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Abstract

Since the first publications coining the term RNA-seq (RNA
sequencing) appeared in 2008, the number of publications
containing RNA-seq data has grown exponentially, hitting an all-
time high of 2,808 publications in 2016 (PubMed).With this wealth
of RNA-seq data being generated, it is a challenge to extract
maximal meaning from these datasets, and without the appropriate
skills and background, there is risk of misinterpretation of these
data. However, a general understanding of the principles

underlying each step of RNA-seq data analysis allows investigators
without a background in programming and bioinformatics to
critically analyze their own datasets as well as published data.
Our goals in the present review are to break down the steps of a
typical RNA-seq analysis and to highlight the pitfalls and
checkpoints along the way that are vital for bench scientists and
biomedical researchers performing experiments that use RNA-seq.
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RNA sequencing (RNA-seq) was first
introduced in 2008 (1–4) and over the past
decade has become more widely used
owing to the decreasing costs and the
popularization of shared-resource
sequencing cores at many research
institutions. The increased popularity of
RNA-seq has led to a fast-growing need for
bioinformatics expertise and computational
resources. In order for bench scientists to
correctly analyze and process large datasets,
they will need to understand the
bioinformatics principles and limitations
that come with the complex process of
RNA-seq analysis. Although RNA-seq

analysis can be incredibly powerful and can
uncover many exciting new findings, it
differs from the usual analyses bench
scientists are used to in that it comes as a
very large dataset that cannot be interpreted
without extensive analysis.

The protocol of RNA-seq starts with
the conversion of RNA, either total,
enriched for mRNA, or depleted of rRNA,
into cDNA. After fragmentation, adapter
ligation, and index ligation, each cDNA
fragment is subsequently sequenced or
“read” using a high-throughput platform.
Raw read data then are demultiplexed,
aligned, and mapped to genes to generate a

raw counts table, at which point the data
often are handed over to the bench
researcher to start his or her own analysis.
No true consensus exists yet on the most
appropriate pipeline for RNA-seq data
processing; however, there are numerous
online semiautomated tools available, such
as BaseSpace (Illumina), MetaCore
(Thomson Reuters), or Bluebee (Lexogen).
Although these tools generate principal
component analysis (PCA) plots, display
heat maps, and run differential gene
expression analysis without the assistance
of a bioinformatician, they do not allow
users to fully assess the quality of their data,
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determine the accuracy of their own
analysis, and tailor the analysis to their
biological question, which can lead to
misinterpretation of the dataset. It is
important for investigators to understand
how to approach their dataset, to appreciate
the characteristics of their dataset, and to
watch for weaknesses in the data that may
limit the ability to draw conclusions. In
addition, it is imperative that each dataset
be analyzed de novo, in the sense that
thresholds and methods must be adapted
anew, which cannot be achieved by using
generic online apps or tools.

For the purposes of this methods paper,
we used an example dataset from an
experiment within our research group in
which naive murine alveolar macrophages
were compared with those isolated from
transplanted lungs 2 and 24 hours
postreperfusion. We present our analysis
using this dataset to describe a user-friendly
approach to RNA-seq analysis for a bench
scientist.

Methods

Mice and Reagents
Male Cx3cr1gfp/1 mice on a C57BL/6
background and wild-type BALB/c mice
aged 12–14 weeks were used. All mice were
housed in a specific pathogen–free facility.
All reagents were certified endotoxin free
by the manufacturer. All studies were
conducted in compliance with guidelines of
the Northwestern University Animal Care
and Use Committee.

Murine Single-Lung Transplant
Transplants were performed between
allogeneic mismatched donor–recipient
pairs as described previously (5).
Specifically, donor lungs from Cx3cr1gfp/1

mice were used as allografts and
implanted into wild-type BALB/c
recipients. In brief, donor mice were
heparinized and flushed antegrade through
the pulmonary artery, the trachea were
ligated after lungs were recruited, and
then the heart-lung block was harvested
and kept at 48C for a 2-hour period of cold
ischemia. Anastomoses for the single left
lung transplant were completed using
the cuffed technique through a left
thoracotomy; the lung was reperfused and
re-recruited; and then the thoracotomy
was closed in layers. Mice were weaned
from the ventilator and extubated

during recovery once they were
ambulatory. At specified time points after
reperfusion, recipient mice were killed, and
the lung allograft was harvested.

Tissue Digest and Single-Cell
Preparation
Lungs were processed for single-cell
suspensions as described previously (5).
Briefly, the right ventricle was flushed with
10 ml of ice-cold Hanks’ balanced salt
solution, then the lungs were infiltrated
with a tissue digestion mixture containing
collagenase D (Roche) and DNase I
(Roche). A combination of mechanical
dissociation using the GentleMACS
(Miltenyi Biotec) and enzymatic digestion
at 378C for 30 minutes was performed.
Samples were then enriched using CD45
microbeads (Miltenyi Biotec) and
AutoMACS system (Miltenyi Biotec) before
antibody staining.

Fluorescence Activated Cell Sorting
See Table E1 in the data supplement for
antibodies and dilutions used for staining of
single-cell suspension and Figure E1 for the
gating strategy for sorting of alveolar
macrophages. Cells were sorted into
magnetic-activated cell sorting buffer at 48C
using a BD FACSAria II SORP four-laser
flow cytometer (BD Biosciences).

RNA Isolation and Library Preparation
Freshly sorted cells were pelleted
immediately, resuspended in 100 ml of
PicoPure Extraction Buffer (Thermo
Fisher Scientific), and then stored at
2808C. RNA isolation was performed using
the PicoPure RNA isolation kit (Thermo
Fisher Scientific), and samples with high-
quality RNA (RNA integrity number,.7.0)
as measured using the 4200 TapeStation
(Agilent Technologies) were used for
library preparation. The mRNA was
obtained from total RNA using NEBNext
Poly(A) mRNA magnetic isolation kits
(New England BioLabs), and cDNA
libraries were subsequently prepared using
the NEBNext Ultra DNA Library Prep Kit
for Illumina (New England BioLabs).
Libraries were sequenced on a NextSeq
500 platform using a 75-cycle single-end
high-output sequencing kit (Illumina).
Sequencing yielded libraries with an
average size of 8 million reads after
alignment. RNA-seq analysis was based on
uniquely aligned reads.

Demultiplexing, Alignment, and
Normalization
Reads were demultiplexed (bcl2fastq), and
fastq files were aligned to the mm10 mouse
genome (TopHat2 [6]) and mapped to genes
(HTSeq [7]) using the Ensembl gene
annotation. Pairwise comparisons between the
various conditions were run using a negative
binomial generalized log-linear model through
the glmLRT fit function in edgeR (8, 9).

Data Availability
The RNA-seq data reported in this article
has been deposited in NCBI’s Gene
Expression Omnibus (GEO) and are
accessible through GEO Series accession
number GSE116583.

Results

Experimental Design and Approach
A major goal of RNA-seq analysis is to
identify differentially expressed and
coregulated genes and to infer biological
meaning for further studies. Source material
can be cells cultured in vitro, whole-tissue
homogenates, or sorted cells. The ability to
interpret findings depends on appropriate
experimental design, implementation of
controls, and correct analysis. Every effort
should be made to minimize batch effect,
because small and uncontrolled changes in
an environment can result in identification
of differentially expressed genes (DEGs)
unrelated to the designed experiment.
Sources of batch effect can occur during the
experiment, during the RNA library
preparation, or during the sequencing run
and include but are not limited to those
listed in Table 1. Once a well-designed and
controlled experiment is performed, a
structured approach to the dataset allows
for quality control followed by unbiased
analysis of the data. In the present analysis,
we use an approach that includes setting
low count filtering, establishing a noise
threshold, checking for potential outliers,
running appropriate statistical tests to
identify DEGs, clustering of genes by
expression pattern, and testing for gene
ontology (GO) enrichment. For each of
these analysis components, we aim to
highlight important checkpoints and quality
controls that will streamline and strengthen
data analysis, avoid bias, and allow
investigators to maximally use their datasets.

For this tutorial, we use a dataset
comprising three groups of alveolar
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macrophages that were studied in a murine
model of lung transplantation during the
first 24 hours of reperfusion. This approach
(of which we make no claims of originality
and refer the reader to an excellent review by
Conesa and colleagues [10] outlining the
major steps of RNA-seq data analysis)
allows the investigator to probe the data in
an unbiased manner in an effort to identify
transcriptional signatures and to enable
further downstream analyses.

Determining Intra- and Intergroup
Sample Variability and Outliers
When assessing variability within the
dataset, it is preferable that the intergroup
variability, representing differences between
experimental conditions in comparison with
control conditions, is greater than the
intragroup variability, representing
technical or biological variability. A global
overview of the data allows for the
characterization of variation between
replicates and whether investigator-defined
experimental groups show actual differences
between groups (a group being a set of
replicates from the same condition or of the
same cell type). One way to visualize the
variation in a dataset is through PCA (11).
PCA takes a large dataset as input and
reduces the number of gene “dimensions”
to a minimal set of linearly transformed
dimensions reflecting the total variation of
the dataset. The results are commonly

presented as a two-dimensional plot in
which data are visualized along axes that
describe the variation within the dataset,
known as the principal components (PCs).
PC1 describes the most variation within the
data, PC2 the second most, and so forth.
The variation represented by each PC can
be calculated as a percentage of the total
variance and visualized by a scree plot.
If the first two PCs do not capture the
majority of the variance, it may be helpful
to generate additional two-dimensional
PCA plots displaying other PCs. In this
way, a PCA plot may help to visualize
grouping among replicates and aid in
identifying technical or biological outliers.

Another approach to determining
inter- and intragroup variability is to
calculate distance as represented by
correlation between samples. Two
commonly used measures of correlation
are the Pearson’s coefficient and the
Spearman’s rank correlation coefficient
(12–14), which describe the directionality
and strength of the relationship between
two variables. The Pearson’s correlation
reflects the linear relationship between two
variables accounting for differences in their
mean and SD, whereas the Spearman’s rank
correlation is a nonparametric measure
using the rank values of the two variables.
The more similar the expression profiles for
all transcripts are between two samples, the
higher the correlation coefficient will be.

These correlation coefficients are calculated
between all samples and can be visualized
as either a table or a heat map, allowing the
investigator to assess whether replicates
(technical or biological) group together.
In addition to allowing an assessment
of variability, both PCA and sample
correlation analysis can help to identify
outliers that were not excluded during
upstream steps such as alignment. For
instance, a sample that aligned well and
demonstrated good read depth might make
it to this step of the pipeline; however, a
PCA or correlation analysis may identify
this library as a mislabeled or contaminated
sample, clustering the outlier within
another group. It is also possible that a
correctly labeled sample will fall out as a
biological outlier, such as if it was collected
from an animal that was believed to have
received a challenge but did not show
symptoms. In summary, these analyses
provide a global overview of all samples,
allow for determination of outliers, and
present data in an easy-to-digest format to
the investigator and reader.

Using our alveolar macrophage dataset,
we show a PCA plot and a heat map of
Pearson’s correlation across alveolar
macrophage samples: naive, transplant
2 hours postreperfusion, and transplant
24 hours postreperfusion sample groups
(Figure 1A). Both the PCA plot and the
Pearson’s correlation heat map were
generated using normalized reads per
kilobases of transcript per 1 million
mapped reads (RPKM) counts (see
NORMALIZED COUNTS box). The PCA
demonstrated expected grouping among
replicates within samples and sample
groups spread across the two PCs. PC1
accounts for 68.1% of the variance, and
PC2 accounts for an additional 20.3%. The
scree plot (Figure E2) confirmed that the
majority of the variance within the dataset
was described by the first two PCs.
Although the PCA plot emphasizes
intergroup variability, the Pearson’s
correlation analysis (Figure 1B) provides
an overview of all the variation between
samples showing a correlation value of
r. 0.9 (Table 2), consistent with each
group belonging to the same cell type.

Filtering Out Noise
After outliers are excluded and variability
is assessed, an analysis of the distribution
of expressed genes can be helpful to
determine a threshold for low expression

Table 1. Sources of Batch Effect and Proposed Strategies to Mitigate Them

Source Strategy to Mitigate Batch Effect

Experiment
User Minimize users or establish interuser reproducibility in

advance.
Temporal Harvest cells or kill animals at the same time of day.

Harvest controls and experimental conditions on the same
day.

Environmental If samples are to be collected in batches, minimize the time
between batch collections.

Use intraanimal, littermate, and cage mate controls whenever
possible.

RNA isolation and library preparation
User Minimize users or establish interuser reproducibility in

advance.
Temporal Perform RNA isolation on the same day, and avoid separate

isolations over several days or weeks.
Handle all samples in the same fashion (e.g., for
freeze–thaws).

Environmental Isolate RNA batches and prepare libraries using standard
precautions to minimize contamination.

Sequencing run
Temporal Sequence controls and experimental conditions on the same

run.
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based on sample-to-sample variation
caused by technical factors, referred to as
noise. One approach to viewing variability
between samples is to generate a
scatterplot comparing the normalized
(RPKM) expression values for all genes in
two different samples (see SETTING a LOW

COUNTS THRESHOLD box panels A and C for
additional information) to visualize their
similarity or correlation; this provides a
more detailed view of genes driving the
correlation. By comparing the similarity of
expression across different ranges between
replicates, the user can assess the level of
noise. Another approach to determining a
threshold for expression above noise is to
compare the number of genes expressed at
different cutoffs across all samples. This
can be done by quantifying genes with
expression above a given RPKM value in
each sample (see SETTING a LOW COUNTS

THRESHOLD box panels B and D for
additional information). To define the low
expression or noise threshold, the user
should decide on an RPKM cutoff when
the sample lines begin to look similar. This
approach takes into account a variety of
factors, including sequencing depth,
batch effects, and technical variability.
The resulting threshold not only will
impact the number of genes to be
trimmed from the original dataset but

may also affect the interpretation of
individual gene expression graphs. For
example, if the RPKM expression values
for a given gene across two time points are
plotted and show an expression change
from 0.5 to 6 RPKM, one might believe
this is a significant increase. However,
taking into consideration the threshold for
noise being set at 10 RPKM, the user
cannot draw any conclusions for the
expression change from 0.5 to 6 RPKM.

Our dataset shows high consistency in
gene expression distribution among samples
(Figure 2A), which is likely the result of the
high read coverage and low technical
variability across samples. Variation
between samples can also be minimized
by sequencing all samples on the same
sequencing run, assuming a technically
successful run. Moreover, plotting and
comparing gene expression distribution
for all samples, Figure 2A allows the
investigator to define a threshold for low
counts. In our example dataset, this cutoff
was set at an RPKM expression value of 1
because this was the point at which all
samples started to align and displayed
distribution curves, as shown in the inset in
Figure 2A.

Alternatively, as depicted in Figures 2B
and 2C, in which the expression level (in
log2 RPKM) of each gene is plotted for

biological replicates, the apparent similarity
between samples decreases as intragroup
variability (as defined by the correlation
coefficient; Table 2) increases. Moreover, if
replicates from two different groups are
plotted (as an example of an error or
mislabeling of a replicate), the correlation
further decreases (Figure 2D). This can help
guide the investigator to determine a
threshold below which count values might
become more difficult to interpret because
replicates display higher levels of noise.

The above steps allow for genes with low
expression levels that represent noise to be
excluded before proceeding with analysis.
This number does not need to be fixed or
defined a priori and may change depending
on the goals of the analysis, but it should
remain constant throughout analysis. In
general, a less stringent cutoff allows for
more noise or “false positives” in the
downstream analysis, and verification of
findings should be performed. In contrast,
high stringency may reduce sensitivity and
lead to the removal of genes of interest. On
the basis of the RPKM= 1 cutoff, we defined
our thresholds for low count filtering as the
number of samples in the dataset (n),
because hypothetically an RPKM value of 1
for each sample would not prove to be useful
for interpretation and further analysis.
Therefore, we set our row sum filters to 12
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Figure 1. Assessing inter- and intragroup variability. (A) Principal component (PC) analysis plot displaying all 12 samples along PC1 and PC2, which
describe 68.1% and 20.3% of the variability, respectively, within the expression data set. PC analysis was applied to normalized (reads per kilobases of
transcript per 1 million mapped reads) and log-transformed count data. (B) Pearson’s correlation plot visualizing the correlation (r) values between
samples. Scale bar represents the range of the correlation coefficients (r) displayed.
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for the “all-samples” dataset and 6 for the
“most correlated” and “least correlated”
datasets.

Identification of DEGs and
Visualization
After the initial quality control steps, outlier
removal, and filtering, the data are ready for
analysis. We begin by defining DEGs with
two general approaches: 1) pairwise
comparison between two groups and 2)
variance across groups. Various online
resources and software are publicly available
that allow for this type of analysis. Regardless
of the tool being used, it is important to note
that the investigator needs to filter out low
counts beforehand. Even if a protocol has
been established (e.g., by using an R script
pipeline), it is important to always check and
adjust filtering cutoffs before proceeding
with the analysis.

Pairwise comparison. There are several
tools that identify pairwise DEGs, such as
edgeR (8, 9), DESeq (15), and cuffdiff
(16–19). In the present analysis, we use

edgeR to assess whether there are
statistically significant DEGs between two
groups using a negative binomial model.
This pairwise comparison tests the null
hypothesis for each gene that the two
groups have equal expression distribution
(i.e., the gene is not differentially expressed)
and will reject this hypothesis if the two
groups demonstrate significant different
expression distributions (i.e., the gene is in
fact differentially expressed). The resulting
data table assigns P values, adjusted
P values (calculated using the Benjamini-
Hochberg false discovery rate [FDR] method
to adjust for multiple hypothesis testing),
and log2 fold changes for each gene. It should
be noted that although unadjusted P values
are computed, they are not commonly used
or interpreted, because they do not account
for multiple hypothesis testing.

Because our dataset consisted of three
separate conditions or groups, we ran three
pairwise comparisons using the negative
binomial generalized linear model in edgeR,
glmLRT, with the raw count data table

as our input (see RAW COUNTs box) (8).
The output data tables consisting of log2
fold change for each gene as well as
corresponding P values are shown in
Tables E2–E4. It can be helpful to generate
an MA plot in which the log2 fold
change for each gene is plotted against the
average log2 counts per million, because
this allows for the visual assessment of the
distribution of genes for each pairwise
comparison (Figure 3A). An MA plot is
similar to a volcano plot in that it
displays the log2 fold change against the
2log10 P value. In our initial pairwise
comparison, we compared all three groups
against one another, leading to three
comparisons and using all four replicates,
yielding a large number of up- and
downregulated genes.

To illustrate the effect that group size
and intragroup variance have on the
identification of DEGs, we also ran pairwise
comparisons using just two replicates,
choosing first the most and then the least
correlated pairs within each group based on

Normalized Counts  
What is RNA-seq data normalization? Raw counts data may be normalized to account for gene length,

sequencing depth, or differences in the global distribution of gene expression. For example, we normalize for

the former two by converting to Reads Per Kilobase of transcript per Million mapped reads (RPKM). Non-

linear normalization strategies, such as trimmed mean of M values (TMM), can be used to account for 

inter-sample bias arising from technical sources. 

What should I use normalized counts data for?
Principal Component Analysis: Generally, normalization prior to principal component analysis is favorable

Filtering: Filtering methods based on the gene expression distribution in samples must be performed on

normalized data, since normalization allows for the comparison of expression levels across samples. For example,

when filtering on a row sum (shown below), one should always used normalized counts data. 

Plotting individual gene expression data: In order to visualize transcriptional differences among

samples or conditions, you must use expression data normalized for sequencing depth. 

Gene (by Ensembl ID) Sample 1 Sample 2 Sample 3 Row Sum

ENSMUSG00000056394

ENSMUSG00000026683

ENSMUSG00000066551

ENSMUSG00000020649

ENSMUSG00000027203

ENSMUSG00000003038

ENSMUSG00000033222

ENSMUSG00000001228

ENSMUSG00000020282

ENSMUSG00000030978

ENSMUSG00000041859

ENSMUSG00000032555

1.29

1.75

13.78

11.18

4.66

26.29

5.24

2.33

0.69

16.90

6.52

4.92

1.15

1.44

13.66

11.10

3.84

25.46

5.12

2.16

0.69

17.51

6.68

5.16

3.81

4.78

40.79

33.63

13.49

77.78

15.28

6.77

2.12

52.96

21.17

15.07

1.37

1.59

13.36

11.35

4.98

26.03

4.93

2.28

0.74

18.55

7.97

4.99
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the previously calculated correlation (see
Table 2 and Figures 3B and 3C). Both
comparisons using two replicates
demonstrate fewer DEGs than the full
four replicates. (Figures 3B and 3C).
Moreover, the number of DEGs across
the least correlated replicates was lower
than for the most correlated comparison.
This decline in the number of significant
DEGs highlights the effect of the smaller
group size on the power of the analysis:
A smaller group size increases the variance
in gene expression, resulting in less
confidence and thus increasing
(nonsignificant) P values. We use
randomized data, in which replicates across
different conditions were pooled, to
simulate the case in which there are no
underlying differences between groups and
the null hypothesis is true for all genes
(Figure 3D).

Variance across groups. For our second
approach, we used ANOVA to estimate the
variance of genes across all groups. ANOVA
tests for DEGs between any set of groups
with the null hypothesis that the mean
gene expression is equal across all groups.
The result is a P value representing the
significance of the variation across groups
compared with within groups without
defining directionality or which groups are
variable. We did not set a limit for fold
change in expression at this point, although
this can be done if the user desires to
further restrict the analysis to genes with
a high magnitude of change. To limit our
analyses to findings that were less likely
to be due to chance, we again used the
Benjamini-Hochberg FDR method with a
threshold of significance at 0.05 (20). Other
modifications that are more stringent can
be used, and here again, a less stringent

cutoff may introduce more “noise” and
“false positives.”

Using our dataset, we ran ANOVA
with four replicates in each of the three
groups, as well as on the most and least
correlated groups with n = 2. The resulting
P values were plotted as a histogram
(Figure 4) in which each bar represents the
number of genes with a P value in the given
bin (bin size = 0.01). For the four-replicates
comparison, the frequency of significant
P values was the highest, with nearly 8,000
P values less than 0.05 (Figure 4A). Using
the most and least correlated groups with
n = 2 yielded approximately 5,000 and
3,500 P values less than 0.05, respectively
(Figures 4B and 4C). These examples
highlight that both group size and
intragroup variability can impact the results
of the analysis.

Clustering. The two most common
clustering methods used for RNA-seq data
analysis are hierarchical and k-means
clustering (see CLUSTERING box). The most
common form of hierarchical clustering is a
bottom-up agglomerative approach that
organizes the data into a tree structure
without user input by starting with each
data point as its own cluster and iteratively
combining them into larger clusters or
“clades.” In contrast, k-means clustering
requires the investigator to define the
number of clusters (k) a priori, and data
are then sorted into the cluster with the
nearest mean. It is possible to assess a
range of k-values to decide how to best
capture the trends. In addition, various
tools such as Silhouette exist to help the
investigator determine the ideal k-value,
but some subjectivity remains (21). By
adjusting the k, the investigator may set
the degree of granularity they would like
to achieve with the data. For either
approach, the user must specify the
distance metric by which data points are
considered similar. Typically, Pearson’s
correlation is used, and this is generally
the default in software designed for RNA-
seq analysis. Both approaches are widely
used, and both aid the investigator in
identifying groups of genes that display
similar expression patterns, allowing for
further downstream analyses. The clusters
can then be used as input for an analysis
of functional enrichment (see next
section).

After obtaining lists of genes that were
differentially expressed (adjusted P, 0.05)
across the three conditions by ANOVA, we

Below are examples of two plots demonstrating differing levels of noise, leading to
differing thresholds.
Sample 1 and 2 (A and B) are highly correlated (r = 0.9937) and the gene expression
distributions align quickly, leading to a threshold of RPKM = 1. On the other hand,
sample 1 and 3 (C and D) are less correlated (r = 0.863) and highly noisy; the gene
expression distribution does not align until RPKM = 10.
In this case, the noisiness of sample 3 is likely the result of low sequencing
depth. The user may choose to remove the sample, submit it to additional
sequencing, or re-normalize the data set to account for it.
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used these genes as input for clustering
to define the prevalent patterns of gene
expression. A heat map provides a way to
visually assess the results of clustering on
the data, enabling the investigator and
reader to observe trends of expression
for genes across populations, treatment
conditions, or time points. In general, a

larger number of DEGs can help increase
the potential for granularity in clustering.
Using all four replicates for each group
resulted in a list of 7,166 genes derived by
ANOVA (FDR, ,0.05) (Figure 5A). As
shown in Figures 5B and 5C, a smaller
group size (n = 2), regardless of intragroup
variability, resulted in a significantly lower

number of genes, with the most correlated
samples (n = 2 per group) yielding a list of
2,150 genes and the least correlated samples
yielding just 862 genes. Hierarchical
clustering of the DEGs identified in all three
conditions led to the same overall structure
of clustering, but some smaller clusters
were lost in Figures 5B and 5C. Next, we
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Figure 2. Determining a low count threshold. (A) The number of genes at a given reads per kilobases of transcript per 1 million mapped reads (RPKM)
value for each sample (bins = 120; bin size = 0.1). Inset box enlarged at right highlights a subsection of the figure that was used to define an RPKM cutoff
of 1 (bin size = 0.1). (B–D) Scatterplots comparing the expression of individual genes between two samples for (B) most correlated samples within a group
(r = 0.9989), (C) least correlated samples within a group (r = 0.978), and (D) least correlated samples within the data set (r = 0.9089). Data are plotted on
a log2 scale.

Raw Counts

A raw counts table gives the raw reads mapped to each gene (rows) for each sample (column). One approach to filter out genes with
low counts that represent background noise is by calculating the row sum for each gene across all libraries and removing any gene with a
row sum below the chosen threshold.

Whendo I use rawcounts data? Some software packages are designed to take raw counts as input. For example, EdgeR, a package to
identify pairwise differentially expressed genes, requires raw count data as input. Then, the algorithm internally accounts for both
sequencing depth and inter-sample variation in the calculation of differential expression.
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used k-means clustering (Figure 6) and
identified six clusters (k = 6) in our heat
map consisting of n = 4 groups, and we
used these six gene lists for functional
enrichment analysis.

GO Enrichment Analysis
Functional enrichment analysis is a
method to assign biological relevance

to a set of genes and can be
performed using a variety of online
and downloadable tools, such as gene
set enrichment analysis (22, 23),
Enrichr (24, 25), DAVID (26, 27), or
GOrilla (28). These tools analyze the
lists of genes provided by the user (in
our case, genes assigned to a given cluster,
but this could also be done on pairwise

DEGs or another analysis) and
identify annotated sets of genes that
are enriched within the list. In our
analysis, we use GOrilla, a publicly
available GO enrichment tool
(http://cbl-gorilla.cs.technion.ac.il) (28),
which compares a target list of genes
to a background set of genes, to assess
the significance of enrichment for
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Figure 4. Distribution of ANOVA P values for (A) all (n = 4), (B) most correlated (n = 2), and (C) least correlated (n = 2) replicates. P values were distributed
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Figure 3. The effect of group size and intragroup variance on ability to identify differentially expressed genes. MA plots showing average logarithmically
transformed counts per million (CPM) versus the log2 fold change for pairwise comparisons between the Transplant 2H versus Naive (top row), Transplant
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false discovery rate less than 0.05 are shown in blue and red, respectively.

TRANSLATIONAL REVIEW

Translational Review 153

http://cbl-gorilla.cs.technion.ac.il


previously annotated and defined
processes (GO terms). The resulting
GO terms may describe biological
processes, molecular functions, or
cellular components; these terms can
vary from very general (e.g., activation of
the innate immune response) to very
specific (e.g., antigen processing and

presentation of endogenous peptide
antigen via major histocompatibility
complex class II [GO:0002491]) (29, 30).
GOrilla is also able to perform
enrichment analysis on a single, ranked
gene list.

The significance of the enrichment
is assessed using the hypergeometric test,

which is calculated from background
(the total number of genes in the
analysis; N), the number of genes in the
target set (n), the number of genes
associated with a GO term (B), and the
overlap (the number of genes identified
in the target list that are also found in
the GO term; b). The P value reflects the
likelihood that an overlap greater than
or equal to that observed could occur
by chance. As one might expect, this
means that the P value is directly impacted
by the magnitude of all four terms: N, B,
n, and b. It is important to note that
neither of these scores pertains to the
difference in gene expression levels, but
instead the scores describe the enrichment
of genes in the target set within a given
GO term (see ENRICHMENT ANALYSIS box).
The investigator should give thought to
the choice of background genes;
including all known genes will likely yield
apparent enrichment of general processes
that are not relevant to the biological
question and mask interesting findings.
For our analysis, we used the sets of genes
resulting from k-means clustering of the
full set of 7,166 DEGs (k = 6) and chose
to list processes with adjusted P, 0.05
(Figure 6). For example, we found that cell
cycle was enriched in cluster 1. In this
analysis, our background N was the full set
of 7,166 genes, the n was the number of
genes in each cluster, B was the number of
genes assigned to the GO term, and b was
the overlap. Ultimately, identification of
enriched processes allows the investigator
to generate hypotheses about important
drivers of the changes between groups.
However, it is important for the
investigator to remain aware of the fact
that enrichment tools never take into
account gene RPKM expression values,
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Figure 5. Effect of group size and intragroup variance on ability to identify gene clusters. Hierarchical
clustering performed on differentially expressed genes defined by ANOVA with a false discovery rate
less than 0.05. (A) Using all replicates per group, 7,166 genes were clustered. (B) Most and (C)
least correlated samples resulted in input lists of 2,150 and 862 genes, respectively. The z-score
scale bar represents relative expression 62 SD from the mean.

Clustering

Why do we use clustering on RNA-seq data? Clustering of RNA-seq data may be used to identify patterns of gene expression by
grouping genes based on their distance in an unsupervised manner. Clustering RNA-seq data is used as an exploratory tool that allows
the user to organize and visualize relationships between groups of genes, and to select certain genes for further consideration.

Hierarchical clustering. The most commonly used hierarchical clustering approach is a form of agglomerative, or bottom-up,
clustering that iteratively merges clusters (originally consisting of individual data points) into larger clusters or “clades”.

K-means clustering. Data points are iteratively partitioned into clusters based on the minimum distance to the cluster mean. The
number of clusters (k) is set by the investigator.
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and thus the adjusted P values reported in
GO enrichment analysis are unrelated to
actual gene expression changes.

Visualization of Individual Genes
A key part of RNA-seq analysis is the
identification of individual genes or groups
of genes that describe differences among
groups. Although enrichment analysis can
provide the investigator with useful
information regarding pathways and GO
terms that are differentially affected, it does
not provide any information regarding the
actual up- or downregulation of gene
expression. To allow the investigator to
visualize and assess the transcriptional
changes at the gene level, the expression of
individual genes must be plotted. At this
level, the investigator can assess the efficacy
of their analysis in recovering genes of
interest. Moreover, querying individual
genes of interest may allow the investigator
to define interesting signatures beyond those
given by the GO annotation. For example,

differentially expressed transcription factors
may yield clues as to how the transcriptional
signatures are regulated and define the
investigator’s sought-after “novel
signature.” Transcription factors that
are up- or downregulated may have
accompanying epigenomic changes, and
other high-throughput sequencing assays
such as ChIP-seq (chromatin IP
sequencing) and ATAC-seq (assay for
transposase-accessible chromatin
sequencing) can be used to further elucidate
their role (31, 32). Chromatin profiling can
help reveal both temporal and spatial
expression changes (33). Key genes should be
validated using Western blotting or qPCR,
and claims of causation should be supported
by functional studies or genetic ablation,
preferably restricted to the cell type or
lineage of interest to reduce confounding
effects from the microenvironment and
neighboring cells.

After our enrichment analysis, we
identified several key cytokines and proteins
of interest among the DEGs. We first
visualized the exonic mapping of reads for
these genes of interest using the Integrative
Genomics Viewer (34, 35) (Figure E3). This
view also provides an intuitive look at how
the gene expression level is calculated and
demonstrates the agreement across replicates.
Interestingly, although some key genes were
identified as significantly differentially
expressed using all four replicates for each
group (Figure 7A), once the group size was
reduced to the two most-correlated samples

(Figure 7B), statistical significance was lost.
Moreover, with the increased intragroup
variability of the least correlated samples,
several more genes were excluded
(Figure 7C). Specifically, although Cdk2
(ENSMUSG00000025358) was present in
all three datasets, Il-1b
(ENSMUSG00000027398) was
identified only in the first two datasets
but was absent from the “least
correlated” DEG list. Moreover, Cdk2
(ENSMUSG00000035385) was only
found when analysis was run using four
replicates instead of two per group. These data
highlight the effects of group size and
variability on enrichment and identification of
individual genes that show transcriptional
differences between groups. For definition of
terms, see GLOSSARY box.

Conclusions and Discussion
With the advent of RNA-seq protocols and a
plethora of packages and online tools for
data analysis, it is important to have a
basic understanding of how these codes,
tools, and apps manipulate the data, as
well as to be able to view and interpret data
at each step to ensure reliability and avoid
bias. In the present review, we provide
a simplified overview that describes
some basic, established methods for RNA-seq
analysis and demonstrate how some important
dataset characteristics, such as group size and
intragroup variability, can affect downstream
analysis. We have discussed how to identify
and set a threshold to filter out “noise” and low
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Figure 6. k-Means clustering and Gene
Ontology (GO) enrichment analysis using the
top differentially expressed genes. k-Means
clustering was performed on the data set
containing all samples (n = 4/group), and the top
GO process from each cluster is shown.

Enrichment Analysis
Enrichment analysis commonly uses a hypergeometric test to
identify whether a set of genes is overrepresented in a data set.

The hypergeometric test takes into consideration the background

list of genes (N), the number of genes in the set of interest (n),
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counts, how to identify DEGs using two
different approaches, how clustering
algorithms define transcriptional signatures,
and how gene enrichment analyses highlight
relevant processes.

We have highlighted steps and
checkpoints that will aid the investigator
in reducing bias and misinterpretation of
data, but in the end, it is the investigator’s
responsibility to step back and remain
vigilant when interpreting the results of
their analysis. The investigator should
question whether the results make sense
in the context of the biological question
and the underlying data. Furthermore,
it is important for the investigator to
remain cautious and aware of the fact
that many automated apps and tools
provided online to perform the RNA-seq
analysis are prone to error and
misinterpretation, particularly if the user
does not fully understand the steps taken
or the statistical test that underlies the
analysis. As we highlight throughout this
paper, it is important to understand
when to use raw versus normalized
counts, and how to set thresholds for
“noise,” which can significantly impact
the interpretation of changes in gene
expression. Moreover, using these tools
without understanding their output (e.g.,
adjusted P values provided with
functional enrichment) can lead the user
to misinterpret data. Although there is no
doubt that RNA-seq is a powerful tool,
careful data analysis is of the utmost
importance. It must be remembered that

Glossary

Raw counts Raw counts are the direct output from a pipeline, obtained after trimming,
demultiplexing, alignment, and mapping. Raw count values generally are whole
numbers and will not contain decimals.

Normalized counts Raw counts that are normalized by accounting for gene length, sequencing depth, or
expression distribution.

False discovery rate (FDR), q value,
adjusted P value

These terms describe the same concept, namely a P value that has been adjusted to
account for multiple hypothesis testing.

PCA Principal component analysis (PCA) reduces data dimensionality and describes
variation using principal components (PCs).

Benjamini-Hochberg (BH) adjustment A method of calculating the FDR by limiting the expected ratio of false-positive results,
or type I errors, in the results. The adjustment is calculated by ranking P values,
calculating individual BH values, and comparing the BH values with P values.

RPKM Reads per kilobases of transcript per 1 million mapped reads. RPKM is calculated as
follows: [number of mapped reads]/[(transcript length/1,000)/(total reads)/106)].

FPKM Fragments per kilobases of transcript per 1 million mapped reads. FPKM is calculated
as follows: [number of fragments]/[(transcript length/1,000)/(total reads)/106)].

CPM Counts per million. CPM does not account for gene or transcript length.
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Figure 7. Individual gene analysis. RPKM expression values for the Cdk2, Il1b, and Ccl2 genes are
shown for the datasets containing (A) all samples (n=4/group), (B) most correlated replicates (n=
2/group), and (C) least correlated replicates (n=2/group). Although all three genes were identified as
differentially expressed genes (DEGs) from the full (n=4) dataset in Figure 6, Ccl2 was not among the
DEGs in the “most correlated” comparison, owing to an ANOVA false discovery rate greater than 0.05,
and neither Il1b nor Ccl2 was a DEG in the “least correlated” comparison. Genes that were not DEGs in
the designated dataset are displayed in gray.
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interpretation of almost all the steps of the
analysis remain subjective, and it is thus

researchers’ responsibility to be their own
strongest critics. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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