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Abstract

Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene 

expression. The most abundant regulatory ncRNAs are the 20–24 nt small microRNAs (miRNAs) 

and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct 

mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just 

being recognized. While the importance of lncRNAs in epigenetic control of transcription, 

developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology 

is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast 

and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can 

be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. 

Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic 

and resorptive bone cells, coupled with in vivo gain-and loss-of-function studies, discovered 

unique mechanisms that support bone development and bone homeostasis in adults. We present 

here “guiding principles” for addressing biological control of bone tissue formation by ncRNAs. 

This review emphasizes recent advances in understanding regulation of the process of miRNA 

biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling 

pathways. Also discussed are the approaches to be pursued for an understanding of the role of 

lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on 

new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the 

skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for 

skeletal disorders are possible.
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1. Introduction

Normal bone functions as an organ through balanced activities among different cell types, 

and also communicates with many other organs and biological networks that impact on bone 

turnover and maintaining tissue homeostasis [1]. Complex regulatory controls and 

transcriptional activities are required to support gene expression in response to hormone-, 

growth factor- and cytokine-mediated signaling cascades in bone forming and resorbing 

lineage cells. Only 1–2% of the human genome is transcribed into protein with a vast 

majority represented by non-coding RNAs (ncRNAs), implicating their significant role in 

contributing to regulation of gene expression [2]. This decade has witnessed an explosion of 

information for understanding epigenetic control of gene expression by the different classes 

of ncRNAs. Pursuit of epigenetic mechanisms operative in bone tissue is equally important 

as understanding gene-centric regulation of the skeleton.

Among the well-known classes of regulatory ncRNAs with epigenetic functions are the long 

non-coding RNAs ranging in size from >200 nt to 100 kb and different types of small RNAs 

which include small interfering siRNAs (18–30 nt), piwiRNAs (24–30) nt and the 20–24 nt 

microRNAs (miRNAs). The number of miRNAs exceeds over 2500 in humans and nearly 

2000 are found in mouse databases (http://www.mirbase.org). The number of long non-

coding RNAs is in the range of 16,000–32,000. Large databases have been compiled for 

miRNAs and their targets, and both long interfering non-coding RNAs (lincRNA) and long 

non-coding (lncRNA) are also annotated in databases. However, all the ncRNA databases 

are based on sequence data and structure and function, but a fair percentage of miRNA and 

most lncRNAs have not been validated or studied for their activity and many lncRNAs are 

not even annotated.

Detailed in Section 2 are the biogenesis, maturation and function of miRNAs which are 

regulated at multiple levels with stringent sequential control during processing from 

precursor to metastasis [3,4]. The mechanism by which miRNAs induce messenger RNA 

silencing is by functioning as a reader of the bases of its 5′ ‘miRNA seed’ sequences that 

are complementary with each mRNA-binding site. These sites are typically present in the 

target mRNA 3′ untranslated region. Dysregulation of miRNA biogenesis is associated with 

human diseases including developmental disorders and cancer [5–7].

LncRNAs, which are not translated into proteins, have a broad expanse of biological 

functions regulating chromatin states to support activation or repression of transcription. 

They affect gene expression by translational and transcriptional mechanisms that are distinct 

from the classical binding of transcription factors to their cognate DNA regulatory elements 

[8]. LncRNAs present technical challenges in characterizing their complex functional roles 

in the skeleton. However, newer technologies make such studies feasible and are discussed 

in Section 4.

Prompted by the recently identified regulation of miRNA processing enzymes and the 

interplay between miRNAs with mRNAs and lncRNAs for regulation of the genome, this 

review presents: a) recent advances in the biosynthesis, processing, function and stability of 

miRNAs; b) the emerging concepts of miRNA regulation of the skeleton which are based on 
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the abundance of well characterized miRNAs that have conveyed an increased understanding 

of epigenetic regulation of the bone genome; and c) new directions for discovery of lncRNA 

activities in regulating bone tissue formation.

2. Biogenesis and regulation of miRNAs: complexity for diversity

2.1. Background

MicroRNAs (miRNAs/miRs) represent a leading class of small ncRNAs, and are implicated 

in diverse biologic and pathologic processes. Before beginning the journey of biogenesis, a 

word about the well-organized naming of miRNAs is relevant. While the first mammalian 

miRNAs were named by the gene where they were located, a numerical system was adopted 

as miRNA sequences were identified. However, to date there remain inconsistencies and 

variability in miRNA nomenclature. Those miRNAs that have nearly identical “seed” 

sequences (8 nt, with nt positions 2 to 7 being 99% conserved) of the 20–24 nt mature 

miRNA, are considered a miRNA family and are, for example, the miR-29a,b,c, let-7a–h, 

and miR-30a–e families. Based on binding specificity of the mature miRNA, the two 

isoforms can exhibit similar or diverse functions. miRNA isoforms of miR-23 (23a and 23b) 

can target the same miRNA as SATB2, in addition to other different targets [9]. The 

miR-24-1 is an oncomiR involved in the regulation of MEN1 [10] and miR-24-2 is part of a 

cluster regulating osteoblast differentiation [9]. Sometimes a mature miRNA is transcribed 

from multiple genomic loci, in which case, a numeric suffix is added after the letter or at the 

end of the miRNA name (for example, miR-125b-1 and miR-125b-2). In addition, each 

precursor miRNA generates two mature miRNAs: one from the 5′ region of the stem and 

one from the 3′ region of the stem (termed as miR-27a-5p and miR-27a-3p). Because each 

locus produces two mature strands, the strand with functional activity and abundancy is 

termed “guide” strand, while the other is a “passenger” strand which is designated as 

miRNA*. The mature miRNAs are targeted to 3′ UTR of mRNAs matching a seed 

sequence. This small sequence can occur in just a few messenger RNAs or several hundred 

transcribed messages. Nearly two-thirds of 21,000 human protein-coding genes have high, 

moderate and poor miRNA-binding affinity [11], but across species, most mammalian 

mRNAs are conserved targets of microRNAs. Together these properties of miRNA control 

of gene expression provide a refined layer of regulation that refrain a broad spectrum of 

biological processes. However, there is recognition that while the identification of a miRNA 

with characterization of a single target may have a significant biological effect, but the miR 

should be examined in a broader context of its effects on other targets and a biological 

pathway in the cell context being studied.

To note, the siRNAs are related to miRNAs, but their biosynthesis and mechanism of action 

differ from miRNAs. The siRNAs are processed from double stranded or stem loop 

structures, only by Dicer in the cytoplasm. Both miRNAs and siRNAs are loaded into the 

RNA-Induced Silencing Complex (RISC) to silence target miRNAs. However, siRNAs are 

100% complementary to mRNA coding sequences, and therefore the siRNAs target only one 

mRNA. This results in direct degradation of messenger RNA, with a readout of decreased 

gene expression, while miRNAs can either control translation repression of protein or 

mRNA degradation.
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MicroRNAs are derived from genomic sequences where the majority of miRNAs are located 

in the intronic sequences and are defined by their stem loop structure that is dependent on 

the underlying chromatin structure of the RNA [3,4]. For those miRNAs that do not rely on 

expression by a host gene, their own promoters have been characterized and found to be 

regulated by numerous transcription factors. A recent review [12] has listed the miRNAs that 

are co-regulated with transcription factors that represent specific cell phenotype, 

developmental processes and growth control; for example, p53, MYC, ZEB 1 and 2 and 

MYO D1 [13,14]. RUNX2 and RUNX1, essential transcription factors for bone development 

and hematopoiesis respectively, directly bind and control transcription of the miR-23a–27a–

24-2 cluster [9,15]. Runx1 mutations causing various leukemias contribute to deregulation of 

the cluster [15]. The targets of this cluster regulating osteogenesis is are discussed in Section 

3. These studies are a clear demonstration of tissue specific transcription factors regulating 

miRNAs that support differentiation programs.

2.2. miRNA processing: the essential enzymes

Present knowledge of miRNA biogenesis, maturation and function has revealed that many 

components of miRNA processing are tightly regulating cellular levels of miRNAs. Studies 

have indicated the importance of each of the many enzymes and factors involved in miRNA 

biogenesis, processing, maturation, and silencing miRNAs (Fig. 1). We describe the 

enzymes and their co-regulator roles in miRNA biogenesis for potential understanding of 

complex skeletal disorders that could be associated with deregulated processing. Two 

endoribonucleases of the RNaseIII family process microRNAs: Drosha in the nucleus and 

Dicer in the cytoplasm are considered the essential regulators of miRNA biogenesis 

[3,6,16,17]. Drosha and DGCR8 (DiGeorge syndrome critical region gene 8) in the nucleus 

remove the primary miRNA and process it to a pre-miR, while Dicer and co-regulator Ago2 

(an Argonaute protein) in the cytoplasm continue processing the mature miRNA duplex. 

These enzymes are crucial for life [17–21]. Drosha deletion causes early embryonic lethality 

by E7.5 in mice. Likewise, knockout of Dgcr8, a subunit of the Drosha complex, results in 

arrest early in embryonic development [17–19]. Dicer knockout also results in early 

embryonic lethality [20] and mice null for Ago2 are embryonic lethal and show numerous 

developmental defects by E 9.5 [21,22].

Conditional deletion of the enzymes in specific cell types has identified their crucial 

importance in organ development. Related to the skeleton, conditional deletion of either 

Dicer, Dgcr8, or Drosha in cells comprising bone and cartilage tissues, demonstrated the 

requirement of miRNAs for the differentiation of osteoblasts, osteoclasts and chondrocytes. 

Osteoclast differentiation is clearly dependent on both Drosha and Dicer with both mouse 

models having defective bone resorption [23–25]. Dicer excision in chondrocytes (by using 

Col2a-Cre) resulted in viable mice, but with compromised endochondral bone formation and 

early post-natal death [26]. However, with an inducible Cre driver expressed in articular 

chondrocytes (by PRG4-Cre) mice had normal life span, but developed an osteoarthritis 

phenotype, and interestingly in males only [27]. The significance of this finding is further 

supported by the observation that lubricin (PRG4), which is regarded as chondroprotective, 

is highly responsive to mechanical compression [28]. Striking phenotypes were also found 

by Dicer deletion in mesenchymal progenitors and implicate a subset of miRNAs for 
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induction of bone formation and fetal survival, while excision in mature osteoblasts (by 

osteocalcin-Cre) increased bone mass [29]. In another study, deletion of Dicer in 

mesenchymal osteoprogenitors was found to compromise hematopoiesis to the point of 

inducing a leukemia phenotype, underscoring crucial communication between mesenchymal 

and hematopoietic cells by miRNAs [30]. The depletion of miRNAs in either cell severely 

altered the phenotypes of both cells. The conditional deletion of Dicer in mesenchyme by 

Wnt1-Cre or epithelium by shh-Cre revealed very different defects in tooth development by 

loss of Dicer. Extra incisors formed due to compromised epithelium, but no defects in 

molars were observed; however deficient miRNA processing in mesenchymal tissue resulted 

in an arrest in tooth development [31]. Together these in vivo phenotypes resulting from 

deficiencies in mature miRNAs show a spectrum of activities of the principle miRNA 

processing enzymes; and, that the consequences of miRNA deficiencies in different bone 

cell populations have revealed the importance of miRNAs essential for normal bone 

homeostasis throughout life. The many findings implicate subsets of miRNAs for fetal 

survival, induction of bone formation and regulation of bone turnover, and the importance of 

epigenetic control of bone mass by miRNAs. In future studies, perhaps miRNAs may be 

discovered that represent a heritable epigenetic signature that determines bone size and 

quality.

The mature miRNA sequences that are embedded in the stem region of the stem-loop 

structure of the primary-miRNA (pri-miR) are the target of Drosha. Following transcription 

of the miRNA, Drosha and cofactor DGCR8 (DiGeorge syndrome critical region 8) with 

RNA helicase p68 form the “microprocessor complex”. This critical regulator of miRNA 

biogenesis crops the pri-miR to yield an 80–100 nucleotide precursor miRNA (pre-miRNA). 

Receptor activated SMAD proteins (R-SMADs) and the tumor suppressor gene p53 

associate with the complex to regulate the processing [14,32] as shown in Fig. 1A. 

Ribonucleoproteins including hnRNPA1 [33], the splicing regulatory factor KSRP [34] and 

Lin-28 Homolog (LIN28) bind selectively to the terminal loop of the pri-miRNA. The 

miR-18a or let-7 regulates stability of Drosha-mediated processing [35]. AGO2 and TRBP 

phosphorylation results in the dissociation of these processing co-factors from Dicer to 

attenuate pre-miRNA processing (Fig. 1B). Furthermore, post-translational modifications 

(e.g., phosphorylations and acetylation of Drosha and DGCR8 protein) can modulate the 

processing activity of the complex. Immediately after Drosha processing, the nuclear cargo 

exportin 5 (EXP5) forms a “delivery” complex with GTP-binding protein RAN-GTP to 

export pre-miRNA into the cytoplasm for further maturation of the pre-miRNA by the Dicer 

enzyme [36].

The formation of a Dicer enzyme complex is required for generating the functional miRNA 

(Fig. 1C). The mammalian TAR RNA-binding protein (TRBP) first associates with Dicer to 

mediate pre-miRNA processing by [37]. Analogous to regulation of Drosha, KSRP and 

LIN28 in the cytoplasm bind with pre-miRNA and to yield mature miRNAs [34,38,39]. The 

Dicer generated 22–24 nt duplex RNA from the pre-miRNA is then loaded on the Ago2 

“leading complex” to assemble a pre-RNA Induced Silencing Complex (pre-RISC). Heat 

shock proteins, HSC70 and HSP90 facilitate a conformational change of AGO proteins to 

remove the passenger strand which results in an active RISC complex with the guide strand 

(as shown in Fig. 1C) [40]. The miRNA in the RISC complex recognizes mRNA targets by 
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base pairing typically with the 3′ UTR of an mRNA and mediates repression of translation 

followed by degradation of mRNA (Fig. 1D) [41].

Argonaute-mediated protein repression is regulated at many levels (Fig. 1C), by 

hydroxylation, phosphorylation and ADP-ribosylation of Argonaute proteins which 

modulates miRNA binding and stability to repress their targets [42–44]. Additionally 

ubiquination (proteasome-mediated degradation) or autophagy of AGO proteins has also 

been suggested to contribute to stability of the RISC complex engaged in protein repression 

[45,46]. At the final stage of miRNA biogenesis is consideration of the degradation of 

miRNAs. The 3′ (Fig. 1E) ends of miRNAs are subject to modifications that include 

adenylation and methylation which stabilizes miRNAs at the 3′ end (Fig. 1E) [47,48]. In 

contrast, uridylation of 3′ end makes the miRNA highly susceptible to trimming and tailing 

for degradation of the miRNA and also the RISC complex [4] (illustrated in Fig. 1E).

We have focused on canonical miRNA biogenesis, however non-canonical pathways to 

miRNAs can occur where Drosha and Dicer function independent of each other, to regulate 

messenger RNAs [49]. Mouse models where different phenotypes were observed by separate 

deletion of the two enzymes provided evidence of non-canonical pathways for biogenesis 

and different functions of the enzymes. An example is the finding that Drosha, and not 

Dicer, regulated the proliferation of hMSCs through a miRNA independent mechanism, 

potentially by regulating ribosomal RNA processing [50]. Also, Argo proteins are mainly in 

the cytoplasm (canonical pathway) but are also found in the nucleus where they may have 

transcriptional functions independent of miRNA processing [51].

To summarize, the complexity of miRNA biogenesis is required for stringent control of 

miRNA cellular levels that is still not completely understood. The multiple enzymes are 

themselves the target of miRNA regulation and other epigenetic modulators, as well as 

transcriptional control. There is no doubt that the process of miRNA biogenesis may be far 

more regulated by mechanisms yet to be uncovered in specific cell types. For example, 

control of Dicer/Ago processing of miRNAs is known to be regulated by physiologic 

hypoxic conditions [52,53] and cellular stresses [54]. There are likely other physiological 

cues from hypoxia [55] or hormones e.g., glucocorticoids, vitamin D, and estrogen [56–58], 

that can contribute to regulating processing (in addition to BMP TGFβ SMADs and p53 

indicated earlier). The findings of repeated sequences in Drosha and Dicer associated with a 

fragile X syndrome [59], SNPs located in Drosha in breast cancer [56], and the recent 

discovery of SNPs in Drosha and Dgcr8 discovered in Wilms tumor, highlight the 

consequences of compromising activity of the miRNA processing enzymes in human 

diseases [60,61].

3. MicroRNAs in bone: orchestrating cellular activities

Osteoblasts originate from the pluripotent mesenchymal stem cell (MSCs) and osteoclasts 

are derived from hematopoietic lineage cells with miRNAs regulating their phenotype 

differentiation. Many excellent reviews have been published in just the past few years which 

summarized miRNAs identified in different bone cell populations that are either up or 

downregulated during their differentiation and we cite the most recent reviews as of this 
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writing [62–65]. In this section, we will refer to only a few miRNAs, as examples to 

illustrate the different modes of miRNA control over bone activities. Transcriptional control 

in response to developmental, hormonal and growth factor signals is the key elements for 

induction of a cell phenotype for tissue formation; and, partnering these mechanisms are the 

changes in miRNA expression in response to the biological signals.

3.1. miRNAs: stemness and lineage allocation

It is now clear that from the hundreds of studies of miRNA in cell populations resident in 

bone that the miRNAs have key roles in maintaining pluripotency of stem cells for tissue 

renewal, as well as regulating induction of a specific cell phenotype and providing 

phenotype stability to the tissue histocyte. The “guiding principle” of commitment to a 

phenotype regulated by miRNAs is clearly demonstrated by progression of osteoblast 

differentiation originating in the MSCs. A key feature of studies in rodent or human bone 

marrow-derived stem cells (BMSCs) or fat tissue-derived MSCs is that miRNAs are 

downregulated by osteogenic media or when induced into osteogenesis by BMP2. Nearly all 

miRNA profiling studies show similar miRNAs in undifferentiated MSCs that preserve 

stemness. These miRNAs support options for lineage allocation by inhibiting cellular protein 

levels of essential tissue-specific transcriptional regulators (e.g., Runx2, Sox 9, PPARg, C/

EBPa, MyoD) until they receive a stimulus by developmental, hormonal factors or other 

physiological signals required for phenotype differentiation. It has been demonstrated in 

several osteoblast cell models that BMP2 commits a cell to osteogenesis by down-regulating 

miRNAs that target activators of bone formation, among which are, Smad co-receptors [66–

68], Wnt receptors [69], Runx2 [67], ATF 4 [70,71], Osterix/Sp7 [72,73] and other bone 

related transcription factors [74]. Thus BMP2, by decreasing cellular levels of miRNAs that 

target required factors for bone formation, releases these osteogenic regulators from 

suppression.

Lineage allocation of MSCs is only partly understood. A fundamental mechanism of 

commitment to a specific cell phenotype is the requirement of an essential transcription 

factors (TFs) for phenotype development, e.g., C/EBPa and PPARg for adipogenesis and 

Runx2 and Osx/Sp7 for osteogenesis. While “master” transcriptional regulators are the 

essential players of lineage commitment, miRNAs support lineage direction by one miRNA 

having opposing effects in the same cell by promoting one phenotype, and inhibiting 

another. This control of the “bone” genome is best illustrated by Runx2, which to date, is 

known to be down-regulated by at least 19 miRNAs that target the 3′ UTR. Many of these 

miRNAs are expressed in non-osseous mesenchymal lineage cells to assure their phenotype 

stability. For example, miR-133 promotes myogenesis, but strongly inhibits Runx2 when 

myogenesis is induced. Likewise, miR-30 which downregulates Runx2 [67,75,76] and 

recently reported to promote myogenesis [77]. Another study found that miR-30e in 

BMSCs, by targeting/inhibiting IGF2 [78] will block osteogenesis and increase adipogenesis 

in MSC or promote differentiation of smooth muscle cells. The in vivo consequence of this 

dual action was shown in Apo−/− mice that exhibited cardiovascular calcification along with 

increase Runx2, OPN and IGF2 and the phenotype could be rescued by expressing miR-30e 

which suppresses the Smad1–Runx2 axis [79]. miR-30e also targets LRP6, a crucial co-

receptor for Wnt signaling required for osteogenesis [69]. MicroRNAs are now considered 
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key regulators of the adipogenic–osteogenic phenotype switch, which has recently been 

reviewed [80,81]. MicroRNAs reported to drive adipogenesis, but inhibit osteogenesis 

include miR-204/21 by targeting Runx2 [82] and miR-320 [83], while miRNAs promoting 

osteogenesis will block fat cell differentiation, for example, miR-27a [84,85] and 27-b [86] 

by inhibiting PPARγ and let7 [87] and miR122 by targeting HDAC6, an inhibitor of Runx2 

[88]. The many studies documenting phenotypic switches in MSCs reinforce the concept 

that miRNAs represent a level of epigenetic regulation to assure that transcriptional drivers 

of differentiation will not be competing against other master transcription factors. Such 

miRNAs are clinically relevant for therapeutic intervention in musculoskeletal and metabolic 

bone disorders to correct imbalances in cell populations.

3.2. MiRNAs: signaling pathways and networks

A basic tenet of miRNA biology is the complexity that occurs because: a) one miRNA can 

target many mRNAs with distinct effects on individual genes in a single cell; and b) one 

gene can be targeted by many different miRNAs, as described above for transcriptional 

control of lineages. In bone tissue, the biological advantage of these properties is also 

highlighted by the ability of miRNAs to: 1) dynamically control progression of osteoblast 

differentiation through stages of maturation; and 2) orchestrate the activities of osteogenic 

signaling pathways through feed forward and feedback circuits. This is illustrated by 

miR-218 repression of several inhibitors of the Wnt signaling. The miR-218 functions as a 

continuous driver of differentiation through a positive feedback loop (Fig. 2A). However, 

this feature is deregulated in metastatic breast cancer cells and miR-218 becomes a 

pathologic driver of metastatic bone disease by sustaining Wnt activity. The tight control 

over Wnt activities by miRNAs is evidenced by multiple miRNAs expressed in osteoblasts 

that target inhibitors of Wnt signaling to support osteoblastogenesis and mineralization; for 

example, miR-27 decreases sFRP1 [89], miR-346 inhibits GSK3B in MSCs [90], and 

miR-335-5p blocks Dkk1 [91].

The multitasking of a single miRNA to target different genes during osteoblast 

differentiation is illustrated by several studies examining the miR-29 family, another pro-

differentiation miRNA. miR-29b inhibits SFRP1 and collagen only in mature osteoblasts 

[92,93], miR-29a inhibits DKK1 but also osteonectin [94,95], and is reported as an enhancer 

of mineral deposition [92] and to protect against glucocorticoid-induced bone loss [96]. Of 

interest all three miR-29 family members were identified in osteoclasts. By inhibiting the 

miRNA, osteoclast differentiation was decreased [97]. Thus, miR-29 that is promoting 

osteoclast differentiation may be having a greater role in bone tissue “fine tuning” bone 

turnover. Cluster miRNAs which are regulated through their own promoter are also 

important for coordinating intracellular signaling pathways and can be appreciated for their 

diverse effects in bone cells. The cluster miR-17 and -20a-support periosteal bone formation 

and can inhibit apoptosis of osteoblasts [66,98–100]. The regulated expression of three 

miRNA clusters by Runx2 is described in Fig. 2. The miRNA-218 is upregulated during 

osteoblast differentiation, reaching peak levels at the mineralization stage [93]. Although 

miR-218 targets and decreases Runx2 in a reporter assay, it does not inhibit osteoblast 

differentiation [75]. Rather it drives differentiation to the mineralization stage and osteocyte 

formation by activating Wnt signaling through downregulation of multiple inhibitors of the 
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Wnt pathway during stages of osteoblast differentiation. However, it is also highly expressed 

in breast cancer metastatic cells compared to non-metastatic cells where increased Wnt 

signaling promotes the expression of genes related to homing and adhesion of tumor cells to 

bone (osteomimicry) [101] (Fig. 2A). The miR-23a–27b-24-1 cluster forms a regulatory 

network that inhibits three essential transcriptional regulators which promote bone 

formation, SatB2, Runx2 and Hoxa10 (Fig. 2B). Thus negative regulation of transcription of 

this cluster by Runx2 relieves repression of osteogenesis due to these miRNAs. However, 

each miRNA in the cluster feeds back to target Hoxa10 and Runx2, thus maintaining a 

physiological balance of transcriptional control when cells reach the final stage of 

mineralization. In an opposite fashion, Runx2 activates two miRNAs, miR-3960 and 

miR-2861, each targeting an inhibitor of Runx2, although it is not clear if these miRNAs are 

clustered (Fig. 2C). Here repression of the targets results in increased Runx2 cellular protein 

levels. The miR-2681 was first associated with primary osteoporosis in two related 

adolescents due to a homozygous mutation in pre-miR-2861 that blocked its expression and 

resulted in high levels of HDAC5, a potent inhibitor of Runx2 activity [102]. The 

mechanism along with miR-3960 which targets Hoxa2, also a negative regulator of Runx2, 

was later characterized [103].

Together studies characterizing multiple functions of a single miRNAs in skeletal cells 

demonstrate mechanisms by which they: a) orchestrate levels of different components of 

signaling pathways for progression of differentiation; b) are involved in intricate feed-

forward and feed-back signaling; and c) selectively use miRNA isoforms at different stages 

to promote to attenuate or inhibit differentiation and regulate extracellular matrix proteins 

essential for the regulation of mineral density and bone mass. Both the diversity and 

complexity of miRNAs that can target multiple components of a signaling pathway are 

necessary to achieve specificity in miRNA actions. This is understandable for the regulation 

of factors with broad expression in many cell types. For consideration of miRNAs as a 

druggable target, a specific miRNA may be enriched in a cell population with functions 

related to the cell phenotype.

4. Long non-coding RNAs: uncovering their secrets of epigenetic control

Long non-coding RNAs (lncRNAs) are a family of transcripts with greater than 200 

nucleotides that do not encode proteins. Initially thought to be transcriptional noise (referred 

to as “the dark matter” of the genome), lncRNAs have emerged in the last few years as novel 

regulators of nuclear architecture and gene expression during development. They are 

involved in numerous cellular processes including X-chromosome inactivation, imprinting, 

and the regulation of cell cycle, differentiation, transcription and translation [8,104–109]. 

LncRNAs appear to be involved in numerous diseases and are being investigated as targets 

of novel therapies [110–115].

More than 16,000 lncRNAs have been identified in the human genome, with more 

transcripts being identified with each updated GENCODE annotation [116]. Expression of 

lncRNAs is largely tissue, cell and developmental stage-specific, although many are 

ubiquitously and constitutively expressed. LncRNAs are regulated by transcription factors 

and they display chromatin signatures (H3K4me3 and H3K36me3) similar to mRNA 
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[117,118]. Expression of lncRNAs is generally lower than mRNA, and while many are 

nuclear, others are cytoplasmic. LncRNAs tend to have a low degree of homology, however 

they demonstrate higher conservation in their promoters and exons, and genomic positioning 

is often maintained across species, suggesting that lncRNAs have conserved function 

[119,120].

4.1. Identification and characterization of lncRNAs: technology meets the challenge

With the advances seen in microarray technology and next-generation sequencing over the 

last decade, a large number of groups are now are identifying and cataloging hundreds or 

thousands of lncRNAs expressed during the differentiation of various cell types [105,121] 

and they are comparing the expression of lncRNAs between normal and diseased tissues 

[115,122–124]. Generally, a select one or two molecules are then investigated for possible 

function and mechanism using in vitro cell models. With tens of thousands of lncRNAs to 

understand, this is a daunting process. However, it is one of great importance, as it has been 

demonstrated that lncRNAs are required for life and normal development. Sauvageau et al. 

investigated the knockout of 18 lncRNAs and found that deletion of three lncRNAs resulted 

in peri- and post-natal lethal phenotypes and two others had growth defects [125]. 

Examining for a phenotype in more depth (e.g., at the organ level by histology, of the 

remaining 13 knockout animals) may reveal roles for those lncRNAs in processes required 

for normal development.

Only a proportionally small number of lncRNAs have been fully characterized. Unlike 

protein-coding genes, very little can be ascertained from lncRNA sequence and to date there 

are no defined motifs to identify potential function. Therefore, while interest and 

investigation into lncRNAs have developed tremendously, there is a long way to go into 

understanding the roles of lncRNAs in normal development and disease. LncRNAs function 

through a diverse number of mechanisms to regulate gene expression. They can interact with 

both DNA and/or RNA via base-pairing and bind proteins via structural motifs. One of the 

first ways lncRNA function was inferred was through “guilt-by-association” [117]. Using an 

informatics approach, lncRNAs and protein-coding genes that are tightly expressed are 

presumed to be co-regulated. Using this approach, associated pathways were correctly 

predicted for several lncRNAs. This guilt-by-association method has successfully been 

utilized in several other studies as well [125–127]. Of course, careful in vitro and in vivo 

functional analyses are required to verify these predictions.

Generally, lncRNA function is initially investigated in vitro in cell culture. LncRNA 

expression may be altered by standard siRNA or shRNA techniques, however, when using 

these approaches, one must consider the subcellular location of the expressed lncRNA. 

siRNA may work well with cytoplasmic lncRNAs, but nuclear lncRNAs will not be easily 

targeted by standard siRNA methodology. More recently, researchers have begun using used 

antisense oligonucleotides (ASOs) to target nuclear lncRNAs for RnaseH digestion. This is 

an exciting strategy as ASOs could be used in vivo in mouse studies and may be translatable 

into a viable therapeutic strategy to target lncRNAs in disease [128]. With the discovery of 

CRISPR (clustered regularly interspaced short palindromic repeats) methodology, 

investigators are now deleting entire lncRNA sequences from the genome [129]. When 
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performing these large genomic deletions, one must keep in mind that key regulatory regions 

may also be deleted and importantly, this would not be a suitable technique to study 

lncRNAs that overlap other genes. Therefore when planning to perform a loss-of-function 

experiment to examine lncRNA function, one must consider not only its genomic location 

(i.e., overlapping, antisense, intergenic) but also its subcellular location. RNA fluorescent in 

situ hybridization (FISH) is an ideal starting place in determining whether a lncRNA is 

nuclear and/or cytoplasmic [130,131].

In vivo analysis is the ultimate goal in determining lncRNA function. This generally entails 

loss-of-function studies in mouse models. Unfortunately, targeting strategies often adopted 

with protein-coding genes such as insertion of stop codons, exon replacement or insertion, 

truncation and mutation are not applicable to lncRNAs [132]. LncRNAs are not translated, 

and we are generally unaware of their functional domains, therefore the entire transcript 

needs to be prevented from being transcribed. Conventional and conditional knockout 

methods have been used with lncRNAs in mice, as have lacZ reporter knock-ins to replace 

lncRNA genes. An alternative strategy involves deletion of the lncRNA promoter, provided 

that this promoter is not in close proximity to another transcribed gene. Integration of a 

premature polyadenylation cassette into the first exon of the lncRNA is another possibility. 

More details on these methods and considerations, as well as information regarding lncRNA 

knockout mice generated to date can be found in [132].

With the ability to generate CRISPR knockout mice in a fraction of the time of standard 

knockout technologies (as short as one month), and the ability to target greater than five 

genes simultaneously [133], researchers are now using this technique to study lncRNAs in 

vivo [134]. The CRISPR technique has successfully been used with other species as well, 

including rat, rabbits and goats, thereby increasing the ability to study lncRNA function in a 

variety of animal models [135–137]. Regardless of the manner knockout animals are 

generated, it is important to perform a genetic rescue with re-expression of the deleted 

lncRNA in knockout animals to confirm any deleterious effect, is in fact due to the lncRNA 

and not other regulatory elements that may have also been deleted [138].

Purified chromatin contains twice as much RNA as DNA [139], and lncRNA function is 

often associated with histone modification and chromatin remodeling. LncRNAs associated 

with chromatin-modifying complexes can be identified through RNA immunoprecipitation 

techniques (RIP-Seq) whereby an antibody to a chromatin modifying enzyme or protein 

component of the modification complex is used to pull-down associated RNAs followed by 

RNA-Seq [140]. A similar method involves crosslinking and immunoprecipitation followed 

by high-throughput sequencing (Clip-Seq) [141]. Alternatively, one can use the lncRNA as 

bait to identify protein, DNA and RNA-binding partners via chromatin isolation by RNA 

purification (ChIRP) or capture hybridization analysis of RNA targets (CHART) [142,143].

An additional consideration when studying lncRNAs is to evaluate their structure. The study 

of lncRNA structure is very much in its infancy, however this can have tremendous 

implications in helping our understanding of mechanisms of lncRNA function and provide 

critical information for lncRNA-based therapeutics [144,145]. At this time it is still unclear 

if lncRNA mechanism involves higher order structure, if their structure is compact or 
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extended and if individual lncRNAs contain multiple, functionally active domains. It has 

been proposed however, that RNA secondary structures might be preserved throughout 

evolution and this might explain the lack of sequence conservation [146].

4.2. LncRNAs and bone: a crystal ball or Pandora’s box?

LncRNAs are believed to be critical to bone formation, not only due to inference from other 

tissues, but it has been demonstrated that the targeted disruption of the lncRNA Hotair 

results in malformation of metacarpal–carpal bones and homeotic transformation of the 

spine [85]. Hotair is expressed in the posterior trunk and distal limb buds, and in 

mesenchymal cells in embryonic forelimbs [85,147]. Hotair binds to PRC2, which is 

involved in the methylation of H3K27, and also the Lsd1 complex, which demethylates 

H3K4. It has been suggested that Hotair enforces a silent chromatin state and is involved in 

repressing the expression of the HoxD genes.

Very little else is understood about lncRNAs expressed during osteogenesis or how they may 

function. The lncRNA DANCR was characterized during differentiation of hFOB1.19 cells, 

and it is believed that DANCR may function in mesenchymal stem cell (MSCs) as a 

molecular switch regulating cell commitment [148]. A small array study identified 116 

lncRNAs differentially expressed during early BMP-2 induced differentiation of C3H10T1/2 

MSCs [149]. A more complete RNA-Seq study profiling lncRNAs during osteogenesis will 

likely produce a much larger list of expressed lncRNAs. The next challenge for 

understanding biological control of developmental programming, homeostasis of organ 

systems and disease induction and progression, is the functional characterization of tissue 

specific lncRNAs.

5. Summary remarks and future directions

The multifaceted components of the different classes of non-coding RNAs that contribute to 

epigenetic control of the skeleton are leading to exploration of novel mechanisms that would 

explain human traits and diseases far more than DNA mutations, particularly regulated by 

the long non-coding RNAs. There are many gaps to fill in our existing information for 

miRNAs. While much of the miRNA literature has identified regulated or dysregulated 

cellular levels and characterized a target(s) to individual miRNAs, it is now apparent that 

miRNAs must be considered in a broader context of their range of activities in order to 

consider their potential for therapeutic intervention. In vivo studies of exogenously 

expressed miRNAs or using a knockdown strategy are emerging for the skeleton and 

demonstrating the effectiveness of miRNAs to effect changes in bone in animal models; for 

example in metastatic bone disease [150,151]. But for human studies, a challenge would be 

specific delivery to cell of interest and characterization of off-target effects in vivo. We know 

very little of the miRNAs that are found in the circulation related to bone tissue metabolism 

and turnover. Studies measuring circulating miRNAs as potential “biomarkers” are emerging 

for cancer and other diseases. This would be a future direction for skeletal disorders, as 

miRNAs reflect changes in activity of cells which may occur as a warning of disease 

progression, a response to therapy and possibly inform an early intervention strategy.
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Fig. 1. 
MicroRNA biogenesis, maturation, function and decay. Nuclear events: (A) schematic 

model of microRNA (miRNA) transcription to synthesize primary miRNA (pri-miRNA) by 

RNA polymerase II (Pol II), and processing of pri-miRNA by the Drosha–DGCR8 

microprocessor complex to generate precursor miRNA (pre-miRNA) in the nucleus. 

Exportin 5 (EXP5) RAN•GTP complex exports pre-miRNA from nucleus to cytoplasm; (B) 

examples of miRNA transcriptional control and processing: tumor suppressor p53, growth 

factor MYC and myoblast specific transcription factor MYOD1 transactivate miR-34, 

miR-17 and miR-1 clusters, respectively. Osteoblast specific factor Runx2, leukemic factor 

Runx1, MYC, and zinc finger transcription factors ZEB1 and ZEB2 transcriptionally 

suppress the miR-23a cluster, miR-15a cluster, and miR-200 cluster. DNA 

methyltransferases (DNMTs) and RE1-Silencing Transcription Factor (REST) epigenetically 

regulate miR-9 and miR-124, respectively, at the level of transcription. Numerous RNA-

binding proteins, including p68, KH-type splicing regulatory protein (KSRP), heterogeneous 

nuclear ribonucleoprotein A1 (HNRNPA1) and LIN28, regulate the processing of primary 

miRNAs including miR-21, 199a, miR-21, let-7, miR-16, miR-18a, and let7. The 
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phosphorylation and acetylation of Drosha and DGCR8 proteins control the processing 

activity of these proteins; (C) cytoplasmic events: illustration of pre-miRNA maturation and 

formation of pre-and mature RNA Induced Silencing Complex (RISC). Dicer associates 

with TRBP (TAR RNA-binding protein) and processes pre-miRNA to generate 22–24 nt 

mature duplex miRNA that subsequently loaded onto AGO2 to form pre-RISC complex. 

Heat shock protein 90 (HSP90) and heat shock cognate 70 (HSC70) form a complex that 

hydrolyses ATP to load the RNA duplex on to the RISC. The miRNA* (passenger strand) is 

further degraded and the mature miRNA ‘guide’ strand remains in the RISC complex. Post-

translational modifications AGO proteins, including prolyl hydroxylation, poly-ADP 

ribosylation and phosphorylation influence its efficiency and ability to control the processing 

of Dicer, RISC formation and miRNA activity; (D) RNA helicases, including MOV10 [152], 

DDX6 [153], translational repressor FMR1 [154], GW182 and AGO2 [4] are present in the 

active RISC and mediate miRNA-dependent repression of translation of complementary 

mRNAs by Argonaute proteins. Succeeding translation repression cognate mRNA is 

degraded by CAF1–CCR4 deadenylase complex [155]; (E) target guided miRNA 

degradation by tailing and trimming mechanism [156].
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Fig. 2. 
miRNA circuitry: pathways supporting bone formation. (A) Positive regulation of miR-218 

for normal osteogenesis and in promoting metastasis. Wnt signaling is activated by miR-281 

which increases Runx2 and multiple genes that promote matrix formation and mineralization 

during osteoblast differentiation. However high levels of miR-218 are associated with cancer 

and their osteomimetic properties promote metastasis to bone. (B) Negative regulation of the 

cluster MiR-23a by Runx2 transcriptional down-regulation of the cluster at a Runx site in its 

promoter. This action relieves the inhibition of both Runx2 and Satb2 which form a complex 

that drives differentiation. Restraints are placed on the feed forward path to bone formation 

by miR-23a targeting Runx2 and miR-27a by targeting Hoxa10 an activator of Runx2 in 

osteoprogenitors. (C) Positive regulation by Runx2 of two miRNAs, miR-3960 and 

miR-2861, targets an inhibitor of Runx2, HDAC5 and Hoxa2, respectively. The 

transcriptional activation of these miRNAs downregulates the inhibitors and generates a feed 

forward circuit for osteogenesis.
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