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Abstract

Antibiotic resistance is a serious threat to public health. Significant efforts are currently directed 

toward containment of the spread of resistance, finding new therapeutic options concerning 

resistant human and animal pathogens, and addressing the gaps in the fundamental understanding 

of mechanisms of resistance. Experimental data and kinetic modeling revealed a major factor in 

resistance, the synergy between active efflux and the low permeability barrier of the outer 

membrane, which dramatically reduces the intracellular accumulation of many antibiotics. The 

structural and mechanistic particularities of trans-envelope efflux pumps amplify the effectiveness 

of cell envelopes as permeability barriers. An important feature of this synergism is that efflux 

pumps and the outer membrane barriers are mechanistically independent and select antibiotics 

based on different physicochemical properties. The synergism amplifies even weak polyspecificity 

of multidrug efflux pumps and creates a major hurdle in the discovery and development of new 

therapeutics against Gram-negative pathogens.
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1. Trans-envelope efflux complexes

Trans-envelope (spanning the two membranes of Gram-negative bacteria) multidrug efflux 

pumps of Gram-negative bacteria have been in the focus of intense investigation as the major 

contributors to antibiotic resistance in Gram-negative bacteria, as well as potential targets for 

inhibition. In the past ten years, we have witnessed an unprecedented advance in structural 

and functional understanding of efflux pump components and their assemblies. On one hand, 

these pumps share trans-envelope properties and features. On the other hand, they impress 

by their structural and mechanistic diversity.
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All trans-envelope multidrug efflux pumps share a three-component composition and 

comprise an active transporter located in the inner membrane (IM), a periplasmic membrane 

fusion protein (MFP) and an outer membrane channel/factor (OMF) [1–3]. Transporters in 

efflux pumps may belong to one of the three superfamilies of proteins: RND, ABC or MF, 

and vary dramatically in membrane topology, oligomeric state and biochemical mechanisms. 

ABC-type transporters utilize the energy of ATP hydrolysis, whereas RND and MF are 

secondary transporters driven by the proton-motive force. RND transporters are homo- or 

heterotrimers that function through a conformational rotation mechanism [4–9]. ABC 

transporters are functional dimers (intra- or inter-peptides) that enable a conformational 

switch mechanism [10–14]. Finally, MF transporters are functional monomers that transport 

substrates by an alternating access mechanism [15–18].

These structurally and mechanistically diverse transporters engage MFPs that share certain 

structural features: i) an elongated asymmetric shape of a protomer; ii) 3–4 domains that are 

linearly arranged, creating flexible structures; and iii) oligomerization [19–24]. The 

functional unit of MFPs is a dimer, in which each protomer engages a specific interface with 

a transporter and an OMF [25, 26]. Trimerization of MFP dimers leads to formation of 

inverted funnel-like structures that provide a path for various substrates to cross the 

periplasmic space [27, 28]. A significant body of evidence supports a notion that MFPs 

interact with substrates of efflux pumps and enable allosteric regulation of efflux. How this 

regulation is achieved in trans-envelope complexes of different stoichiometries remains 

unclear. However, it appears to depend on the structure and mechanism of the transporter 

[29–33]. This regulation of efflux is further integrated with the engagement and opening of 

OMFs.

In the presence of substrates, MFPs bridge efflux transporters with structurally conserved 

OMFs and assemble a tightly sealed trans-envelope protein complex that prevents escape of 

various substrates into the periplasm and transports them across the outer membrane and out 

of the cell [27, 28]. Despite significant sequence variability, OMFs are structurally 

conserved [34–37]. The periplasmic domains of these proteins extend into the periplasm to 

meet MFPs and to create a protein conduit for substrates to diffuse from the periplasmic 

binding sites in transporters and MFPs, all the way across the periplasm and the outer 

membrane. The engagement of OMFs into complexes is likely driven by affinities of MFPs 

to OMFs and their propensity to oligomerization [25, 27, 30, 38, 39]. Importantly, each 

protomer in the MFP dimer binds to a specific binding site on OMF, and the two binding 

sites are not functionally equivalent [26, 31]. Apparently, one MFP subunit grasps OMF, 

whereas another is responsible for opening of the channel [40, 41]. Opening and closing of 

the channel could also be part of the trans-envelope transport mechanism that does not 

require disengagement of the complex [30]. Interestingly, no experimental evidence exists 

for the diffusion of substrates through the channel. The strongest evidence for interactions 

between OMFs and substrates is the interaction between TolC and hemolysin, which assist 

this protein toxin in folding during secretion [42].

The above summarized structural, computational and functional advances identified 

similarities and differences in the structure and mechanism of trans-envelope efflux 

complexes. These studies further refined the model of trans-envelope drug transport and 
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brought us closer to understanding how transport reactions separated into two different 

membranes are coupled together.

2. Synergy between efflux pumps and the permeability barrier of the outer 

membrane

Trans-envelope efflux pumps of Gram-negative bacteria function in the context of two 

membranes that differ dramatically in their structures and compositions [43]. The outer 

membrane is an asymmetric bilayer composed of lipopolysaccharides (LPS) in the outer 

leaflet and glycerophospholipids (PL) in the inner leaflet [44]. The major features of the LPS 

structure, such as the presence of lipid A, core and O-antigen chains, are conserved among 

various species, while specific chemical structures vary broadly. The different LPSs 

aggregate into species-specific LPS-PL bilayers with a variable number of LPS molecules, 

thicknesses, surface charge distributions and dynamics [45]. These features, in turn, translate 

into variations of the permeability properties of LPS-PL bilayers [46–48]. The asymmetric 

structure of the outer membrane bilayer creates a formidable barrier for permeation of most 

amphiphilic drugs. Therefore, the presence and the size of general or specific porins largely 

define the permeability properties of outer membranes in Gram-negative bacteria.

In contrast, the inner membrane composed of PLs is relatively permeable for most 

amphiphilic drug molecules. Despite this leakiness, the inner membrane provides a major 

contribution to bacterial defenses against drugs by housing a variety of multidrug 

transporters. The role of multidrug efflux pumps in binding and expulsion of drugs from the 

periplasm and across the outer membrane is critical for protection of the intracellular drug 

targets. Together, the slow influx of antibiotics across the outer membrane and the 

specificities and efficiencies of efflux pumps define the intracellular steady-state 

concentrations of antibiotics and the observed differences in antibiotic susceptibilities 

between different Gram-negative bacteria [49–51].

The exceptional efficiency of multidrug efflux pumps is the result of a complex interplay 

between the two opposing fluxes of drugs across the two membranes [50, 52, 53]. Recent 

mathematical modeling provided novel insights into the synergistic character of active drug 

efflux and the low permeability barrier of the outer membrane in Gram-negative bacteria, 

and revealed the need for a new kinetic formalism [50, 51]. The drug uptake patterns are 

non-linear, contain bifurcations and do not conform to Fick’s Law of diffusion or Michaelis-

Menten kinetics, although both are integrated into the model [50]. The behavior of the 

system can be described in terms of two kinetic parameters, the efflux constant KE and the 

barrier constant B, which relate the rates of active and diffusional drug efflux at, 

respectively, low and high drug concentrations, and therefore, describe different aspects of 

drug uptake [50] (Fig. 1).

The efflux constant reports by how much the intracellular concentration of the drug is 

reduced compared to thermodynamic equilibrium, under conditions during which the 

transporter operates below saturation. Even in E. coli, which is relatively susceptible to 

antibiotics, this number proved to be remarkably large and was estimated at 420 for the 

fluorescent drug Hoechst 33342. The barrier constant compares maximal attainable drug 
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fluxes across the outer membrane and via the transporter, and thereby describes what 

happens to the system at high drug concentrations. The magnitude of B discriminates 

conditions of efficient and inefficient efflux. When B is smaller than 1, the transporter 

becomes saturated at high external concentrations of the drug; this cannot happen when B is 

greater than 1. At the latter condition, B > 1, efflux pumps operate below saturation even at 

high extracellular concentrations of substrates owing to their slow penetration across the 

outer membrane. Against such compounds, efflux pumps are very efficient, even though 

they could be poor substrates in biochemical terms.

Curiously, this kinetic analysis predicts that drug efflux does not provide equal protection 

against all compounds. Instead, its effect depends on the potency of the drug. In general, 

more toxic compounds are better protected against than compounds with high inhibition 

constants. Moreover, even small variations in the efficiency of the barrier can have dramatic 

effects on antibiotic susceptibility [50].

Further kinetic and experimental analyses of active efflux in the context of two-membrane 

barriers demonstrated that changes in drug uptake and antibacterial activities in cells 

compromised in both efflux and the outer membrane often exceed the sum of changes 

caused by each of the two factors alone [49, 50, 54]. These results suggested that active 

efflux and the outer membrane barrier act in synergy with each other. Indeed, should these 

two factors be independent, then the changes in rates of uptake and drug susceptibilities 

caused by the combination of the two effects should equal the product of the increases 

caused by each factor alone. Importantly, the synergistic interaction between active efflux 

and the outer membrane conveys new properties to the cell. In certain cases, when B is 

greater than one, the cell envelope effectively blocks access to the cell for a variety of 

external chemicals. This occurs even though, at a molecular level, the membrane itself might 

remain permeable to these compounds. Thus, the collective behavior of the individual 

components gives rise to a novel quality.

3. Experimental tools to analyze synergistic permeability barriers

To understand this complex interplay between active efflux and the outer membrane barrier, 

one must be able to analyze the contributions of both factors to the intracellular 

accumulation and activities of antibiotics. Two complementary approaches have emerged to 

analyze the contribution of the outer membrane. The first approach, the titrable outer 

membrane permeability assay system (TOMAS), enables analyses of drug permeation 

through specific porins [55]. For this purpose, Eschericia coli cells deficient in general 

porins are modified to express a porin of interest, for example OprD, an amino-acid-specific 

porin from P. aeruginosa. If a porin is essential for permeation of an antibiotic, one can 

expect that its expression in the outer membrane of E. coli will increase the influx and 

reduce the B constant for this antibiotic. Therefore, cell susceptibility to this antibiotic will 

be strongly affected by the amounts of the specific porin present in the outer membrane.

The second approach, controlled hyperporination (HYPE), manipulates the permeability 

barrier of the outer membrane by expressing a large, ~ 2.4 nm in diameter pore, which 

effectively and non-selectively reduces the B-factor and allows rapid influx of even very 
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large antibiotics such as vancomycin into the cell [54]. The controlled hyperporination 

approach was applied to several Gram-negative species, including E. coli, P. aeruginosa, 
Acinetobacter baumannii and Burkholderia spp., and enabled the comparison of the outer 

membrane barriers that differ not only in the composition of porins, but also in the structure 

and composition of LPS [49, 54]. In all these species, hyperporination of the outer 

membrane leads to a significant increase in compound uptake across the outer membrane 

and, as a result, an increase in their periplasmic concentrations at the site of recognition and 

binding by efflux pumps. Importantly, hyperporination of cells does not inactivate efflux 

pumps. Furthermore, it enables kinetic analyses of drug efflux at saturating concentrations of 

substrates, and hence provides insight into the substrate specificity and efficiency of 

transporters.

The barrier and efflux constants can also be controlled by changes in the amounts or 

activities of efflux pumps. It is well established that inactivation of efflux pumps sensitizes 

bacterial cells to antibacterial activities of antibiotics and increases their intracellular 

concentrations [56–58]. Accordingly, overproduction of efflux pumps reduces antibiotic 

susceptibilities of bacterial cells. However, a simple task of varying the amounts of a 

transporter is not so simple after all. In E. coli and other enterobacteria, a single OMF, TolC, 

is required for activities of all trans-envelope pumps, and its inactivation largely eliminates 

efflux across the outer membrane [34]. However, TolC is involved in additional 

physiological functions, and comparison of TolC-deficient E. coli cells and cells lacking 

nine TolC-dependent transporters shows some notable differences in antibiotic activities and 

accumulation [54]. These differences primarily affect antibiotics that use the TolC channel to 

permeate the outer membrane. The situation is even more complicated in P. aeruginosa, 

where efflux pumps are co-expressed and assembled with specific OMFs [3]. Strains with 

multiple efflux pump knockouts ensure the lack of active efflux and, at the same time, 

decrease the influx of antibiotics across the outer membrane [49]. Combining efflux pump 

inactivation and hyperporination of the outer membrane with controlled expression of a 

single pump of interest allows evaluation of kinetic properties of the pump and its substrate 

specificity [59].

An additional, often overlooked, aspect of the synergy between the outer membrane barrier 

and efflux is the dilution effect due to bacterial growth and change in cell volume [51]. To 

some extent, this dilution behaves as an efflux. Antibiotics, for which diffusion across the 

outer membrane is slower than bacterial growth, are effectively “expelled” from the cells, 

even in the absence of active efflux pumps.

4. Substrate specificities of multidrug efflux pumps

The existing heuristics emphasize the size and polarity of compounds as important 

determinants of permeation across the outer membrane and the propensity to be recognized 

by efflux pumps [60–62]. In general, very polar and low MW compounds and zwitterionic 

and high MW compounds are thought to avoid efflux, whereas hydrophobicity of 

compounds positively correlates with the presence of active efflux [61–63]. However, most 

of these conclusions are based on the comparison of antibacterial activities in efflux-

proficient and efflux-deficient cells with intact outer membranes. As a result, the outer 
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membrane barrier defines which antibiotics can reach the periplasm and become accessible 

to efflux pumps and which antibiotics accumulate either above or below transporter 

saturation levels. The HYPE approach removes these limitations and enables 

characterization of efflux pump specificities.

Analyses of antibacterial activities of various compounds in hyperporinated cells 

demonstrated that substrate specificities and efficiencies of the RND-type efflux pumps vary 

dramatically among Gram-negative species [49]. Importantly, RND pumps universally affect 

activities of all tested antibiotics, even those considered to be outside of the efflux 

recognition space [62, 64]. For example, the activity of zeocin a glycopeptide antibiotic with 

the mass of 1428 Da, is strongly affected by active efflux in Gram-negative bacteria [49]. 

This result demonstrates that the size of a compound is not a predictive characteristic of an 

efflux substrate. In B. thailandensis, but not in E. coli or P. aeruginosa, active efflux plays an 

important role in protection against polycationic antibiotics such as aminoglycosides and 

polymyxin [49, 65, 66]. However, this protection, again, is enabled by synergistic 

interactions with the outer membrane. In this and other Burkholderia spp., LPS is 

constitutively modified with 4-amino-4-deoxy-L-arabinose moieties and, as a result, 

polycationic antibiotics fail to permeabilize the outer membrane [67].

In addition to efflux pumps responsible for intrinsic antibiotic resistance, chromosomes of 

most Gram-negative bacteria contains multiple operons encoding so called “minor” efflux 

pumps. The inactivation of these pumps does not lead to changes in bacterial antibiotic 

resistance [58, 68]. A recent comparison of the two RND-type efflux pumps MexEF-OprN 

and MexHI-OpmD from P. aeruginosa further highlights the importance of separation of 

contributions of the outer membrane barrier and active efflux in analyses of substrate 

specificities of “minor” efflux pumps [59]. In a laboratory PAO1 strain, these two pumps are 

expressed at very low levels and do not contribute to the intrinsic antibiotic resistance of P. 
aeruginosa. Although both pumps, when overexpressed, provide clinical levels of 

fluoroquinolone resistance, only MexEF-OprN is selected in clinical multidrug-resistant 

isolates [69, 70]. Furthermore, when the two overexpressed pumps are compared in their 

abilities to protect against 15 structurally different fluoroquinolones, the two pumps generate 

almost identical 64–128 fold changes in MICs [59]. However, this apparent lack of structural 

selectivity disappears in hyperporinated cells. MexEF-OprN remains effective against most 

fluoroquinolones, but a certain substrate selectivity emerges, whereas MexHI-OpmD fails 

with most fluoroquinolones. Further analyses identified phenazines, such as an endogenous 

pigment pyocyanin, as specific substrates of MexHI-OpmD [59]. A side-by-side comparison 

of the best substrates of the two pumps highlights their structural preferences toward 

substrates (Fig. 2). MexHI-OpmD is selective for rigid tricyclic phenazines, whereas 

MexEF-OprN prefers small flexible structures such as those of chloramphenicol and 

triclosan. This study also showed that expression of the majority of efflux pumps is low in 

the wild type strains, but not because their functions are not important under laboratory 

conditions. These pumps are engaged in specific physiological functions [2, 71], such as 

control of steady-state concentrations of pyocyanin by MexGHI-OpmD [59]. The low 

expression levels enforce substrate specificities of efflux pumps, so that only the substrates 

with high affinities are expelled from the cells.
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5. Conclusions

Experimental data and kinetic modeling agree that Gram-negative cell envelopes serve to 

dramatically reduce the intracellular concentration of many antibiotics [50, 51, 54]. The 

structural and mechanistic particularities of trans-envelope efflux pumps enable the 

synergistic character and effectiveness of cell envelopes. An important feature of this 

synergism is that active efflux pumps and the outer membrane barriers are mechanistically 

independent and select antibiotics based on different physicochemical properties [49]. The 

synergism amplifies the weak polyspecificity and multidrug characteristics of efflux pumps, 

creating a major hurdle in the discovery and development of new therapeutics against Gram-

negative pathogens [43, 72, 73].
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Fig. 1. 
Schematic representation of drug fluxes across the two-membrane cell envelopes of Gram-

negative bacteria and the mathematical model that describes this permeability barrier. 

Modified from [50].
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Fig. 2. 
Substrate specificities of MexEF-OprN and MexHI-OpmD from P. aeruginosa. When 

overproduced, and in the context of the outer membrane permeability barrier, the two pumps 

have overlapping substrate specificities and provide the same levels of resistance to 

structurally diverse fluoroquinolones. Their actual substrate specificities are distinct, with 

MexHI-OpmD selective for phenazines [59]. EtBr, ethidium bromide; PMS, phenazine 

methosulfate; PCA, phenazine-1-carboxylic acid.
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