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Abstract

Length-biased data are frequently encountered in prevalent cohort studies. Many statistical 

methods have been developed to estimate the covariate effects on the survival outcomes arising 

from such data while properly adjusting for length-biased sampling. Among them, regression 

methods based on the proportional hazards model have been widely adopted. However, little work 

has focused on checking the proportional hazards model assumptions with length-biased data, 

which is essential to ensure the validity of inference. In this article, we propose a statistical tool for 

testing the assumed functional form of covariates and the proportional hazards assumption 

graphically and analytically under the setting of length-biased sampling, through a general class of 

multiparameter stochastic processes. The finite sample performance is examined through 

simulation studies, and the proposed methods are illustrated with the data from a cohort study of 

dementia in Canada.
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1 Introduction

In prevalent cohort studies, a group of patients who have experienced an initial event (i.e., 

disease onset) at the time of recruitment are followed prospectively until an event of interest 

(i.e., failure) or censoring occurs. Under the stationarity assumption, in which the initiating 

events are assumed to follow a stationary Poisson process, the right-censored time-to-event 

data are subject to length-biased sampling and are referred to as “length-biased data.” These 

data arise in various applications such as cancer screening trials (Zelen and Feinleib, 1969) 

and studies of unemployment (Lancaster, 1979; de Una-Alvarez et al, 2003). In such data, 

subjects with longer failure times are more likely to be sampled. Thus, the observed data 

may not be representative of the target population, which poses additional challenges in the 

analysis.
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A number of studies have been conducted to estimate the association between covariates and 

the survival outcome under the setting of length-biased sampling. Specifically, methods 

based on the proportional hazards model (Cox, 1972) have been extensively studied. Wang 

(1996) constructed the pseudo-likelihood by using a bias-adjusted risk set to address length-

biased failure time data without right censoring. Tsai (2009) generalized the pseudo-partial 

likelihood approach for biased sampling data under a different right-censoring schema. Qin 

and Shen (2010) proposed two inversely weighted estimating equations for observed length-

biased data subject to right-censoring. Their methods can be easily implemented with readily 

available software, which is especially appealing. Qin et al (2011) and Huang and Qin 

(2012) proposed more efficient full likelihood and composite partial likelihood approaches, 

respectively, to estimate the covariate effects on the underlying survival outcome.

Under the proportional hazards model, the functional form of covariates and the proportional 

hazards assumption are fundamental components that need to be adequately verified for 

valid inferential results. Among many model checking tools for survival data, the method 

proposed by Lin et al (1993), for which the building block is the cumulative sum of 

martingale residuals, has been frequently adapted in the literature for various types of 

complex survival data. Spiekerman and Lin (1996) extended the method to handle correlated 

failure time in clustered data. Analogously, Huang et al (2011) developed the model 

checking technique for recurrent gap time data, where events may be observed multiple 

times for each patient, using the averaged martingale-like processes. More recently, a model 

checking tool has been developed for survival data observed in nested case-control studies 

(Borgan and Zhang, 2015; Lu et al, 2014). However, there is no such model checking tool 

available for length-biased data. We note that the model checking technique established by 

Lin et al (1993) cannot be directly applied because the martingale residual processes are 

unavailable for observed length-biased data. Extensions of that technique also cannot be 

utilized because of the unique structure of length-biased data.

We face some complications when checking the proportional hazards model assumptions 

with length-biased right-censored data because of the sampling mechanism. First of all, the 

proportional hazards model assumed for the target population may not fit the observed 

biased data. Thus, checking the proportional hazards model under length-biased sampling 

requires proper adjustment. In addition, the failure time can depend on the censoring time or 

the duration from the initiating event to censoring. In this paper, we propose a statistical tool 

for checking the proportional hazards model with length-biased data. In Section 2, we 

introduce the data structure and the inferential procedure based on the proportional hazards 

model. We outline the diagnostic method in Section 3, derive the asymptotic distribution 

under the null hypothesis, and establish a computationally efficient resampling method. We 

demonstrate the performance of the proposed model checking tools through simulations 

under various settings in Section 4. In Section 5, we apply the method to a real data set 

collected from a large prevalent cohort study on dementia in Canada. In Section 6, we 

conclude with some remarks on the proposed method.
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2 Length-Biased Data and Statistical Inference

2.1 Notation and Model

Let T̃ be the duration from an initiating event to failure; Ã be the duration from the initiating 

event to enrollment into the study; and V be the duration from enrollment to failure. We let a 

p×1 vector Z denote the baseline covariates. Assume that the failure time T̃ follows the 

proportional hazards model

λ(t ∣ z) = λ0(t) exp (β0
⊤z) (1)

where β0 is a p × 1 vector of unknown coefficients for Z and λ0(t) is an unspecified baseline 

hazard function. Note that we only observe failure time T = T̃ when Ã < T̃ due to length-

biased sampling. Thus, the biased failure time T is A + V, where A is the observed backward 

recurrence time or truncation variable. Since V, the residual survival time or the forward 

recurrence time, is subject to right censoring, the observed survival time is Y = min(T,A + 

C) and the censoring indicator is δ = I(T ≤ A + C), where C is the residual censoring time. 

For n independent subjects, the data consist of (Yi,Ai, δi,Zi), i = 1, … , n. We assume that C 
is independent of (A, V ) given Z, and the distribution of C is independent of Z. 

Conditioning on Z, even under the independent censoring assumption on C, there exists 

dependence between the failure time and censoring time (i.e., duration from an initiating 

event to a censoring event) because Cov(T,A + C | Z) = Var(A | Z) + Cov(A, V | Z) > 0. 

Also, model (1) is postulated for the underlying (unbiased) failure time while the observed 

survival time is subject to length bias. Therefore, the observed data may not follow the 

model structure assumed for the target population.

2.2 Estimation of the Covariate Effects

Among many approaches developed under the proportional hazards model with length-

biased data, we briefly review the generalized estimating equation method of Qin and Shen 

(2010). Following the conventional counting process notation, we define Ni(t) = I{Yi ≤ t, δi 

= 1} and Ri(t) = I{Yi ≥ t, δi = 1} for subject i. Let the weight function wC(t) = ∫ 0
t SC(u)du, 

where SC(t) = Pr(C > t) is the survival function of the residual censoring variable C. Let a0 = 

1, a1 = a, and a2 = aa⊤ for any vector a. We define

S(k)(β, t) = n−1 ∑
i = 1

n
wC(t)Ri(t){wC(Yi)}

−1Zi
k exp (β⊤Zi)

for k = 0, 1, and 2. Let E(β, t) = S(1)(β, t)/S(0)(β, t), and denote its limit as e(β, t). Note that 

wC(t) can be consistently estimated by wC(t) = ∫ 0
t SC(u)du, where ŜC(t) is the Kaplan–Meier 

estimator of the residual censoring survival function. Replacing wC(·) with its consistent 

estimator, ŵC(·), we have
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S(k)(β, t) = n−1 ∑
i = 1

n
wC(t)Ri(t){wC(Yi)}

−1Zi
k exp (β⊤Zi)

for k = 0, 1, and 2. Then the estimator β̂ for the true covariate effects β0 can be obtained by 

solving the following unbiased estimating equation

U(β) = ∑
i = 1

n ∫0
τ

Zi − E(β, u) dNi(u) = 0,

where τ satisfies Pr(Y ≥ τ ) > 0 and Ê (β, t) = Ŝ (1)(β, t)/Ŝ (0)(β, t).

3 Model Diagnostic Methods

By following the counting process and martingale framework, a stochastic process for 

length-biased data can be constructed as

Mi(t) = Ni(t) − ∫
0

t
wC(u)Ri(u){wC(Y i)}

−1 exp (β0
⊤Zi)dΛ0(u), (2)

for i = 1, … , n, where Λ0(t) = ∫ 0
t λ0(s)ds is the cumulative baseline hazard function. The 

stochastic process can be interpreted as the difference between the observed number of 

events and the expected number of events under the assumed model until time t. When 

model (1) is correctly specified, this becomes a mean zero stochastic process. Thus, the 

process is informative for detecting violations of model assumptions. The stochastic process 

(2) can be estimated by

Mi(t) = Ni(t) − ∫0
t
wC(u)Ri(u){wC(Yi)}

−1 exp (β⊤Zi)dΛ0(β, u)

for i = 1, … , n, where

Λ0(β, t) = ∫0
t ∑i = 1

n dNi(u)

nS(0)(β, u)
.

The stochastic process M̂
i(t) performs in a fashion similar to martingale residuals. However, 

the process (2) does not satisfy the martingale definition due to the length-biased data 

structure. Therefore, Mî(t) is different from the ordinary martingale residuals. To test the 

model assumptions, we consider a general form of the multiparameter stochastic process 

using cumulative summation, in a manner similar to the approach of Lin et al (1993),
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G(t, z) = ∑
i = 1

n
f (Zi)I(Zi ≤ z)Mi(t), (3)

where f(·) is a prespecified smooth and bounded function, and I(Zi ≤ z) = I(Zi1 ≤ z1, … , Zip 

≤ zp) with Zi = (Zi1, … , Zip)⊤ and z = (z1, … , zp)⊤. As pointed out by Lin et al (1993), 

approximating the distribution of (3) is more accessible than that of an individual stochastic 

process, M̂
i(t). Furthermore, individual stochastic processes evaluated with censored survival 

outcomes are equal to zero, which makes it disadvantageous to detect and measure model 

departure with an individual stochastic process. Therefore, we establish our model 

diagnostic procedure on the basis of (3) instead of M̂
i(t). If the assumed model (1) is true, 

the process (3) will fluctuate randomly around zero.

The null distribution of the multiparameter stochastic process (3) under model (1) needs to 

be studied to construct our test procedures. By applying the Taylor series expansion and 

empirical process approximation techniques, we derive a stochastic process asymptotically 

equivalent to (3) and approximate its distribution to obtain critical values for test statistics 

later. First, define

SZ
(1)(β, t, z) = n−1 ∑

i = 1

n
f (Zi)I(Zi ≤ z)wC(t)Ri(t){wC(Yi)}

−1Zi
l exp (β⊤Zi)

for l = 0, 1. Let EZ(β, t, z) = SZ
(0)(β, t, z)/S(0)(β, t), and the corresponding limit be eZ(β, t,z). We 

denote the limit of the first derivatives of ∫ 0
t EZ(β, u, z)dNi(u) and ∫ 0

τ {Zi − E(β, u)} dNi(u) with 

respect to β as

ΓZ(β, t, z) = E ∫0
t SZ

(1)(β, u, z)

S(0)(β, u)
−

SZ
(0)(β, u, z)S(1)(β, u)

{S(0)(β, u)}2 dNi(u)

and

Γ(β) = − E ∫0
τ S(2)(β, u)

S(0)(β, u)
− S(1)(β, u)

S(0)(β, u)

2
dNi(u) ,

respectively. For i = 1, … , n, we define
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Gi
∗(t, z) = ∫

0

t
{ f (Zi)I(Zi ≤ z) − eZ(β0, u)} dMi(u) + ∫

0

t
H(β0, u)

dMCi
(u)

π(u) + ΓZ(β0, t, z

){Γ(β0)}−1∫
0

∞
{Zi − e(β0, u)} dMi(u)

(4)

where

H(β, t) = lim
n ∞ ∑

i = 1

n
∑

k = 1

n f (Zk)I(Zk ≤ z)wC(Yi)Rk(Yi) exp (β⊤Zk){wC(Yk)}−2hk(t)

n2S(0)(β, Yi)
,

MCi
(t) = I(Vi ≤ t, δi = 0) − ∫0

t
I(Vi ≥ u)dΛC(u),

hk(t) = I(Yk ≥ t)∫t

Yk
SC(u)du,

π(t) = SC(t)SV(t),

in which ΛC(·) is the cumulative hazard function for the residual censoring time and SV (·) is 

the survival function of the residual survival time. It is obvious that given the covariates, (4) 

is a mean zero stochastic process under model (1). We summarize the asymptotic properties 

of (3) in the following theorem.

Theorem 1—Under model (1) and the regularity conditions, the stochastic process (3) can 

be approximated by n−1/2G(t, z) = n−1/2∑i = 1
n Gi

∗(t, z) + op(1). The process n−1/2G(t, z) 

converges weakly to a mean zero Gaussian process with covariance E{Gi
∗(t1, z1)Gi

∗(t2, z2)⊤}

as n → ∞.

The list of regularity conditions and the proof of Theorem 1 are provided in Appendices A 

and B, respectively. It is noteworthy that the stochastic process (3) can be approximately 

represented by the sum of independent and identically distributed (i.i.d.) mean zero 

processes as G(t, z) ≈ ∑i = 1
n Gi

∗(t, z). While the asymptotic presentation may bear some 

similarity with that of Lin et al (1993) and its extensions, the approximation is in fact 

different because of the extra weight terms introduced to adjust for potential dependent 

censoring. Note that the representation (4) has a second term that accounts for the 

uncertainty induced additionally by ŵC(·). Since the distributional form of the stochastic 

process (2) is unknown and the covariance structure is complicated in the asymptotic 

distribution of (3), it is quite challenging to analytically evaluate the limiting distribution. As 

an alternative method, we approximate the asymptotic distribution through Monte Carlo 

simulation, which has been widely adopted in the literature (Lin et al, 1993; Spiekerman and 

Lin, 1996).

Lee et al. Page 6

Lifetime Data Anal. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We can estimate the i.i.d. stochastic processes (4) for i = 1, … , n by replacing the 

components with their respective consistent estimators as follows.

Gi
∗(t, z) = ∫0

t
f (Zi)I(Zi ≤ z) − EZ(β, u, z) dMi(u) + ∫0

t
H(β, u)

dMCi
(u)

π(u) + ΓZ(β, t, z

){Γ(β)}−1∫0
τ

Zi − E(β, u) dMi(u),

where

SZ
(l)(β, l, z) = n−1 ∑

i = 1

n
f (Zi)I(Zi ≤ z)wC(t)Ri(t){wC(Yi)}

−1Zi
l exp (β⊤Zi)

for l = 0, EZ(β, u, z) = SZ
(0)(β, t, z)/S(0)(β, t),

H(β, t) = ∑
i = 1

n
∑

k = 1

n f (Zk)I(Zk ≤ z)wC(Yi)Rk(Yi) exp (β⊤Zk){wC(Yk)}−2hk(t)

n2S(0)(β, Yi)
,

MCi
(t) = I(Vi ≤ t, δi = 0) − ∫0

t
I(Vi ≥ u)dΛC(u),

hk(t) = I(Yk ≥ t)∫t

Yk
SC(u)du,

π(t) = SC(t)SV(t),

in which Λ̂
C(·) is the Nelson-Aalen estimator for the residual censoring time and ŜV (·) is the 

Kaplan–Meier estimator of the residual survival time. Also, the consistent estimators

ΓZ(β, t, z) = n−1 ∑
i = 1

n ∫0
t SZ

(1)(β, u, z)

S(0)(β, u)
−

SZ
(0)(β, u, z)S(1)(β, u)

{S(0)(β, u)}2 dNi(u)

and

Γ(β) = − n−1 ∑
i = 1

n ∫0
τ S(2)(β, u)

S(0)(β, u)
− S(1)(β, u)

S(0)(β, u)

2
dNi(u)
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can be used in place of ΓZ and Γ, respectively. Define G
∼

m(t, z) = ∑i = 1
n Gi

∗(t, z)Vmi, where 

Vmi, i = 1, … , n, are independent random variables sampled from a standard normal 

distribution for m = 1, … , M. According to the following theorem, the limiting distribution 

of the multiparameter stochastic process (3) can be approximated via Monte Carlo 

simulation.

Theorem 2—Under model (1) and the regularity conditions, n−1/2G̃
m(t, z) converges 

weakly to the same Gaussian process with the asymptotic distribution of n−1/2∑i = 1
n Gi

∗(t, z)

as n→∞.

The proof of Theorem 2 is provided in Appendix C. For a large M, the simulated realizations 

G ̃
m(t, z),m = 1, … , M, approximate the limiting distribution of (3). Given a fixed pair (t, z), 

it follows that the estimated variance of G̃
m(t, z) is n−1∑i = 1

n {Gi
∗(t, z)}

2
 conditional on the 

observed data, which shares the same limiting variance with (3). Based on the Monte Carlo 

simulation, the model assumptions can be diagnosed graphically. We can compare the 

pattern of the observed stochastic process (3) with the simulated realizations of the limiting 

distribution under the assumed model by plotting a few of them. When the observed 

stochastic process deviates from the group of simulated processes, it possibly indicates a 

sign of model misspecification.

To develop formal test procedures, we construct test statistics using the supremum test, 

supt,z|G(t, z)|. The general form G(t, z) in (3) can be adjusted for checking two aspects of the 

model assumptions. When testing the functional form of the jth component of the covariates, 

we set f(·) = 1, t = τ, and zk = ∞ for all k ≠ j in (3). We construct a test statistic 

T1
j = supz ∣ G1

j(z) ∣, where G1
j(z) = ∑i = 1

n I(Zi j ≤ z)Mi(τ). To test the proportional hazards 

assumption for the jth component of the covariates, we set f(Zij) = Zij and z = ∞, which is 

also a special case of the general class of multiparameter processes (3). The test statistic 

T2
j = supt ∣ G2

j(t) ∣ can be considered, where G2
j(t) = ∑i = 1

n Zi jMi(t). When it is of interest to 

check the overall proportionality of hazards for all covariates, the global test statistic 

T2 = supt ∑ j = 1
p ∣ G2

j(t) ∣ can be considered. In general, an individual test for the jth 

covariate is expected to have greater power than the global test on the overall proportionality 

of hazards. We note that the function f(Zi) is not selected for the purpose of improving 

efficiency of the test. The critical values for test statistics can be obtained by computing 

supt,z |G̃
m(t, z)| for m = 1, … , M. The p-values are estimated empirically by calculating the 

proportion of critical values greater than the proposed test statistic.

The multiparameter stochastic process can be constructed based on alternative estimation 

approaches with mean zero estimating functions. For the purpose of testing the proportional 

hazards model assumptions, we consider the simplicity of the estimating equation 

formulation as the most important feature. Hence, the proposed test procedures are 

established based on the estimating equation proposed by Qin and Shen (2010), which 

allows the test statistics to be implemented using existing software for conventional right-

censored data.
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4 Simulations

To assess the performance of the proposed model diagnostic method, we conducted 

simulation studies with 1000 replications. We considered various scenarios for testing the 

functional form of covariates and/or the proportional hazards assumption.

4.1 Testing the Functional Form of Covariates

We assumed that the failure times follow the hazard functions λ(t | Z) = 2t exp{β · g(Z1) − 

Z2}, where β = 1.5 and Z = (Z1, Z2), of which Z1 was generated from a uniform distribution 

on [0, 4], and Z2 from an independent Bernoulli distribution with probability 0.5. We 

generated failure times with sample sizes of 200 and 400. To ensure that the generated data 

were subject to length-biased sampling, we sampled truncation variables from uniform 

distributions, allowing for a truncation rate close to 94%. The residual censoring times were 

also randomly generated from uniform distributions that satisfy censoring rates of 30% and 

45%.

Under the null hypothesis, we assumed that the failure times followed the proportional 

hazards model by setting g(Z1) = Z1. To investigate the power of our diagnostic method, we 

considered five alternative functional forms of the first covariate: (a) indicator function, 

g(Z1) = I(Z1 > 1.5); (b) quadratic function, g(Z1) = Z1
2; (c) square root function, g(Z1) = Z1; 

(d) log function, g(Z1) = −log(Z1); and (e) exponential function g(Z1) = exp(Z1). We 

computed the test statistic T1
1 and its corresponding critical values from 1000 resampled 

statistics to test the functional form of the first covariate, Z1. Table 1 summarizes the 

estimated type I error rate under the null hypothesis and the power of the proposed test. 

When the functional form of the first covariate is linear, the rejection rates range between 

0.04 ~ 0.05 and 0.10 ~ 0.14 at significance levels of 5% and 10%, respectively, indicating 

the proposed test procedure controls the type I error rate reasonably well. Overall, the power 

of the test increases as the sample size increases, and decreases as the censoring rate 

increases. We observe that testing the functional form of covariates under alternative (c) has 

the lowest power. This is likely that the relationship between the first covariate Z1 and its 

alternative form Z1 is relatively close to linear over the support of [0, 4], which eventually 

results in lower power.

To further investigate the sensitivity of the power of the proposed test to the magnitude of 

the coefficients, we conducted additional simulations with varying βs under the alternatives 

(b)–(e). The results are presented in Table 2. The power estimated under alternative (c) is 

found to be more sensitive to the magnitude of the coefficient (i.e., β), while other 

alternatives present robust power estimates over different values of β. We note that model 

departure is more detectable for a functional form of the square root with a larger β. Another 

interesting observation is that under (e), the power slightly decreases as β increases, which is 

opposite to the pattern observed under other alternatives. This may be explained by the curve 

of the exponential function becoming more linear as the exponential form of the covariate 

stretches vertically by the factor β (see Figure S1, which is available online as 

supplementary material). Our simulation studies imply that the power of the proposed test on 
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the functional form of the covariates highly depends on the shape of the distribution of the 

covariates.

4.2 Testing the Proportional Hazards Assumption

Under the null hypothesis, we generated failure times from the hazard function λ(t | Z) = 2t 
exp(Z1 − Z2), generating Z1 from a uniform distribution on [0, 1], and Z2 from an 

independent Bernoulli distribution with probability 0.5. To evaluate the power of detecting 

violations of the proportional hazards assumption, we generated failure times from the 

proportional hazards model with time-dependent covariate effects λ(t | Z) = exp{g(t,Z)} as 

alternatives. We considered two alternative hypotheses: (a) time-dependent model I, g(t,Z) = 

{1 + 2 log(t)}Z1 − Z2; and (b) time-dependent model II, g(t,Z) = Z1 −I(t > 0.7)Z2. We 

conducted tests based on the global test statistic T2. The p-values were computed on the 

basis of 1000 resampled statistics. The simulation results are summarized in Table 3. Under 

the null hypothesis, the estimated type I error rates are slightly greater than the nominal 

levels at significance levels of 5% and 10% when n = 200. However, when the sample size 

increases, they range between 0.05 ~ 0.06 and 0.11 ~ 0.12 at significance levels of 5% and 

10%, respectively. The proposed diagnostic tool has adequate power under the two 

alternatives. Similar to the findings in Table 1, the power increases with the sample size, and 

decreases for increased censoring rate.

In addition, we examined the power of the test when using f (Zi j) = Zi j
2  in (3) for the jth 

component of the covariates. The additional simulation results are summarized in Table S1 

in the supplementary material. We observe that the powers under the alternative hypotheses 

slightly decrease compared to the test where f(Zij) = Zij (results shown in Table 3), but are 

fairly robust to the choice of f(Zi).

5 Applications

The dementia data were collected in Canada from a large prevalent cohort of individuals 

who were 65 years of age or older, as part of the Canadian Study of Health and Aging 

(Asgharian et al, 2002; Wolfson et al, 2001). Among individuals who agreed to participate, 

1,132 who were confirmed to have dementia at the time of enrollment were followed 

prospectively from 1991 to 1996 until death. The data consist of the date of disease 

diagnosis, which was ascertained through medical records; the enrollment date; the date of 

death or censoring; and the subtype of dementia. The subtypes include probable Alzheimer’s 

disease, possible Alzheimer’s disease, and vascular dementia. A total of 818 patients 

remained in the data cohort after excluding patients with missing entries. In the data set, 

22% of the patients were alive and censored at the end of the study. Among all, 393 (48%) 

were classified as having probable Alzheimer’s disease, 252 (31%) as having possible 

Alzheimer’s disease, and 173 (21%) as having vascular dementia. The stationarity 

assumption was verified (Asgharian et al, 2006), and thus the data were confirmed to be 

subject to length-biased sampling.

We used the estimating equations of Qin and Shen (2010) to assess the effects of dementia 

subtypes on the overall survival time under the proportional hazards model. We defined two 
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indicator variables for probable and possible Alzheimer’s disease, respectively, with vascular 

dementia as the baseline. The estimated coefficient for probable Alzheimer’s disease was 

−0.07 (SE=0.10, p-value=0.47), and that for possible Alzheimer’s disease was −0.21 

(SE=0.11, p-value=0.05). The results suggest that individuals with possible Alzheimer’s 

disease had longer survival times compared to those with vascular dementia; whereas little 

difference was detected between individuals with probable Alzheimer’s disease and those 

with vascular dementia. Note that this inferential result is only meaningful when the 

underlying model assumptions are not violated. We applied the proposed diagnostic method 

to evaluate whether the proportional hazards model fit the data well. Specifically, we tested 

the proportional hazards assumption for each covariate, indicating the subtypes of dementia 

using test statistics T2
j , j = 1, 2. The corresponding critical values were obtained on the basis 

of 1000 resampled statistics. To check the model assumption graphically, we randomly 

chose 20 simulated processes among 1000, and plotted them along with the observed 

process. The results are shown in Figure 1. We can see that both probable and possible 

Alzheimer’s disease satisfy the proportional hazards assumption because the black solid 

lines derived from the data fluctuate around 0 and lie within the grey lines, which are the 20 

randomly selected processes. This is confirmed via the formal test, which gives p-values of 

0.35 and 0.92 for probable and possible Alzheimer’s disease, respectively. As an alternative, 

we may assess the proportional hazards model assumptions by comparing the distributions 

estimated by Vardi’s estimator in each subgroup and the distributions based on the Cox 

model (see Figure S2 in the supplementary material). While this approach may be intuitive, 

it can only serve as a tool for exploratory data analysis and cannot provide a formal test 

statistic. Thus, the proposed test procedure is desirable.

6 Discussion

To the best of our knowledge, no model diagnostic method that examines the adequacy of 

the proportional hazards model has been studied for length-biased data. In this paper, we 

proposed model checking tools based on the cumulative sums of mean zero stochastic 

processes, which is similar to the approach of Lin et al (1993). Model checking is an 

essential step that needs to be implemented for valid inference. The proposed diagnostic 

method provides both graphical plots and formal analytical tests to detect model departure. 

When the functional form of the continuous covariates is found to deviate from the assumed 

linear functional form, one may consider the proper transformation of the covariates. If the 

proportional hazards assumption fails, it is worthwhile to examine other models such as the 

accelerated failure time model or the semiparametric transformation model (Shen et al, 

2009).

We assume that censoring is independent of covariates in the construction of a stochastic 

process in equation (2), and can relax this assumption by revising the weight function. In 

application, one can first check if the censoring times are independent of covariates as in 

conventional survival analyses. When the censoring distribution depends on covariates, the 

weight function wC(t) needs to be replaced by wC(t ∣ z) = ∫ 0
t SC(u ∣ z)du, where SC(t | z) is the 

conditional survival distribution of the residual censoring time given the covariates. The 

conditional weight function wC(t | z) can be consistently estimated by 
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wC(t ∣ z) = ∫ 0
t SC(u ∣ z)du, where ŜC(t | z) is estimated by the covariate-specific Kaplan–Meier 

estimator when the covariates are discrete. For continuous covariates, we can either postulate 

a regression model for the censoring distribution or adopt the local Kaplan–Meier estimator 

(Wang and Wang, 2014). We conducted a set of simulation studies to examine the robustness 

of the proposed model checking method to misspecification of the censoring distribution. 

The results show that the proposed model checking method is reasonably robust to the 

violation of the covariate-independent censoring assumption. In addition, we evaluated the 

performance of the proposed test generalized to account for covariate-dependent censoring. 

The generalized test provides adequate levels of power under the alternative hypotheses. The 

simulation settings and results are summarized in the supplementary material (see Table S2).

While the proposed model diagnostics require approximating the limiting distribution of a 

stochastic process, we find it easy and fast to achieve via the computationally efficient 

resampling method, proposed in Section 3. Unlike the method of Lin et al (1993) or its 

extensions, our method has an extra layer of complexity to adjust for sampling bias. 

Specifically, the constructed stochastic processes have a term induced from the uncertainty 

of the weight function. However, the additional term does not introduce much computational 

burden when the resampling method is adopted.

For data subject to length bias, various semiparametric models have been considered; 

however, model checking has been less represented in the literature. It is certainly warranted 

to develop test procedures to test the regression models based on the cumulative sum of 

residuals for length-biased data. Under one special case, where the proportional mean 

residual life model is assumed for the target population, the model checking method for 

conventional survival data (Lin et al, 1993) can be directly applied to the length-biased data 

because the length-biased subpopulation would follow the proportional hazards model (Chan 

et al, 2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Regularity Conditions

We assume the following regularity conditions for the large sample properties:

1. (Yi,Ai, δi,Zi) are independent and identically distributed for i = 1, … , n.

2. The parameters β0 belong to an interior of a known compact set.

3. The covariates Z are bounded, and α = 0 almost surely if α⊤Z = 0 with 

probability one.
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4. The differentiable baseline cumulative hazard function Λ0(τ ) < ∞ where τ 
satisfies Pr(Y ≥ τ ) > 0.

5. Γ(β) is positive definite.

6. 0 < wC(τ ) < ∞ and ∫ 0
τ {∫ t

τSC(u)du}2/{SC
2 (t)SV(t)} dSC(t) < ∞ where SV (·) is the 

survival function of the residual survival time.

Appendix B: Proof of Theorem 1

By applying the Taylor series expansions, we have

n−1/2 ∑
i = 1

n ∫
0

t
EZ(β, u, z)dNi(u)

= n−1/2 ∑
i = 1

n ∫
0

t
EZ(β0, u, z)dNi(u) + n−1 ∑

i = 1

n ∂
∂ β∫0

t
EZ(β0, u, z)dNi(u) n(β − β0) + op(1),

= n−1/2 ∑
i = 1

n ∫
0

t
EZ(β0, u, z)dNi(u)

+ n−1 ∑
i = 1

n ∫
0

t SZ
(1)(β0, u, z)

S (0)(β0, u)
−

SZ
(0)(β0, u, z)S (1)(β0, u)

{S (0)(β0, u)}
2 dNi(u) n(β − β0) + op(1),

(5)

and
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n−1/2 ∑
i = 1

n ∫
0

τ
Zi − E(β, u) dNi(u)

= n−1/2 ∑
i = 1

n ∫
0

τ
Zi − E(β0, u) dNi(u) + n−1 ∑

i = 1

n ∂
∂ β∫0

τ
Zi − E(β0, u) dNi(u) × n(β

− β0) + op(1)

= n−1/2 ∑
i = 1

n ∫
0

τ
Zi − E(β0, u) dNi(u)

= n−1 ∑
i = 1

n ∫
0

τ S (2)(β0, u)

S (0)(β0, u)
−

S (1)(β0, u)2

S (0)(β0, u)

2

dNi(u) n(β − β0) + op(1) .

(6)

The stochastic processes G(t, z) can be expressed in two terms, G1(t, z) and G2(t, z), as 

follows.

G(t, z)

= ∑
i = 1

n
f (Zi)I(Zi ≤ z)Mi(t)

= ∑
i = 1

n
f (Zi)I(Zi ≤ z)Ni(t) − f (Zi)I(Zi ≤ z)∫0

t
wC(u)Ri(u){wC(Yi)}

−1 exp (β⊤Zi)dΛ0(u)

= ∑
i = 1

n
f (Zi)I(Zi ≤ z)Ni(t) − ∫0

t SZ
(0)(β, u, z)

S(0)(β, u)
dNi(u)

= ∑
i = 1

n ∫0
t
{ f (Zi)I(Zi ≤ z) − EZ(β0, u, z)} dNi(u) + ∑

i = 1

n ∫0
t

EZ(β0, u, z) − EZ(β, u, z) dNi(u)

= G1(t, z) + G2(t, z)

We exploit the Taylor expansion and empirical process approximation techniques. It is 

straight-forward that the first term can be approximated by

n−1/2G1(t, z) = n−1/2 ∑
i = 1

n ∫0
t
{ f (Zi)I(Zi ≤ z) − EZ(β0, u, z)} dNi(u)

= n−1/2 ∑
i = 1

n ∫0
t
{ f (Zi)I(Zi ≤ z) − eZ(β0, u, z)} dMi(u) + op(1) .

Then, we re-express the second term based on equations (5) and (6).
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n−1/2G2(t, z) = n−1/2 ∑
i = 1

n ∫0
t
EZ(β0, u, z)dNi(u) − n−1/2 ∑

i = 1

n ∫0
t
EZ(β, u, z)dNi(u)

= n−1/2 ∑
i = 1

n ∫0
t

EZ(β0, u, z) − EZ(β0, u, z) dNi(u) − ΓZ(β0, t, z) n(β − β0) + op(1)

= n−1/2 ∑
i = 1

n ∫0
t

EZ(β0, u, z) − EZ(β0, u, z) dNi(u) + ΓZ(β0, t, z){Γ(β0)}−1n−1/2U(β0) + op(1)

where

ΓZ(β, t, z) = E ∫0
t SZ

(1)(β, u, z)

S(0)(β, u)
−

SZ
(0)(β, u, z)S(1)(β, u)

{S(0)(β, u)}2 dNi(u)

and

Γ(β) = − E ∫0
τ S(2)(β, u)

S(0)(β, u)
− S(1)(β, u)

S(0)(β, u)

2
dNi(u) .

The second equation can be derived by plugging in equation (5). The third equation 

naturally follows by replacing n(β − β0) with equation (6) after some algebra (Qin and 

Shen, 2010). Note that the leading term in the last equation can be rewritten as

n−1/2 ∑
i = 1

n ∫0
t

EZ(β0, u, z) − EZ(β0, u, z) dNi(u)

= n−1/2 ∑
i = 1

n ∫0
t SZ

(0)(β0, u) − SZ
(0)(β0, u)

S(0)(β0, u)
dNi(u) + op(1)

= n−1/2 ∑
i = 1

n ∫0
t
∑k = 1

n f (Zk)I(Zk ≤ z)Rk(u) exp (β0
⊤Zk) 1

wC(Yk) − 1
wC(Yk)

∑k = 1
n Rk(u){wC(Yk)}−1 exp (β0

⊤Zk)
dNi(u) + op(1)

= n−1/2 ∑
i = 1

n ∫0
t ∑k = 1

n f (Zk)I(Zk ≤ z)wC(u)Rk(u) exp (β0
⊤Zk)

nS(0)(β0, u)

{wC(Yk) − wC(Yk)}

{wC(Yk)}2 dNi(u) + op(1)

= n−1/2 ∑
i = 1

n ∫0
t
H(β0, u)

dMCi
(u)

π(u) + op(1),

where
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H(β, t) = lim
n ∞

1
n2 ∑

i = 1

n
∑

k = 1

n f (Zk)I(Zk ≤ z)wC(Yi)Rk(Yi) exp (β⊤Zk){wC(Yk)}−2hk(t)

S(0)(β, Yi)

MCi
(t) = I(Vi ≤ t, δi = 0) − ∫0

t
I(Vi ≥ u)dΛC(u)

hk(t) = I(Yk ≥ t)∫t

Yk
SC(u)du

π(t) = SC(t)SV(t),

in which ΛC(t) is the cumulative hazard function of the residual censoring time and SV (t) is 

the survival function of the residual survival time. The last equation can be obtained by 

expressing {ŵC(y) − wC(y)} as an i.i.d. sum of martingales (Pepe and Fleming, 1991). 

Finally, the general class of stochastic processes G(t, z) can be asymptotically represented by

n−1/2G(t, z) = n−1/2 ∑
i = 1

n ∫
0

t
{ f (Zi)I(Zi ≤ z) − eZ(β0, u)} dMi(u)

+ n−1/2 ∑
i = 1

n ∫
0

t
H(β0, u)

dMCi
(u)

π(u)

+ ΓZ(β0, t, z){Γ(β0)}−1n−1/2 ∑
i = 1

n ∫
0

∞
{Zi − e(β0, u)} dMi(u) + op(1)

(7)

= n−1/2 ∑
i = 1

n
Gi

∗(t, z) + op(1) . (8)

Under the regularity conditions, for any given z, Gi
∗(t, z) is a mean zero process bounded on 

[0, τ]. This process can be classified as a Donsker class (Kosorok, 2008). Thus, as n → ∞, 

the summation of Gi
∗(t, z) in (8) converges weakly to a mean zero Gaussian process, for 

which the asymptotic covariance function is E {Gi
∗(t1, z1)Gi

∗(t2, z2)⊤}.

Appendix C: Proof of Theorem 2

We note that ΓZ(β0, t,z){Γ(β0)}−1 in the third term of (7) converges in probability to a non-

random function. Conditional on the observed data, the process (7) is a linear combination 

of independent normally distributed processes with mean zero. Thus, given that β̂ is a 

consistent estimator for β0, we can show that n−1∑i = 1
n Gi

∗(t1, z1)Gi
∗(t2, z2)⊤ converges in 
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probability to the asymptotic covariance function E {Gi
∗(t1, z1)Gi

∗(t2, z2)⊤} as n → ∞. By 

applying the multiplier central limit theorem (Kosorok, 2008), it follows that conditional on 

the observed data and z, n−1/2G̃
m(t, z) and n−1/2∑i = 1

n Gi
∗(t, z) converge to the same mean 

zero Gaussian process.
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Fig. 1. 
Graphical results of testing the proportional hazards assumption with the dementia data from 

the Canadian study
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