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Abstract

Purpose—The current TNM (Tumor Node Metastasis) staging system is inadequate at 

identifying high-risk colorectal cancer (CRC) patients. Using a systematic and comprehensive-

biomarker discovery and validation approach, we aimed to identify a miRNA-recurrence classifier 

(MRC) that can improve upon the current TNM-staging as well as superior to currently offered 

molecular assays.

Experimental Design—Three independent genome-wide miRNA-expression profiling datasets 

were used for biomarker discovery (N=158) and in-silico validation (N=109 and N=40) to identify 
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a miRNA signature for predicting tumor recurrence in CRC patients. Subsequently, this signature 

was analytically trained and validated in retrospectively collected independent patient cohorts of 

fresh frozen (N=127, cohort 1) and FFPE (N=165, cohort 2 and N=139, cohort 3) specimens.

Results—We identified an 8-miRNA signature that significantly predicted recurrence free 

interval (RFI) in the discovery (p=0.002) and two independent publicly available datasets 

(p=0.00006 and p=0.002). The RT-PCR based validation in independent clinical cohorts revealed 

that MRC-derived high-risk patients succumb to significantly poor RFI in stage II and III CRC 

patients [cohort 1: HR: 3.44 (1.56–7.45), P=0.001, cohort 2: HR: 6.15 (3.33–11.35), P=0.001 and 

cohort 3: HR: 4.23 (2.26–7.92), P=0.0003]. In multivariate analyses, MRC emerged as an 

independent predictor of tumor recurrence, and achieved superior predictive accuracy than the 

currently available molecular assays. The RT-PCR based MRC risk score = (−0.1218×miR−744) + 

(−3.7142×miR-429) + (−2.2051×miR-362) + (3.0564×miR-200b) + (2.4997×miR-191) + 

(−0.0065×miR-30c2) + (2.2224×miR-30b) + (−1.1162×miR-33a).

Conclusions—This novel miRNA-recurrence classifier works superior to currently used 

clinicopathological features, as well as NCCN criteria, and works independent of adjuvant 

chemotherapy status in identifying high-risk stage II and III CRC patients. This can be readily 

deployed in clinical practice with FFPE specimens for decision making pending further model 

testing and validation.
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Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide, 

with an estimated 49,190 deaths recorded in the United States alone in 2016(1). Survival in 

CRC patients is primarily associated with the tumor stage at diagnosis; as 5-year relative 

survival rates range from 65% for all stages and approximately 93.2% for stage I, 82.5% for 

stage II, 59.5% for stage III, and 8.1% for stage IV (2).

Post-surgery, 30% of stage II and 50–60% of stage III CRC patients develop a recurrence 

within 5-years (3). Although there is a general agreement that adjuvant chemotherapy in 

stage III CRC patients improves patient survival, (4–6) the use of such treatments in stage II 

cancers remains debatable due to lack of risk stratification for identifying true high-risk 

patients (7,8). Current NCCN (National Comprehensive Cancer Network) guidelines 

recommend adjuvant chemotherapy for patients with high-risk stage II patients, where the 

risk is primarily defined by the clinicopathological features such as tumor size, number of 

lymph nodes investigated, degree of differentiation, tumor perforation, bowel obstruction 

and lymphovascular invasion (7,9). However, several studies have highlighted the 

inadequacy at these pathological features in identifying such high-risk patients, providing a 

potential explanation for the lack of clinical benefit from adjuvant therapy in these patients 

(10–12). Furthermore, a significant proportion of stage III patients suffer from adverse 

effects of adjuvant chemotherapy (2). Collectively, these data highlight the imperative need 
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to develop molecular markers for identifying true high-risk population of stage II and III 

CRC patients to facilitate optimal treatment modalities.

With regards to availability of other potential prognostic biomarkers in CRC, the association 

of BRAF and KRAS mutations, CIMP (CpG island methylator phenotype) and MSI 

(microsatellite instability) status have been studied extensively. It has been shown that MSI 

patients demonstrate an inherently better survival, and do not benefit from 5-fluorouracil 

(5FU)-based adjuvant chemotherapy in stage II patients (13–18). A more recent effort in this 

context, involving a gene expression-based consensus molecular subtyping (CMS), has 

identified that CRC patients with CMS4 subtype associate with poor prognosis (19). 

Although gene expression based biomarkers may be promising, technical concerns involving 

specimen preservation and mRNA integrity, particularly in formalin-fixed paraffin 

embedded (FFPE) specimens limits their clinical translation. In contrast, due to their short 

length, noncoding RNAs such as miRNAs, are emerging as important biomarker candidates 

by virtue of their ability to resist RNAase-mediated degradation, and their intact expression 

in a variety of bodily fluids as well as FFPE tissues.

Previously, we discovered that miR-200 family is an important driver for CMS4 subtype in 

CRC patients (20). Building upon this evidence, herein, we have performed an unbiased, 

systematic and comprehensive genome-wide discovery to identify a novel and robust 

miRNA-based classifier that can predict tumor recurrence in stage II and III CRC patients. 

By analyzing multiple clinical cohorts totally 736 stage II and III CRC patients, we 

demonstrate that this miRNA recurrence classifier (MRC) has superior predictive power than 

clinicopathological risk determinants, currently available commercial assays, and its robust 

performance even in FFPE tissues, making it attractive for relatively immediate clinical 

translation.

Materials and Methods

Patients Cohorts

This study included multiple clinical cohorts with a total of 736 patients. These cohorts 

included patients from the publicly available dataset from the TCGA (N=158 and 107), the 

GSE29623 dataset (N=40), as well two clinical validation cohorts of 431 stage II and III 

CRC patients who underwent surgery without neoadjuvant chemotherapy. 

Clinicopathological parameters of the clinical validation cohorts are provided in Table 1. 

The first cohort (cohort 1) comprised of fresh frozen tissues from 127 patients who were 

enrolled at the National Cancer Center Hospital (NCCH), Tokyo, Japan from 2004–2006; 

and consisted of 28 recurrences with a median follow-up of 67 months. The second cohort 

included formalin fixed paraffin embedded (FFPE) tissues from 304 patients enrolled at the 

Tokyo Medical and Dental University Hospital (TMDU), Tokyo, Japan between 2007–2011; 

and consisted of 82 recurrences with a median follow-up of 47 months. Based upon the year 

of enrollment, this cohort was subdivided into a training (cohort 2) and a validation (cohort 

3) cohort, respectively. Random splitting of this cohort into training and validation also 

resulted in similar outcomes (Data not shown). Our study was conducted in accordance with 

the Declaration of Helsinki. Written informed consent was obtained from all the subjects 

and the respective institutional review boards approved the study. A reporting 
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recommendations for tumor marker prognostic studies (REMARK) (21) compliance 

checklist is provided in Supplementary Table 1.

Identification of the miRNA signature from genome-wide small RNA sequencing data

Two public data sets (3 cohorts) were analyzed in the discovery phase, CRC miRNA 

sequencing data from TCGA(22) and GSE29623(23) from Gene Expression Omnibus 

(GEO). The TCGA CRC data set includes 265 stage II and III patients with corresponding 

miRNA sequencing data, derived from two different platforms, Illumina Hi-Seq (TCGA-

HiSeq, n=158) and Genome Analyzer (TCGA-GA, n=109). More specifically, level-3 

miRNA expression data were downloaded from Firehose Broad GDAC portal (http://

gdac.broadinstitute.org/, accessed on Nov 1, 2015). The miRNA expression levels, measured 

by reads per million miRNA mapped (RPM), were first log2-transformed. 680 miRNAs in 

common between two platforms were kept for the following analysis. Differential miRNA 

expression analysis was subsequently performed between patients with and without 

recurrence in 3 years using Wilcoxon signed-rank test. For in silico validation of identified 

miRNAs, we analyzed one additional independent cohort (GSE29623). The GSE29623 set 

includes expression levels of 664 miRNAs for 65 tumor tissue samples, based on NIH 

Taqman Human MicroRNA Array v.2 microarray platform, of which 40 samples were from 

stage II & III patients. The miRNA expression profiles were normalized using the robust 

multi-array average (RMA) algorithm in R (23). We downloaded preprocessed data from 

GEO using Bioconductor package ‘GEOquery’. Using multivariate Cox regression analysis, 

we calculated risk scores and assessed the prognosis performance of the miRNA signature 

based survival analysis, using the median value of the predicted risk scores in each dataset as 

the cut-off.

Nucleic acid isolation and miRNA expression analysis

Total RNA from the fresh frozen tissues was isolated using RNeasy Mini Kit (QIAGEN), 

and both RNA and DNA from the FFPE cohort were isolated using Allprep FFPE kit 

(QIAGEN). The miRNA expression analysis was performed using QuantStudio 7 Flex Real-

Time PCR System (Applied Biosystems, Foster City, CA). All miRNA Taqman probes were 

purchased from Thermo Fischer Scientific (Waltham, MA). The qRT-PCR assays were 

conducted using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA) using SensiFAST™ Probe Lo-ROX Kit (Bioline, USA). The relative expression of 

miRNAs were determined by 2-Δct method using snRNA U6 as a normalizer, as described 

previously (24) and we observed no difference in snRNA U6 between recurrent and non-

recurrent patients.

Microsatellite instability analysis

The microsatellite instability (MSI) analysis was performed using the five mononucleotide 

repeat microsatellite markers (BAT-25, BAT-26, NR-21, NR-24 and NR-27) in a pentaplex 

PCR system, as described previously (25–27).
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Statistical analysis

Statistical analyses were performed using IBM SPSS version 23, GraphPad Prism version 

6.0 and R 3.2.4. Statistical differences between miRNAs and various clinicopathological 

factors were determined by the χ2 test. Benjamini-Hochberg’s method was used to correct 

for multiple hypothesis testing wherever applicable. All statistical tests were two-sided and a 

p-value of less than 0.05 was considered significant. Recurrence free interval (RFI) was 

defined from the day of surgery to the recurrence or the end of follow-up, and was analyzed 

by log-rank test. We performed receiver-operating-characteristic (ROC) curve analysis to 

evaluate the predictive power of MRC. All 8-miRNA expression values derived from the RT-

PCR were used to build MRC using Cox’s proportional hazard regression. The risk scores 

derived from the 8-gene MRC Cox model was used to plot the area under the curves (AUC). 

The risk-scores were calculated using the formula derived from the cox-model as following: 

The RT-PCR based MRC risk score = (−0.1218×miR-744) + (−3.7142×miR-429) + 

(−2.2051×miR-362) + (3.0564×miR-200b) + (2.4997×miR-191) + (−0.0065×miR-30c2) 

+ (2.2224×miR-30b) + (−1.1162×miR-33a). To plot the Kaplan Meier (KM) curves, we 

dichotomized the patients into low or high-risk, based on X-tile derived cut-off values (X-

tile software 3.6.1, Yale University School of Medicine, USA). Additionally, we performed 

univariate and multivariate Cox proportional hazard regression models using 

clinicopathological variables and MRC to calculate estimate hazard ratios (HRs). Only the 

significant variables in the univariate model were used to perform the multivariate analysis.

Results

Discovery and validation of an eight-gene miRNA classifier for predicting recurrence in 
stage II and III colorectal cancer patients

Based upon the study design illustrated in Figure 1, we performed a genome-wide, unbiased, 

biomarker discovery to identify a miRNA signature that allowed stratification of low and 

high-risk stage II and III CRC patients. Since TCGA dataset consisted of miRNA 

sequencing profiles from two different platforms, we used one of these for biomarker 

discovery (TCGA-HiSeq, N=158) and the other for validation (TCGA-GA, N=109) 

purposes. In the TCGA-HiSeq discovery cohort, we compared miRNA expression profiles 

between high and low-risk groups who had at least a minimum of 3 year follow-up, and 

identified 25 targets with an absolute log2 fold change difference of 0.2, a p-value less than 

0.05 (Wilcoxon signed-rank test), and an average expression level of greater than 3 

transcripts per million. Based on multivariate cox regression analysis using atotal 25 

miRNAs, eight candidates with top statistical significance (p-value <0.2) were further 

selected which includes hsa-mir-191, hsa-mir-200b, hsa-mir-30b, hsa-mir-30c2, hsa-

mir-33a, hsa-mir-362, hsa-mir-429 and hsa-mir-744 (Figure 2A, Supplementary Table 3).

Further validation of the MRC using Kaplan Meier and log-rank analysis significantly 

predicted RFI in all three cohorts: the TCGA-HiSeq cohort (Figure 2B, HR=2.72; 95% CI 

1.48–5.00; p=0.002), the TCGA-GA cohort (Figure 2C, HR=2.71; 95% CI 1.64–4.51; 

p=0.00006), and the GSE29623 cohort (Figure 2D, HR=2.73; 95% CI 1.42–5.22; p=0.002). 

The AUC values for predicting the tumor recurrence in both validation cohorts are 0.79 
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(95% CI 0.67–0.89) and 0.88 (95% CI 0.78–0.99), respectively, highlighting the validity of 

the miRNA classifier.

miRNA classifier predicted cancer recurrence independent of gene expression-based CMS 
status of CRC patients

We were also curious to investigate whether our MRC can predict recurrence irrespective of 

the CMS subtype in CRC patients. The CMS labels of TCGA cohort were obtained from the 

CRC Subtyping Consortium (CRCSC)’s repository (19). The long-rank analysis 

demonstrated that regardless of the gene expression subtype, our MRC was able to 

significantly predict RFI in both TCGA cohorts (Figure 2E and F). Especially, for prediction 

of recurrence, our MRC outperforms CMS classifier significantly in both TCGA cohorts 

(p=0.00975 and 0.0000187 respectively, DeLong’s test) Supplementary Figure 3.

Validation of the miRNA classifier in fresh frozen tissues from stage II and III CRC patients

The Supplementary Figure 1 illustrates the CONSORT diagram for all clinical validation 

cohorts.

To determine whether our MRC derived from the in-silico datasets was robust, we first 

evaluated its performance in cohort-1, comprising of 127 fresh frozen tissues from stage II 

and III CRC patients. We measured expression level of all 8 miRNAs in CRC tissues and 

used Cox’s proportional hazard models to build a prognostic classifier. As depicted in Figure 

3A, the five-year RFI significantly dropped from 87% to 63% in MRC-derived low vs. high-

risk patients (p<0.001) with a Hazard Ratio (HR) of 3.44 (1.56–7.45). The HR in stage II 

patients was 7.54 (1.71–33.2; Figure 3B), while in stage III it was 4.23 (1.77–10.11; Figure 

3C). Furthermore, the MRC achieved an AUC of 0.70 in both stages, with a superior 

recurrence prediction in stage II (AUC: 0.89) vs. stage III (AUC: 0.72) CRC patients, which 

is clinically quite exciting.

In the univariate analysis, among the three significant variables, MRC emerged as the 

strongest predictor of recurrence vs. tumor stage and lymphatic invasion (Table 2). However, 

in the multivariate analysis MRC remained as the only significant predictor of recurrence 

(HR, 2.54; 95% CI 1.29–4.99). From a clinical viewpoint, we were enthused to observe that 

our MRC-based risk stratification was significant in predicting recurrence in stage II CRC 

patients, while the NCCN criteria didn’t work (Figure 3D).

Training and Validation of the miRNA classifier in independent FFPE cohorts to evaluate 
its translational potential

To evaluate the translational potential of our MRC in identifying high-risk patients, we 

deliberately examined its performance in FFPE tissues, which are routinely available in the 

clinical settings. To this end, we divided our large FFPE cohort into a training (cohort 2) and 

a validation set (cohort 3). Using Cox Proportional Hazards model, we initially trained a 

classifier on the 8-miRNA signature, and subsequently applied the coefficients derived from 

this model to the validation cohort.
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The risk scores for each patient in the training cohort were as follows: MRC risk 

score=(−0.1218×miR-744) + (−3.7142×miR-429) + (−2.2051×miR-362) 

+ (3.0564×miR-200b) + (2.4997×miR-191) + (−0.0065×miR-30c2) + (2.2224×miR-30b) + 

(−1.1162×miR-33a). Based upon the Cox-model derived risk scores (Figure 4A and G), 

patients from both the training and validation cohorts were stratified into MRC-low and 

high-risk groups, using a cutoff threshold of −0.04. When we assessed the distribution of 

risk scores and recurrence status, we observed that the high-risk patients had a significantly 

shorter RFI vs. low-risk patients in both cohorts with a HR of 6.15 (3.33–11.35) and 4.23 

(2.26–7.92), respectively. Likewise, the 5 year recurrence free probability in high-risk stage 

II and III patients was 56% and 57%, while it was 91% and 88% in low-risk patients in the 

training and validation cohorts, respectively (Figure 4B and H). To verify the stage-wise 

tumor recurrence risk, we performed the log-rank analysis separately for each stage. In line 

with the results from cohort 1, in addition to excellent risk stratification for both stages, HRs 

for stage II patients were significantly higher in both cohorts (Figure 4C, D and I, J).

We next assessed the accuracy of our miRNA classifier in recurrence prediction by 

performing ROC analysis. As illustrated in Figures 4E and K, our MRC achieved an AUC of 

0.71 (0.63–0.80) and 0.77 (0.68–0.85) in predicting recurrence in stage II and III patients in 

both cohorts, respectively. Univariate analysis revealed that together with MRC, tumor stage 

and lymphatic invasion were significantly associated in predicting recurrence in stage II and 

III CRC patients. However, in multivariate analysis, MRC emerged as the only significant 

predictor of tumor recurrence in both cohorts (Table 2). In view of these findings, we 

combined MRC risk scores with tumor stage and lymphatic invasion, which further 

improved the AUC for recurrence prediction in both stages of CRC patients to 0.76 (0.68–

0.84) and 0.80 (0.72–0.87) in the training and validation cohorts, respectively (Figure 4E 

and F). As was the case in cohort 1, compared to NCCN criteria and other 

clinicopathological variables that failed, our MRC was successful in identifying true, high-

risk, stage II CRC patients with excellent accuracy; and was superior to predictive accuracies 

of currently available Coloprint and Oncotype Dx assays, especially in FFPE specimens 

(Figure 4F and L). We have performed Spearman’s rho correlation between MRC and 

clinicopathological risk-factors for all the clinical cohorts and as it is evident, the MRC is 

highly correlated with recurrence (Supplementary Table 2).

The MRC predicts tumor recurrence independent of adjuvant chemotherapy status in CRC 
patients

A large subset of patients in our clinical validation cohorts were treated with adjuvant 

chemotherapy, which could potentially affect tumor recurrence prediction. To assess any 

such potential confounding effects, we analyzed the associations between MRC-derived risk 

subgroups and tumor recurrence separately in stage II and III patients who did and did not 

receive 5FU-based chemotherapy. In untreated patients, our MRC was still significantly 

associated with poor RFI in stage II and III CRC patients (Supplementary Figure 2, panels 

A, B, C and D). In contrast, in patients who received 5FU, while we did not see any 

significant associations in stage II patients (probably due to small sample size), we noted 

that our MRC was robust in identifying high-risk stage III patients (Supplementary Figure 2, 
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panels E, F, G and H), highlighting its recurrence prediction potential regardless of the 

adjuvant chemotherapy status in CRC patients.

MRC low risk microsatellite stable patients benefited from 5FU adjuvant therapy alone, 
while the high risk group did not

In our FFPE cohort (Both cohort 2 and 3) only fluoropyrimidine was administered for 

adjuvant chemotherapy. To estimate whether MRC could predict the benefit of 

fluoropyrimidine adjuvant chemotherapy in stage III patients, we investigated the association 

between MRC risk and RFI among patients who did and did not receive fluoropyrimidine 

adjuvant therapy. While there is no significant difference when MSI patients are included in 

the analysis (Supplementary Figure 4A, B, C, E, F and G), the analysis in microsatellite 

stable patients revealed that treatment with fluoropyrimidine adjuvant therapy was 

associated with a significant gain in five years recurrence free probability (5 year RFI 87% 

with chemotherapy vs. 67% with no chemotherapy, HR: 3.57 (0.96–13.25)) in the stage III 

MRC low risk patient population (Supplementary Figure 4H). On the other hand there is no 

significant difference between patients who did and did not receive fluoropyrimidine 

adjuvant therapy in the stage III MRC high risk patient population (Supplementary Figure 

4D).

Discussion

In our quest to develop a robust CRC prognostic signature, we have successfully developed 

an 8-miRNA recurrence classifier (MRC) that achieved excellent predictive values in tumor 

recurrence, both in stage II and III CRC patients, which were validated in two independent 

clinical cohorts. Furthermore, our miRNA classifier remained as the strongest prognostic 

indicator regardless of the adjuvant chemotherapy status, when compared to the other 

clinicopathological risk factors. To further highlight the clinical significance of our findings, 

while the NCCN criteria failed to identify high-risk stage II CRC patients, our MRC 

significantly stratified patients from all clinical cohorts into high and low-risk subgroups 

rather robustly.

Previously, a 6-gene miRNA-based classifier was reported to predict tumor recurrence in 

stage II CRC patients (28); however, in this study, our miRNA classifier performed 

significantly better, and illustrated its ability to predict recurrence in not just stage II, but 

stage III CRC patients as well. A recent gene expression-based consensus molecular 

subtyping (CMS) (19) identified a CMS4 mesenchymal subtype of CRC patients, which 

associated with poor prognosis. However, an eventual clinical translation of such a gene 

expression panel-based approach is challenging, primarily due to two reasons: a) the number 

of genes involved in CMS4 subtyping is quite large, and b) any gene expression based assay 

will require high quality, fresh frozen, RNA-preserved tissues – which isn’t always practical 

in the routine clinical practice. Based upon our recent findings that miR-200 family plays a 

central role in orchestrating the CMS4 subtype (20), and in view of the relative stability of 

miRNAs in a variety of biological fluids and FFPE tissues, these short noncoding RNAs 

present as attractive targets for biomarker development in CRC patients.
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Although we didn’t perform a direct comparison, the recurrence prediction values for our 

MRC were superior to gene expression-based signatures offered by the ColoPrint and 

OncotypeDx (29) assays. It would also be interesting to validate our markers or stratify 

based on CDX2 as well as recently published immune scores in future (30,31). An ideal 

prognostic classifier for CRC risk prediction should be robust, reproducible and most 

importantly, be potentially feasible in FFPE materials- which would eliminate the need to 

plan and invest methodologies to collect and preserve fresh frozen tumor specimens. Our 

miRNA classifier successfully overcomes these barriers as evidenced from its superior 

performance and independent validation in large cohort of FFPE specimens. Availability of 

ideal prognostic and predictive biomarkers is essential for achieving the clinical goals in 

refining the therapeutic decisions, and thereby improving the survival and quality of life of 

CRC patients. Although, in this study, we didn’t have access to blood specimens, but we feel 

encouraged that given the stability and relative abundance of miRNAs in circulation, it is 

very likely that our miRNA-signature may eventually be translated into a blood-based, 

predictive and surveillance assay.

A recent study published by Cantini et al., (32) reported miRNAs differentially expressed 

across gene-expression based colorectal cancer subtypes. They have showed that miRNA 

200b, 33a, 362 and 429 which are present in our MRC are associated with poor colorectal 

cancer CMS4 subtype. Furthermore, we and others have shown previously that mir200 and 

429 are associated with EMT and stemness (20,33,34). The role of miRNA 362, 33a, 30c2, 

30b, 744 and 191 in cancer progression, EMT and chemotherapy resistance have been 

reported earlier (35–41). This further exemplifies the important of miRNAs we found with 

an unbiased and systematic approach to be associated with poor prognosis in CRC.

With regards to potential limitations, our current study is retrospective in nature, and our 

results must be validated in future, prospective, multi-center clinical trials.

In conclusion, we provide a novel evidence that our miRNA-based recurrence classifier can 

effectively stratify stage II and III CRC patients into high and low-risk groups based upon 

clinical outcomes; thereby offering a significantly improved prognostic biomarker potential 

compared to the currently used clinicopathological risk factors. Notably, our study has 

several strengths related to the study design and analytical methods. The miRNA classifier 

was validated in independent in-silico datasets, as well as two independent population-based 

clinical cohorts. Since we developed a ‘risk prediction model’ using our 8 miRNA signature, 

this scores can be readily applied to independent, future prospective cohorts. Although our 

assay also demonstrated effectiveness in FFPE tissues, we noted that the expression of three 

of the miRNAs were discrepant (not significant) in our validation cohort compared to the 

TCGA dataset used in the initial discovery. This effect may be due to the following reasons: 

1) the biological differences between fresh frozen and FFPE tissues. 2) a fairly common 

issue for the existence of ‘co-linearity’ in biomarker studies, i.e., some of these miRNAs 

may have correlated expression levels, which might confound each other in the linear 

regression model; hence the observed differences in model coefficients between the two 

cohorts. Nonetheless, pending further optimization and validation in future studies, such a 

miRNA classifier potentially offers tremendous clinical value in directing personalized 
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treatment regimens and clinical management of patients with stage II and III colorectal 

cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study Design
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Figure 2. 
A miRNA classifier Volcano plot and KM curves predicting recurrence-free interval in the 

TCGA discovery, validation and GSE validation cohorts. A) Volcano plot showing the 

significant and differentially regulated miRNAs selected in the TCGA discovery cohort. 

Selected miRNAs are depicted in the figure. The Kaplan Meier survival plots for recurrence-

free interval stratified by MRC scores in the: B) TCGA discovery cohort (N=158), C) 
TCGA validation cohort (N=109), and D) the GSE29623 validation cohort (N=40). E) and 
F) The Kaplan Meier plots illustrating that both CMS4 and non-CMS4 patients with high 

miRNA risk scores exhibited shorter recurrence-free interval in the TCGA discovery and 

validation cohorts, respectively.
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Figure 3. 
Stage-wise survival curves predicting recurrence-free interval in fresh-frozen specimens in 

clinical cohort-1. The Kaplan Meier survival plots for recurrence-free interval stratified by 

MRC scores in: A) combined stage II and III CRC patients, B) stage II patients, C) stage III 

CRC patients, and D) Hazard Ratios of the miRNA classifier, NCCN risk classification and 

other clinicopathological variables presented for stage II CRC patients.
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Figure 4. 
Training and validation of the miRNA recurrence classifier in the FFPE specimens in 

clinical cohorts 2 and 3. A and G) Depict MRC risk score violin plots from Cox regression 

model of the 8-miRNA signature in the training and validation cohorts, respectively. B, C, D 
and H, I, J) Stage-wise Kaplan Meier plots for the recurrence-free interval in the training 

(N=165) and validation (N=139) cohorts, stratified based on the MRC risk scores and E and 
K) Receiver Operating Characteristic (ROC) curves achieved with MRC risk-scores as well 

as its combination with the tumor stage and lymphatic invasion in the training and validation 

cohorts, respectively. F and L) Hazard Ratios of the miRNA classifier, NCCN risk 

classification and other clinicopathological variables presented for stage II CRC from both 

cohorts.
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