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A comparison between scalp- and 
source-reconstructed EEG networks
Margherita Lai1, Matteo Demuru2, Arjan Hillebrand2 & Matteo Fraschini1

EEG can be used to characterise functional networks using a variety of connectivity (FC) metrics. 
Unlike EEG source reconstruction, scalp analysis does not allow to make inferences about interacting 
regions, yet this latter approach has not been abandoned. Although the two approaches use different 
assumptions, conclusions drawn regarding the topology of the underlying networks should, ideally, not 
depend on the approach. The aim of the present work was to find an answer to the following questions: 
does scalp analysis provide a correct estimate of the network topology? how big are the distortions 
when using various pipelines in different experimental conditions? EEG recordings were analysed with 
amplitude- and phase-based metrics, founding a strong correlation for the global connectivity between 
scalp- and source-level. In contrast, network topology was only weakly correlated. The strongest 
correlations were obtained for MST leaf fraction, but only for FC metrics that limit the effects of volume 
conduction/signal leakage. These findings suggest that these effects alter the estimated EEG network 
organization, limiting the interpretation of results of scalp analysis. Finally, this study also suggests 
that the use of metrics that address the problem of zero lag correlations may give more reliable 
estimates of the underlying network topology.

Modern network science is a fundamental tool for the understanding of both normal and abnormal brain organ-
ization1–3. In this context, alongside other imaging techniques such as magnetoencephalography (MEG) and 
functional MRI (fMRI), electroencephalography (EEG) has been widely used to study brain networks1,4. It is well 
accepted that scalp-level EEG analysis does not allow inferences in terms of underlying neuroanatomy5, thus 
suggesting the use of source reconstruction techniques6, yet the former approach has not been abandoned. The 
main problems with scalp-level analysis of functional networks are related to two considerations: (i) the already 
mentioned problem that location of EEG channels do not relate trivially to the location of the underlying sources; 
and (ii) spurious estimates of functional connectivity can occur between the channels due to the effects of field 
spread7 and volume conduction6, where more than one channel can pick up the activity of an underlying source, 
although these effects can still be present in source-space8, where it is often referred to as signal leakage. Although 
scalp- and source-level analyses use different assumptions, conclusions drawn regarding the (global) topology of 
the underlying networks should, ideally, not depend on the approach that is used.

The aim of the present paper was to compare network measures extracted from scalp and source EEG signals, 
as defined by the minimum spanning tree (MST), and using a variety of functional connectivity (FC) metrics. The 
MST represents a network approach that provides an unbiased reconstruction of the core of a network9,10. MST 
parameters are sensitive to alterations in network topology9 and several studies have already implemented this 
approach in order to study network alteration at the scalp-11–19 and source-level20–23. Under certain conditions, 
the MST forms the critical backbone of the original network24–26. Moreover, it addresses several methodological 
limitations (i.e. biased estimates of network topology due to differences in connection strength or link density)27, 
yet still captures changes in topology of the original network9.

In order to assess the effect of field spread and volume conduction/leakage we included FC metrics that are 
sensitive to these effects, namely the phase locking value (PLV)28 and the amplitude envelope correlation (AEC)29, 
and metrics that are relatively insensitive to these effects, namely the phase lag index (PLI)30 and AEC after leak-
age correction29,31. Subsequently, several MST parameters were used to characterize the global topology of the 
reconstructed functional networks.

We used a freely available EEG dataset32,33 that includes one minute eyes-closed and eyes-open resting-state 
recordings from 109 subjects. Source-level time-series of neuronal activity were reconstructed for 68 ROIs34 by 
means of the weighted Minimum Norm Estimate (wMNE)35–38 and segmented into five non-overlapping epochs. 
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MSTs were reconstructed for four FC metrics, both at the scalp- and source-level, and parameters that character-
ise global topology were subsequently compared between the two domains. Finally, with the aim to examine the 
effect of using one of the two approaches (analysis at the scalp- or source-level) for different experimental condi-
tions, and differently from previous works39,40 which adopted a simulation framework, we also show the results 
for both eyes-closed and eyes-open resting-state data.

Material and Methods
Dataset.  A dataset created by the developers of the BCI2000 instrumentation system (www.bci2000.org), 
consisting of 64-channels EEG recordings from 109 subjects, was used in this study32,33. All the EEG record-
ings analysed during the current study are available in the PhysioNet repository, https://www.physionet.org/
pn4/eegmmidb/. The dataset contains fourteen different experimental runs for each subject, comprising of two 
one-minute baseline runs (eyes-open and eyes-closed resting-state conditions). For the aim of the present work, 
we considered both eyes-closed and eyes-open resting-state runs. The data are provided in EDF + format and 
contain 64 raw EEG signals as per the international 10–10 system, sampled at 160 Hz.

EEG pre-processing.  EEGLAB (version 13_6_5b)41 was used to re-reference to common average reference 
and filter (with fir1 filter type) the EEG signals (band-pass filter between 1 and 70 Hz and 60 Hz notch filtering). 
Successively, ADJUST (version 1.1.1)42, a fully automatic algorithm based on Independent Component Analysis 
(ICA), was used to detect and remove artifacts from the filtered signals.

Source reconstruction.  Source-reconstructed time-series were obtained by using Brainstorm software 
(version 3.4)43. First, a head model was created using a symmetric boundary element method in Open-MEEG 
(version 2.3.0.1)44,45 based on the anatomy derived from the ICBM152 brain46. Time-series of neuronal activity 
were reconstructed using whitened and depth-weighted linear L2 minimum norm estimate (wMNE)35–38, with an 
identity matrix as noise covariance. Sources were constrained to the cortex and source orientation was perpendic-
ular to the cortical surface47. To limit the effect of differences in network size27 between scalp- (64 channels) and 
source-analysis, source-reconstructed time-series were projected onto 68 regions of interest (ROIs) as defined by 
the Desikan-Killiany atlas34, where time-series for voxels within a ROI were averaged (after flipping the sign of 
sources with opposite directions).

Connectivity metrics.  Functional connectivity metrics that are either sensitive or insensitive to the effects of 
field spread and volume conduction/signal leakage, based on either amplitude or phase information, were used.

In particular, we used AEC, a measure of amplitude coupling that uses linear correlations of the envelopes of 
the band-pass filtered signals29,31 and AECcorrected, a version that uses a symmetric orthogonalisation procedure to 
remove zero-lag correlations (implemented in the time domain31). Furthermore, we used the PLV28, a measure 
that quantifies the consistency of phase differences (including zero-lag), and the PLI30, a measure that quantifies 
the asymmetry of the distribution of phase differences between time series and that ignores zero-lag phase differ-
ences. The connectivity metrics were calculated for all epochs of each subject, after having band-pass filtered the 
scalp- or source-reconstructed time-series in the alpha band (8–13 Hz) and segmenting the one-minute record-
ings in five non-overlapping epochs of 12 seconds48.

Functional Network Topology.  The EEG channels (scalp-level analysis) and the atlas-based ROIs (source- 
level analysis) were considered as network nodes, and the functional connections as weighted edges within the 
network. Then the MST, a sub-network that connects all nodes whilst minimizing the link weights without form-
ing loops, was reconstructed. Since we are interested in the strongest connections, the connection weights were 
inverted (1 – FC measure) before constructing the MST. The topology of the MST was characterised using the 
following parameters49: the leaf fraction (number of nodes with degree of 1 divided by the total number of nodes), 
the diameter (largest distance between any two nodes), the tree hierarchy (balance between hub overload and 
network integration) and the kappa (broadness of degree distribution). The use of MST was introduced as a 
simple and unbiased method to represent the essential features of brain networks. In particular, the MST, which 
captures the backbone of the network, allows to compare this feature across different conditions (i.e., behavioural 
states and neurological diseases). If the original network can be interpreted as a kind of transport network, and if 
edge weights in the original graph possess strong fluctuations, also called the strong disorder limit, all transport 
in the original graph flows over the MST25 forming the critical backbone of the original graph50. Moreover, it has 
been shown that the MST characterization still keeps important information about the topology of the whole 
network, as derived using more conventional graph analysis9. The MST leaf fraction captures if the network has 
a central organization, the diameter reflects the efficiency of the global organization, the tree hierarchy captures 
the balance between network efficiency and overload of central nodes (hubs), and kappa reflects the resilience 
of the network against attacks. A more detailed description and interpretation of MST parameters may be found 
in9,10. All analyses were performed using Matlab R2016b (The MathWorks, Inc., Natick, Massachusetts, US) and 
the MIT Strategic Engineering Matlab Tools for Network Analysis51.

Statistical analysis.  Correlations between scalp- and source-derived measures were assessed using 
Spearman’s rank correlation coefficient. In order to test differences between correlations from the different con-
nectivity approaches, the ones that are insensitive to zero-lag correlations in contrast to the ones that are sensitive, 
we used a percentile bootstrap approach for non-overlapping correlations52, using 500 repetitions, and using the 
code available at https://github.com/GRousselet/blog/tree/master/comp2dcorr and described at https://garstats.
wordpress.com/2017/03/01/comp2dcorr/.

http://www.bci2000.org
https://www.physionet.org/pn4/eegmmidb/
https://www.physionet.org/pn4/eegmmidb/
https://github.com/GRousselet/blog/tree/master/comp2dcorr
https://garstats.wordpress.com/2017/03/01/comp2dcorr/
https://garstats.wordpress.com/2017/03/01/comp2dcorr/
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Results
The associations between measures extracted from scalp- and source-reconstructed networks are represented as 
scatterplot in Fig. 1. The Spearman correlations between scalp- and source-level global connectivity (obtained by 
averaging all the values in the connectivity matrix excluding the diagonal) were high for all connectivity metrics, 
whereas correlations were low to moderate for the MST parameters. For the MSTs, the highest correlations were 
observed for leaf fraction for MSTs based on AECcorrected (rho = 0.346) and PLI (rho = 0.262).

For all the MST parameters, MSTs based on AECcorrected and PLI showed higher correlations in compari-
son with AEC and PLV. In particular, PLV-based MST parameters showed the lowest correlations, with correla-
tions strength approaching zero for all the evaluated network measures (maximum rho = 0.061, for MST kappa). 
Statistical differences, expressed using confidence intervals, between Spearman correlations derived from ampli-
tude and phase based coupling approaches are summarized in Tables 1 and 2. For amplitude based FC metrics, 
the largest difference was observed for MST leaf fraction, whilst for the other MST parameters the differences 
were small. For phase-based FC metrics, the most marked differences were observed for MST leaf fraction and 
MST Kappa. For both the amplitude- and phase-based approaches, the MST Hierarchy showed only minimal 
differences. Figure 2 shows differences and bootstrap distributions for MST leaf fraction, for MSTs based on 
AECcorrected versus AEC (left panel) and for MSTs based on PLI versus PLV (right panel).

As shown in Table 3, Spearman correlations tended to be higher (especially for PLI) when the same analysis 
was performed at subject-level. For this analysis, FC metrics from the five epochs were averaged for each single 
subject, and the correlation between scalp- and source-level estimates was computed.

Figure 1.  Scatterplots of scalp- and source-based measures of FC and network topology. The strength of 
the correlation is reported as rho value. Note that estimates of network topology correlated only weakly to 
moderately (maximum rho = 0.346) between scalp- and source-level, even though global FC correlated strongly.
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Figure 2.  Differences and bootstrap distributions for MST leaf fraction, for AECcorrected versus AEC (left panel) 
and for PLI versus PLV (right panel). The difference between coefficients is marked by a thick vertical black line. 
The 95% percentile bootstrap confidence interval is illustrated by the two thin vertical black lines.

AECcorrected AEC Statistics

rho rho difference CI

MST leaf fraction 0.346 0.151 0.195 [0.08 0.32]

MST diameter 0.223 0.146 0.078 [−0.03 0.18]

MST kappa 0.254 0.173 0.081 [−0.03 0.19]

MST hierarchy 0.141 0.099 0.043 [−0.07 0.15]

Table 1.  Comparison between scalp- and source-level correlations for amplitude based FC metrics. Mean 
difference and confidence intervals are reported.

PLI PLV Statistics

rho rho difference CI

MST leaf fraction 0.262 0.019 0.243 [0.13 0.37]

MST diameter 0.136 0.019 0.117 [0.00 0.23]

MST kappa 0.215 0.061 0.153 [0.03 0.27]

MST hierarchy 0.078 −0.005 0.082 [−0.04 0.19]

Table 2.  Comparison between scalp- and source-level correlations for phase based FC metrics. Mean difference 
and confidence intervals are reported.

rho values

Epoch level Subject level

AEC global 0.890 0.904

PLI global 0.878 0.918

AEC MST leaf fraction 0.346 0.325

PLI MST leaf fraction 0.262 0.367

AEC MST diameter 0.223 0.278

PLI MST diameter 0.136 0.253

AEC MST kappa 0.173 0.104

PLI MST kappa 0.215 0.181

AEC MST hierarchy 0.141 0.123

PLI MST hierarchy 0.078 0.151

Table 3.  A Comparison between epoch-level and subject-level analysis. In the latter case, PLI-based 
correlations tended to be higher and in general outperformed AEC-based correlations.
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Comparison of the two experimental conditions, namely eyes-closed and eyes-open resting-state, shows 
(Fig. 3) that, for some connectivity metrics, adopting one approach over the other (scalp- versus source-level 
analysis) may show a different magnitude, and even an opposite direction, for the condition effect on network 
topology (here assessed by MST leaf fraction). It is interesting to note that, at least for those metrics that address 
the problem of field spread and volume conduction/signal leakage (AECcorrected and PLI) the condition-related 
shift in network topology were in the same direction for the scalp- and sensor-level analysis, whereas for the other 
metrics (AEC and PLV) the condition-related shifts in network topology were in opposite directions, depending 
on whether the networks were reconstructed at the scalp- or source-level53.

Discussion
Although network reconstructions at the scalp- and source-level rely on different assumptions, conclusions drawn 
regarding the (global) topology of the underlying networks should, ideally, not depend on the approach that is 
used. We found that global functional connectivity correlated strongly between the two domains, independent of 
the metric that was used. In contrast, global MST network descriptors extracted from scalp- and source-level EEG 
signals correlated (at best) moderately. In particular, in the case of connectivity metrics that do not limit spurious 
connections that are due to field spread and volume conduction/signal leakage (PLV and uncorrected version of 
AEC), the correlations were particularly weak. Although topological parameters for MSTs based on AECcorrected 
and PLI showed only moderate correlations between scalp- and source-level, they were still higher than for MSTs 
based on PLV and uncorrected AEC for all of the estimated network measures. These differences (between scalp-/
sensor-level correlations) were most evident for phase-based synchronization metrics, where PLI allowed to 
obtain higher correlations than PLV, for two of the MST descriptors (leaf fraction and kappa). These findings, 
which show minimal consistency between network analysis at scalp- and source-level, still advise against the use 
of FC metrics that do not correct for spurious correlations as they tend to amplify the differences between the two 
domains (scalp- and source-level). Conversely, the use of metrics that limit spurious connectivity (AECcorrected 
and PLI) tends to reduce these differences. Higher correlations were observed when the analysis was performed 
at subject-level. Finally, the magnitude, and even direction, of condition-effects may change depending on the 
connectivity metric used (Fig. 3), thus potentially leading to completely different conclusions.

In this work, we used weighted minimum norm estimated to reconstruct the source activity. It should be 
noted that different source reconstruction methods54, may provide different results in terms of global network 
topology and the correlation between scalp- and sensor-level estimates. In order to examine the potential effect 
of other inverse methods, we have replicated the analysis using the sLoreta approach55 which, as reported in the 
Supplementary Information, provided results, in terms of correlations between scalp- and source-level metrics, 
that were equivalent to those obtained with the wMNE. Since the accuracy of source localization may increase 
with the number of channels39,56, one would expect the correlations between networks reconstructed at the 
sensor- and source-level to be higher for MEG than for EEG. The reduced sensitivity of MEG volume conduction 
may further aid in this respect. It should also be noted that, differently from MEG, the choice of the reference 
electrode may influence EEG sensor-space connectivity estimates57. In this latter work57, the authors also report 
a detailed analysis about the effects of different approaches (such as anatomical templates, inverse methods and 
software implementations) on source-reconstructed EEG signals and their connectivity properties. Even though 

Figure 3.  Scatterplot of leaf fraction for eyes-closed and eyes-open resting-state, based on scalp (top row) 
and source analysis (bottom row) and for each connectivity measure (different columns). The blue and orange 
arrows indicate the direction of the shift in network topology when comparing the eye-closed and eyes-open 
condition. Note that for the AEC and PLV the leaf fraction is higher in the eyes-open condition than in the eyes-
closed condition for the scalp-level MSTs, whereas the opposite condition effect is found for the source-level 
MSTs.
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our work makes use of a set of different metrics to estimate functional connectivity and network topology, the 
reported results are consistent with those reported by Mahjoory et al., who also suggest that the variability intro-
duced by different methodological choices reflects uncertainty in the results, which should not be overlooked 
when interpreting scalp and source-level findings. It is also interesting to note that our findings seem to be in line 
with another recent work58 that investigated EEG coherence based on local field potentials measured with micro-
electrode arrays, as well as based on scalp-level EEG, and concluded that scalp-level coherence was not reliably 
related to coherence between brain areas measured intracranially.

The present work suffers from some limitations. First of all, there was no ground truth in our study, and we inter-
pret our results under the assumption that network estimates at the source-level are a better approximation of the 
unknown true network organization than scalp-level estimates. This assumption is in line with a previous study39 
that have highlighted that scalp-level network analyses may result in erroneous inferences about the underlying 
network topology. In particular, the model study by Antiqueira and colleagues suggests that scalp-based network 
structures, especially when under-sampled at surface sites, might not agree with the underlying three-dimensional 
network. Another limitation refers to the inherently different mapping approaches between scalp- (channels) and 
source-level (ROIs) analysis, that strongly hinder the comparison between the two domains. Even though the num-
ber of EEG channels differed only slightly from the number of reconstructed ROIs (64 versus 68), it has been shown 
that differences in network size can affect estimates of network topology27. The correlations between the scalp- and 
source-level estimates of network topology presented here may therefore be lower than those that would have been 
obtained in case the networks had been of equal size. In order to estimate the possible effect of small differences in 
network size between sensor- and source-level we reported (see Supplementary Information) the results obtained 
using a subset of nodes for the source analysis. In particular, we omitted four nodes from original atlas (right and left 
parahippocampal and lingual) thus obtaining a network with 64 nodes. The results show that the impact of network 
size is negligible, since both the direction and the strength of associations (as measures by Spearman correlations, 
for MST leaf fraction based on AECcorrected) are comparable (difference = −0.01 [−0.03 0.01]). Another considera-
tion is that consistency for local measures (e.g. nodal centrality) may be lower than reported for the global network 
measures. In order to investigate whether the observed correlations between scalp- and source-space based metrics 
were depended on the specific thresholding approach for the network reconstruction (i.e., the MST), we also repli-
cated the analysis using a novel technique, namely efficiency cost optimization (ECO). This approach was recently 
introduced with the aim to filtering information in complex brain networks59. Our results show (see Supplementary 
Information) that also with ECO the functional connectivity metrics that are less sensitive to the effects of field 
spread and volume conduction/leakage (AECcorrected and PLI) gave higher correlations between network metrics as 
obtained at scalp- and source-level, compared to AEC and PLV.

Although these results demonstrate that the specific thresholding approach does only have a small effect on 
the results for unweighted networks, it is unclear whether our results generalise to weighted and/or directed 
network analyses. Similarly, our results were obtained for specific connectivity metrics. We used metrics that are 
widely used, and that capture different mechanism of coupling between brain regions60,61, based on phase cou-
pling or amplitude correlations. However, other metrics of functional connectivity may capture different prop-
erties of statistical interdependence, and may have a different sensitivity to, for example, common signal sources 
and non-stationarity. Different metrics may therefore have different biases when estimating interactions between 
time-series, which may also affect the correlation between source- and sensor-level results. Hence, although our 
findings indicate that results from sensor-level unweighted network analysis should be interpreted with caution, 
future studies should investigate whether this is also the case for weighted and/or directed networks that are 
derived from a larger range of functional connectivity metrics.

Moreover, we investigated the effect of frequency content (limited at alpha band in the main text), extending 
the analysis to other bands, namely theta (4–8 Hz) and beta (13–30 Hz) bands (see Supplementary Information). 
These results show that the reported trend still holds also for other frequency bands. Finally, the ICA-based 
artifact-rejection that we used may have distorted the phases62. However, since our study is focused on the com-
parison between analyses at the scalp- and source-level and is not intended to unveil the true underlying network 
topology, this limitation should only slightly impact on the reported results. Future studies should elucidate the 
effects of ICA artifact rejection on subsequent connectivity and network analyses.

Conclusion
In conclusion, the present work confirms that, although functional connectivity can be estimated reliably, extreme 
caution should be used when interpreting results derived from scalp-level EEG network analysis, even when 
unbiased approaches such as MST analysis are used. However, assuming that the source-based network rep-
resentation is a better approximation of the unknown true network organization, our findings also indicate that 
connectivity metrics that limit the emergence of spurious correlations (such as the corrected AEC and PLI) may 
allow for more reliable estimates of the underlying global network organization.
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