te
d 

A
rg

in
in

e 
St

im
ul

at
io

n
1-

2
+

+
N

o
N

o
C

om
pl

em
en

ta
ry

, g
lu

co
se

-i
nd

ep
en

de
nt

 m
ea

su
re

m
en

t o
f 

be
ta

-c
el

l 
fu

nc
tio

n;
 m

ay
 r

ef
le

ct
 b

et
a-

ce
ll 

m
as

s

O
G

T
T

 o
r 

M
M

T
T

2-
4

+
N

o
Y

es
M

ea
su

ri
ng

 p
hy

si
ol

og
ic

 r
es

po
ns

e 
in

cl
ud

in
g 

in
cr

et
in

 a
xi

s;
 O

G
T

T
 c

an
 

pr
ov

id
e 

cl
in

ic
al

ly
 d

ia
gn

os
tic

 r
es

ul
ts

Fa
st

in
g 

M
ea

su
re

s
<

1
+

/−
N

o
Y

es
Si

m
pl

es
t a

nd
 le

as
t e

xp
en

si
ve

, u
se

fu
l f

or
 e

pi
de

m
io

lo
gi

c 
st

ud
ie

s

* T
im

es
 d

o 
no

t i
nc

lu
de

 ti
m

e 
ne

ce
ss

ar
y 

fo
r 

ca
th

et
er

 in
se

rt
io

n 
an

d 
st

ud
y 

pr
ep

ar
at

io
n.

 T
he

 ti
m

e 
fo

r 
gl

uc
os

e-
po

te
nt

ia
te

d 
ar

gi
ni

ne
 s

ec
re

tio
n 

is
 in

 a
dd

iti
on

 to
 th

e 
tim

e 
ne

ed
ed

 f
or

 a
ny

 p
re

pa
ra

to
ry

 p
ro

ce
du

re
s.

Diabetes Obes Metab. Author manuscript; available in PMC 2019 January 01.


	Abstract
	Introduction
	Physiologic Considerations for the Measurement of β-cell Function
	Measuring Insulin Sensitivity
	Hyperinsulinemic-Euglycemic Clamp –
	Hyperglycemic Clamp-Derived Insulin Sensitivity –
	IVGTT - Minimal Model-Derived Insulin Sensitivity-
	Surrogate Measures of Insulin Sensitivity –

	Measuring β-cell Function
	Hyperglycemic clamp -
	Intravenous glucose tolerance test (IVGTT) -
	Graded glucose infusion –
	Glucose-potentiated arginine stimulation test -
	Oral Glucose Tolerance Test (OGTT) -
	Mixed meal tolerance test (MMTT) -
	Fasting proinsulin to insulin (or C-peptide) ratio
	Homeostatic model assessment (HOMA) –

	A Case Study in Method Selection - The RISE Approach to Measuring ß-Cell Function
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4:
	Table 1.

